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Abstract: In recent years, intrinsic metrics have been described on various fractals with different
formulas. The Sierpinski gasket is given as one of the fundamental models which defined the intrinsic
metrics on them via the code representations of the points. In this paper, we obtain the explicit
formulas of the intrinsic metrics on some self-similar sets (but not strictly self-similar), which are
composed of different combinations of equilateral and right Sierpinski gaskets, respectively, by using
the code representations of their points. We then express geometrical properties of these structures
on their code sets and also give some illustrative examples.
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1. Introduction

Fractal geometry is one of the most remarkable developments in mathematics in recent years.
Since fractals are central to apprehending a wide array of chaotic and nonlinear systems, they have
many applications in physics, chemistry, biology, computer science, engineering, economics and so
on (for details, see [1–4]). One of the common properties of fractals is self-similarity. A geometric
shape is self-similar if there is a point such that every neighborhood of the point contains a copy of the
entire shape and, if it is self-similar at every point, then it is called strictly self-similar. For example,
the Sierpinski gasket, the Cantor set, the Koch curve and the Sierpinski carpet are strictly self-similar
sets (for details, see [5]). There have been different studies on these fractals since the 1970s. Defining
the intrinsic metric on these sets is one of them [6–11]. In [12], the intrinsic metric on the code set of
the Sierpinski gasket, which is one of the instructive examples of strictly self-similar sets, is formulated
by the code representations of its points. Due to this metric formula, important geometrical and
topological properties of the Sierpinski gasket are expressed by the code sets, the number of geodesics
are determined and the code representations of points are classified according to the number of
geodesics (for details, see [13–15]). As seen in these studies, defining the intrinsic metrics by using
the code representations of the points on fractals provides some facilities for different works. Hence,
our aim is to increase such examples in the literature.

In this paper, we define two new fractals which are self-similar but are not strictly self-similar
and then we determine the code representations of points on these fractals. To this end, we first
constitute a model by using three classical Sierpinski gaskets with edge length one. We also express
code representations of the points on this structure. In Theorem 2, we define the intrinsic metric
on this structure and present some geometrical properties on its code set in Propositions 3 and 4.
Finally, we formulate the intrinsic metric on a second fractal obtained by two right Sierpinski gaskets
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in Proposition 5. As seen in Examples 1 and 3, one of the advantages of these intrinsic metric formulas
is to calculate the distance between the points on these sets easily.

2. The Intrinsic Metric on the Code Set of the Sierpinski Gasket

It is well known that the intrinsic metric on a set X is defined as

dint(x, y) = inf{ δ | δ is the length of a rectifiable curve in X joining x and y}

for x, y ∈ X (see [16]). By using the code representations of the points, to express the intrinsic metrics
on fractals is a valuable problem, but it is not easy to obtain these formulas for every self-similar set.
Therefore, the Sierpinski gasket (S) is regarded as one of the fundamental models which define the
intrinsic metric formulas on fractals (for details, see [12]). It is well known that the attractor of the
iterated function system {R2; f0, f1, f2} such that
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( x
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is the Sierpinski gasket with the vertices P = (p0, p1), Q = (q0, q1) and R = (r0, r1). That is,

S =
2⋃

i=0

fi(S).

Note that, if these coefficients are taken as p0 = p1 = q1 = 0, q0 = 1, r0 = 1
2 and r1 =

√
3

2 , then the
attractor of the iterated function system is the classical Sierpinski gasket (see Figure 1). In the case of
p0 = p1 = q1 = r0 = 0, q0 = 1 and r1 = 1, the so-called right Sierpinski gasket is then obtained as the
attractor of the iterated function system.

Figure 1. The classical Sierpinski gasket.

The intrinsic metric on the code set of the scalene Sierpinski gasket with the vertices
P = (p0, p1), Q = (q0, q1) and R = (r0, r1) is formulated in [15] as follows:

Let ai = bi for i = 1, 2, . . . , k − 1 and ak 6= bk, where ai, bi ∈ {0, 1, 2} for i = 1, 2, 3, . . .. If the
code representations points A and B on this set are a1a2 . . . ak−1akak+1 . . . and b1b2 . . . bk−1bkbk+1 . . . ,
respectively, then the intrinsic metric formula is defined as follows:
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Theorem 1 ([15], Theorem 1). Let ak 6= ck 6= bk and ck ∈ {0, 1, 2} and

κ =


|PQ|, (ak = 0, bk = 1) or (ak = 1, bk = 0),
|PR|, (ak = 0, bk = 2) or (ak = 2, bk = 0),
|QR|, (ak = 1, bk = 2) or (ak = 2, bk = 1).

Then, the formula

d(A, B) = min

{
∞

∑
i=k+1

αi + βi

2i ,
κ

2k +
∞

∑
i=k+1

γi + δi

2i

}
, (2)

such that

αi =


0, ai = bk,
|PQ|, (ai = 0, bk = 1) or (ai = 1, bk = 0),
|PR|, (ai = 0, bk = 2) or (ai = 2, bk = 0),
|QR|, (ai = 1, bk = 2) or (ai = 2, bk = 1),

βi =


0, bi = ak,
|PQ|, (bi = 0, ak = 1) or (bi = 1, ak = 0),
|PR|, (bi = 0, ak = 2) or (bi = 2, ak = 0),
|QR|, (bi = 1, ak = 2) or (bi = 2, ak = 1),

γi =


0, ai = ck,
|PQ|, (ai = 0, ck = 1) or (ai = 1, ck = 0),
|PR|, (ai = 0, ck = 2) or (ai = 2, ck = 0),
|QR|, (ai = 1, ck = 2) or (ai = 2, ck = 1),

δi =


0, bi = ck,
|PQ|, (bi = 0, ck = 1) or (bi = 1, ck = 0),
|PR|, (bi = 0, ck = 2) or (bi = 2, ck = 0),
|QR|, (bi = 1, ck = 2) or (bi = 2, ck = 1),

gives the length of the shortest path between the points A and B on the scalene Sierpinski gasket.

Remark 1. The intrinsic metric formula on the right Sierpinski gasket is defined as follows:

d(A, B) = min

{
∞

∑
i=k+1

αi + βi

2i ,
κ

2k +
∞

∑
i=k+1

γi + δi

2i

}
, (3)

such that

αi =


0, ai = bk,√
2, (ai = 1, bk = 2) or (ai = 2, bk = 1),

1, otherwise,
βi =


0, bi = ak,√
2, (bi = 1, ak = 2) or (bi = 2, ak = 1),

1, otherwise,

γi =


0, ai = ck,√
2, (ai = 1, ck = 2) or (ai = 2, ck = 1),

1, otherwise,
δi =


0, bi = ck,√
2, (bi = 1, ck = 2) or (bi = 2, ck = 1),

1, otherwise,

and

κ =

{ √
2, (ak = 1, bk = 2) or (ak = 2, bk = 1),

1, otherwise.

The intrinsic metric formula on the classical Sierpinski gasket is obtained by

d(A, B) = min

{
∞

∑
i=k+1

αi + βi

2i ,
1
2k +

∞

∑
i=k+1

γi + δi

2i

}
, (4)
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where

αi =

{
0, ai = bk,
1, ai 6= bk,

βi =

{
0, bi = ak,
1, bi 6= ak,

γi =

{
0, ai 6= ak and ai 6= bk,
1, otherwise,

δi =

{
0, bi 6= bk and bi 6= ak,
1, otherwise

(for details, see [12,15]).

3. The Code Representations of Points on the Sierpinski Propellers

Let us first consider identical classical Sierpinski gaskets whose colors are red, yellow, blue, black
and purple. As seen in Figure 2, we combine m copies of the identical classical Sierpinski gaskets (for
m = 2, 3, 4, 5, respectively) at one touching point T. Note that these shapes are similar to a propeller.
Thus, we call these new structures as the Sierpinski propeller (briefly SP). Since the fractal dimension of

the Sierpinski gasket is
ln 3
ln 2

, the fractal dimensions of the Sierpinski propellers are also
ln 3
ln 2

. Moreover,
the areas of these sets are 0.

TT

··

T·
T

·

Figure 2. The classical Sierpinski propellers.

The Sierpinski gasket is a strictly self-similar. Although the Sierpinski propellers are self-similar,
they are not strictly self-similar. It can easily be seen that T is a special point since every neighborhood
of this point contains the scaled copies of the Sierpinski propellers (see Figure 3 and Proposition 4).
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T
T T

Figure 3. The scaled copies of the classical Sierpinski propeller for m = 3.

In this section, we only express the code representations of points on the classical Sierpinski
propeller for m = 3 and we define the intrinsic metric on the code set of this fractal in Section 4.
The intrinsic metric formulas and the code sets of the classical Sierpinski propellers for m = 2, 4, 5 can
be similarly obtained. Note that the intrinsic metric formula can be expressed more simply for m = 3
when a different code representation is used (see Remark 4). However, the following method can be
more convenient for the proofs in cases of m = 4 and m = 5 (the numbers of the code representations
of the point T are 4 and 5, respectively).

Let us denote the red Sierpinski gasket, the yellow Sierpinski gasket and the blue Sierpinski
gasket of the Sierpinski propeller by SP̃0, SP̃1 and SP̃2, respectively. It is obvious that

SP̃0 ∩ SP̃1 ∩ SP̃2 = T

and
SP̃0 ∪ SP̃1 ∪ SP̃2 = SP.

Let us state the left-bottom part, the right-bottom part and the upper part of SPa0 by SPa00, SPa01 and
SPa02, respectively, where a0 ∈ {0̃, 1̃, 2̃}. The smaller triangular pieces of SP are denoted by SPa0a1a2 ...ak ,
where ai ∈ {0, 1, 2} and i = 1, 2, . . . , k. We thus obtain

SPa0 ⊃ SPa0a1 ⊃ SPa0a1a2 ⊃ SPa0a1a2a3 ⊃ . . . ⊃ SPa0a1a2 ...an ⊃ . . .

and for a sequence of nested sets SPa0 , SPa0a1 , SPa0a1a2 , SPa0a1a2a3 , . . ., the Cantor intersection theorem
states that the infinite intersection of these sets contains exactly one point:

∞⋂
k=0

SPa0a1a2 ...ak = {A}.

We denote the point A ∈ SP by a0a1a2 . . . an . . . where a0 ∈ {0̃, 1̃, 2̃} and an ∈ {0, 1, 2} for n = 1, 2, . . ..
The following proposition shows that the points on the Sierpinski propeller have the code

representations different from the code representations of points on the Sierpinski gasket:

Proposition 1. The Sierpinski propeller has points whose numbers of the code representations are 1, 2 or 3.
Moreover, the point T is the unique point whose number of the code representations is 3.
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Proof. T is the unique point which has three code representations such that 0̃111 . . ., 1̃000 . . . and
2̃222 . . . since all of the set sequences

SP̃0, SP̃01, SP̃011, SP̃0111, . . .

SP̃1, SP̃10, SP̃100, SP̃1000, . . .

and
SP̃2, SP̃22, SP̃222, SP̃2222, . . .

contain the point T. Note that, for A 6= T, if A is the intersection point of any two sub-triangles in the
same level of Sa0a1a2 ...ak , then A has two different representations such that a0a1a2 . . . akβαααα . . . and
a0a1a2 . . . akαββββ . . . where α, β ∈ {0, 1, 2}. Otherwise, the code representation of A is unique.

In Figure 4, it can be seen that the set of code representations of points on the red Sierpinski gasket
is

SP̃0 = {0̃a1a2a3 . . . | ai ∈ {0, 1, 2}},

the set of code representations of points on the yellow Sierpinski gasket is

SP̃1 = {1̃a1a2a3 . . . | ai ∈ {0, 1, 2}}

and the set of code representations of points on the blue Sierpinski gasket is

SP̃2 = {2̃a1a2a3 . . . | ai ∈ {0, 1, 2}}.

Generally, the sub-triangles of Sσ for σ = a0a1a2 . . . ak−1 are expressed as

SPσ = {σakak+1ak+2 . . . | ai ∈ {0, 1, 2}, i = k, k + 1, k + 2, . . .}.

In addition, the code sets of the Sierpinski propellers are

{0̃1 . . . 1ak+1 . . . | ai ∈ {0, 1, 2}} ∪ {1̃0 . . . 0ak+1 . . . | ai ∈ {0, 1, 2}} ∪ {2̃2 . . . 2ak+1 . . . | ai ∈ {0, 1, 2}},

where i = k + 1, k + 2, k + 3 . . . for k = 1, 2, 3, . . . .

T

0
SP

0
PPPPP
0

1
SP

1
PPPPP
1

2
SP

2
PPPPP
2

00
SP
00
PPPP
00

000
SPPPPPP
00

·0000 ·········0

12
SP
12
PPPPP
12

121
SPPPPPP
12

· 12111 11222º121111 11222

11
SP
11
PPPPP
11

112
SPPPPPP
11

20
SPPPPPP
20

Figure 4. Some code sets of the Sierpinski propeller.
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4. The Construction of the Intrinsic Metric on the Code Set of SP

In the following theorem, we formulate the intrinsic metric on SP by using the code
representations of its points.

Theorem 2. Suppose that the code representations of the points A and B on the Sierpinski propeller are
a0a1a2 . . . ak−1akak+1 . . . and b0b1b2 . . . bk−1bkbk+1 . . . respectively such that ai = bi for i = 1, 2, . . . , k− 1
and ak 6= bk where a0, b0 ∈ {0̃, 1̃, 2̃} and ai, bi ∈ {0, 1, 2} for i = 1, 2, 3, . . . .

(i) If a0 6= b0, then the shortest distance between A and B is determined by

d(A, B) =
∞

∑
i=1

α̃i + β̃i

2i , (5)

such that

α̃i =

{
0, ai = 1
1, ai 6= 1

, β̃i =

{
0, bi = 0
1, bi 6= 0

if (a0 = 0̃, b0 = 1̃), (6)

α̃i =

{
0, ai = 1
1, ai 6= 1

, β̃i =

{
0, bi = 2
1, bi 6= 2

if (a0 = 0̃, b0 = 2̃), (7)

α̃i =

{
0, ai = 0
1, ai 6= 0

, β̃i =

{
0, bi = 2
1, bi 6= 2

, if (a0 = 1̃, b0 = 2̃). (8)

(ii) If a0 = b0, then Equation (4) gives the desired distance.

Proof. (i) Suppose that A and B are two different points of the Sierpinski propeller with the code
representations a0a1a2 . . . an . . . and b0b1b2 . . . bn . . ., respectively, where a0 6= b0. It is clear that the
shortest path between A and B must pass through the point T since SPa0

⋂
SPb0 = {T}.

Firstly, let us consider the case of a0 = 0̃ and b0 = 1̃ (the other cases are done similarly). If a1 = 0
or a1 = 2, then the shortest path between A and T must pass through the points SP̃00

⋂
SP̃01 or

SP̃01
⋂

SP̃02, respectively. These points have the code representations 0̃1000 . . . (equivalently 0̃0111 . . .)
or 0̃1222 . . . (equivalently 0̃2111 . . .), respectively. Furthermore, T and SP̃00

⋂
SP̃01 (similarly T and

SP̃01
⋂

SP̃02) are the points which are the vertices in the sub-triangle SP̃01 of the Sierpinski gasket.

Hence, the length of the shortest path between these points is
1
2

. We compute the length of the shortest

path between A and T as
1
2

if the code representations of A are 0̃1000 . . . (equivalently 0̃0111 . . .) or

0̃1222 . . . (equivalently 0̃2111 . . .). If a1 = 1 and the code representations of A are not 0̃1000 . . . and

0̃1222 . . ., then the length of the shortest path between A and T is less than
1
2

. Consequently, in (5),
we get α̃1 = 1 if a1 = 0 or a1 = 2 and we get α̃1 = 0 if a1 = 1.

Now, consider a1 = 0 and let us take a2 = 0 or a2 = 2 (see Figure 5). Then, the shortest path
between A and SP̃00

⋂
SP̃01 must pass through SP̃000

⋂
SP̃001 or SP̃001

⋂
SP̃002, respectively. Note that

these intersections have the code representations 0̃01000 . . . (equivalently 0̃00111 . . .) or 0̃01222 . . .
(equivalently 0̃02111 . . .), respectively. In addition, 0̃0111 . . . and SP̃000

⋂
SP̃001 (similarly 0̃0111 . . . and

SP̃001
⋂

SP̃002) are the points that are the vertices in the sub-triangle SP̃001 of the Sierpinski gasket.

Thus, the length of the shortest path between these points is
1
22 . We compute the length of the shortest

path between A and T as
1
2
+

1
22 if the code representations of A are 0̃00111 . . . or 0̃02111 . . .. If a2 = 1

and the code representations of A are not 0̃01000 . . . and 0̃01222 . . ., then the length of the shortest path

between A and T is less than
1
2
+

1
22 . Consequently, in (5), we get α̃2 = 1 if a2 = 0 or a2 = 2 and we get

α̃2 = 0 if a2 = 1. Generally, for i = 1, 2, 3, . . ., we obtain α̃i = 1 if ai = 0 or ai = 2 and we get α̃i = 0 if
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ai = 1. A similar procedure is also valid for the computation of the length of the shortest path between
the points T and B.

·A

B·

·

1

22

1

2
3

1

2
4

1

2
00 01

SP SPÇ
00 01
PPPPP SPPPPP
00 000 000 000 0

·

001 002
SP SPÇ

001 002
PPPPP SPPPPP
001 002001 002

0020 0021
SP SPÇ

0020 0021
PPPPP SPPPPP
0020 000 000 000 00

··

¯

¯¯

0 1
T SP SP= Ç

0 1
SPPPPP

0 10 1
PPPPP
0 10 1 10 11

SP SPÇ
10 1110 110 110 110 1

·}}}

Figure 5. One of the shortest paths between A and B on the Sierpinski propeller for a0 = 0̃ and b0 = 1̃.

Remark 2. The point T has three code representations such as 0̃111 . . ., 1̃000 . . . and 2̃222 . . .. Due to
Formula (5), it is easily seen that the distance (which is computed by using different codes of this point) is 0.
Thus, using a similar method given in [12], the following proposition can be proven.

Proposition 2. The metric d defined in Theorem 2 does not depend on the choice of the code representations of
the points.

Example 1. Assume that A and B are the points of SP whose code representations are 1̃010202 . . . and
2̃010101 . . ., respectively. For the computation of d(A, B), we must use Formula (8) owing to the fact that the
first terms of the code representations of A and B are 1̃ and 2̃, respectively. Thus, we get

α̃i = 0 for i = 2, 4, 6, . . . α̃i = 1, for i = 1, 3, 5, . . .

and
β̃i = 1 for i = 1, 2, 3, . . .

It follows that

d(A, B) =
∞

∑
i=1

α̃i + β̃i

2i =
0 + 1

2
+

1 + 1
22 +

0 + 1
23 +

1 + 1
24 + · · ·

=
1
2
+

2
22 +

1
23 +

2
24 + · · ·

=
4
3

.

Proposition 3. If d is the intrinsic metric defined in (5) on SP, then

diam(SP) = max{d(A, B) | A, B ∈ SP} = 2. (9)

Moreover, d(A, B) = 2 if and only if the code representations of A are an element of the set {0̃a1a2a3 . . . | ai ∈
{0, 2}} and the code representations of B are an element of the sets {1̃b1b2b3 . . . | bi ∈ {1, 2}} or
{2̃b1b2b3 . . . | bi ∈ {0, 1}}, or if the code representations of A are an element of the set {1̃a1a2a3 . . . | ai ∈
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{1, 2}} and the code representations of B are an element of the sets {0̃b1b2b3 . . . | bi ∈ {0, 2}} or
{2̃b1b2b3 . . . | bi ∈ {0, 1}}.

Proof. For the computation of the maximum value of the distances between any two points A and B
of SP, α̃i and β̃i must be 1 for i = 1, 2, 3, . . . (see Formula (5)). Thus, if a0 = 0̃ and b0 = 1̃, then ai 6= 1
and bi 6= 0 or if a0 = 0̃ and b0 = 2̃, then ai 6= 1 and bi 6= 2 for i = 1, 2, 3, . . . (see Formulas (6) and (7)).
In addition, if a0 = 1̃ and b0 = 2̃, then ai 6= 0 and bi 6= 2 (see Formula (8)). In these cases, we obtain

d(A, B) =
∞

∑
i=1

α̃i + β̃i

2i =
1 + 1

2
+

1 + 1
22 +

1 + 1
23 +

1 + 1
24 + · · ·

= 1 +
1
2
+

1
22 +

1
23 + · · ·

= 2.

Proposition 4. For n = 1, 2, 3, . . ., the closed discs of radii
1
2n with center T are the scaled copy of Sierpinski

propeller. Especially, if n = 0, then D(T, 1) = SP. In addition, the code sets of circles of radii
1
2n with center

T are

{0̃1 . . . 1an+1 . . . | ai ∈ {0, 2}} ∪ {1̃0 . . . 0an+1 . . . | ai ∈ {1, 2}} ∪ {2̃2 . . . 2an+1 . . . | ai ∈ {0, 1}}.

Proof. We first compute the code representations of the points A satisfying d(A, T) =
1
2n . Without

loss of generality, we take 2̃222 . . . as the code representation of T. Let the code representation of A be
a0a1a2 . . . where a0 ∈ {0̃, 1̃, 2̃} and ai ∈ {0, 1, 2} for i = 1, 2, 3, . . . .

Case 1: Suppose that a0 = 0̃. Since the terms of code representation of T (for i=1,2,3,. . . ) are 2, we get
β̃i = 0 for i = 1, 2, 3, . . .. In addition, ai must be 1 for i ≤ n − 1 (see Formula (7)). Otherwise,

we compute d(A, T) ≥ 1
2n−1 . Now, consider that ai are 1 for all i = 1, 2, 3, . . . , n. This means that

α̃i = 0 for i = 1, 2, 3, . . . , n. If ai 6= 1 for i = n + 1, n + 2, n + 3, . . ., then we obtain α̃i = 1. Therefore,
we compute

d(A, T) =
∞

∑
i=n+1

1 + 0
2i =

1
2n

and this shows that {0̃1 . . . 1an+1an+2 . . . | ai ∈ {0, 2}} is one of the parts of the set of the code

representations of A satisfying d(A, T) =
1
2n for a0 = 0̃.

From the construction above, it can be easily seen that, if d(A, T) ≤ 1
2n for a0 = 0̃, then

{0̃1 . . . 1an+1an+2 . . . | ai ∈ {0, 1, 2}} is one of the parts of the set of the code representations of A.

Case 2: Let a0 = 1̃. By using Formula (8) and following a method similar to Case 1, we obtain
that {1̃0 . . . 0an+1an+2 . . . | ai ∈ {1, 2}} is one of the parts of the set of the code representations

of A satisfying d(A, T) =
1
2n . Moreover, we compute if d(A, T) ≤ 1

2n for a0 = 1̃, then

{1̃0 . . . 0an+1an+2 . . . | ai ∈ {0, 1, 2}} is one of the parts of the set of the code representations of A.

Case 3: Assume that a0 = 2̃. Then, the points A and T are in the same Sierpinski gasket. Applying
Formula (4), we obtain that {2̃2 . . . 2an+1an+2 . . . | ai ∈ {0, 1}} and {2̃2 . . . 2an+1an+2 . . . | ai ∈ {0, 1, 2}}
are one of the parts of the set of the code representations of A satisfying d(A, T) =

1
2n and

d(A, T) ≤ 1
2n , respectively.
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Thus, the unions of sets obtained in Cases 1, 2 and 3 give us the code representations of A

satisfying d(A, T) =
1
2n and d(A, T) ≤ 1

2n . That is,

S(A, T) = {0̃1 . . . 1an+1an+2 . . . | ai ∈ {0, 2}} ∪ {1̃0 . . . 0an+1an+2 . . . | ai ∈ {1, 2}}
∪{2̃2 . . . 2an+1an+2 . . . | ai ∈ {0, 1}}

and

D(A, T) = {0̃1 . . . 1an+1an+2 . . . | ai ∈ {0, 1, 2}} ∪ {1̃0 . . . 0an+1an+2 . . . | ai ∈ {0, 1, 2}}
∪{2̃2 . . . 2an+1an+2 . . . | ai ∈ {0, 1, 2}}.

Example 2. Consider the point A of SP which has the code representation 0̃000 . . .. Obviously, the code set of

the closed disc of radius
1
2

with center A is

D
(

0̃000 . . . ,
1
2

)
= {0̃0a2a3a4 . . . | ai ∈ {0, 1, 2}}.

Remark 3. Proposition 4 and Example 2 show that SP is a self-similar set but not strictly self-similar.

Remark 4. In the Sierpinski propeller for m = 3, if the red Sierpinski gasket is coded by SP̃1 and the yellow
Sierpinski gasket is coded by SP̃0, then the code representations of the point T are determined by w̃www . . .,
where w ∈ {0, 1, 2}. Thus, the intrinsic metric formula can be expressed by

d(A, B) =
∞

∑
i=1

α̃i + β̃i

2i (10)

such that

α̃i =

{
0, ai = a0,
1, ai 6= a0,

, β̃i =

{
0, bi = b0,
1, bi 6= b0,

(11)

for a0 6= b0. Moreover, the code sets of circles of radii
1
2n with center T can be determined by

{ã0a0a0 . . . a0an+1 . . . | ai 6= a0, i ≥ n + 1}.

5. The Intrinsic Metric Formula on Two Adjacent Right Sierpinski Gaskets

By using two right Sierpinski gaskets with vertices P, Q and R where |PQ| = |PR| = 1 and
|QR| =

√
2, we now define a second fractal which is self-similar but not strictly self-similar. Consider

two identical right Sierpinski gakets whose colors of sub-triangles are red, blue and yellow, and then
combine these two triangles at the point Q as in Figure 6. We call this structure adjacent right Sierpinski
gaskets, briefly AS.

Let us denote the triangle that is left of the point Q by AS0̃ and the triangle that is the right of the
point Q by AS1̃. In addition, let us denote the red Sierpinski gaskets by AS0̃0 and AS1̃0, respectively,
the blue Sierpinski gaskets by AS0̃1 and AS1̃1, respectively, and the yellow Sierpinski gaskets by AS0̃2
and AS1̃2, respectively. It is clear that

AS0̃1 ∩ AS1̃1 = Q

and
AS0̃ ∪ AS1̃ = AS.

Thus, two different code representations of Q are 0̃111 . . . and 1̃111 . . .. It is also easily seen that a point
of AS has either one code representation or two code representations.
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Figure 6. Some code sets and code representations of AS.

In the following proposition, we express the intrinsic metric on the code set of AS:

Proposition 5. Suppose that the code representations of the points A and B on AS are a0a1a2 . . . ak−1akak+1 . . .
and b0b1b2 . . . bk−1bkbk+1 . . . respectively such that ai = bi for i = 1, 2, . . . , k − 1 and ak 6= bk, where
a0, b0 ∈ {0̃, 1̃} and ai, bi ∈ {0, 1, 2} for i = 1, 2, 3, . . . .

(i) If a0 6= b0, then the shortest distance between A and B is determined by

d(A, B) =
∞

∑
i=1

α̃i + β̃i

2i , (12)

such that

α̃i =


0, ai = 1,
1, ai = 0,√
2, ai = 2,

β̃i =


0, bi = 1,
1, bi = 0,√
2, bi = 2.

(13)

(ii) If a0 = b0, then Equation (3) gives the desired distance.

Proof. The proof is omitted since it is similar to the proof of Theorem 2.

Example 3. Let the code representation of A be 0̃020202 . . . and let the code representation of B be 1̃101010 . . ..
We must use Formula (12) to compute d(A, B) since the first terms of the code representations of A and B are
different. Then, we obtain

α̃i = 1, for i = 1, 3, 5, . . . α̃i =
√

2 for i = 2, 4, 6, . . .

and
β̃i = 0 for i = 1, 3, 5, . . . β̃i = 1 for i = 2, 4, 6, . . . .

Thus, we get

d(A, B) =
∞

∑
i=1

α̃i + β̃i

2i =
1 + 0

2
+

√
2 + 1
22 +

1 + 0
23 +

√
2 + 1
24 + · · ·

=
(1

2
+

2
23 +

1
25 + · · ·

)
+ (
√

2 + 1)
( 1

22 +
2
24 +

1
26 + · · ·

)
= 1 +

√
2

3
.
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Proposition 6. If d is the intrinsic metric defined in (12) on AS, then

diam(AS) = max{d(A, B) | A, B ∈ AS} = 2
√

2. (14)

Moreover, the code representations of A and B satisfying d(A, B) = 2
√

2 are 0̃222 . . . and 1̃222 . . ., respectively.

Proof. As seen in Formula (12), to obtain the maximum value of the distances between any two points
A and B of AS, α̃i and β̃i must be

√
2 for i = 1, 2, 3, . . . . Then, we get ã0 = 0, b̃0 = 1, ai = 2 and bi = 2

for i = 1, 2, 3, . . . . We also have

d(A, B) =
∞

∑
i=1

α̃i + β̃i

2i =

√
2 +
√

2
2

+

√
2 +
√

2
22 +

√
2 +
√

2
23 +

√
2 +
√

2
24 + · · ·

=
√

2 +

√
2

2
+

√
2

22 +

√
2

23 + · · ·
= 2

√
2.

6. Conclusions

In this paper, we express the intrinsic metrics on two new self-similar (but not strictly self-similar)
sets created with different combinations of the Sierpinski gaskets. With a similar way, various
self-similar sets can be defined by using the different fractals and the intrinsic metrics on these
sets can be formulated.
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