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Abstract: Let f be analytic in open unit disc E = {z : |z| < 1} with f (0) = 0 and f
′
(0) = 1.

The q-derivative of f is defined by: Dq f (z) = f (z)− f (qz)
(1−q)z , q ∈ (0, 1), z ∈ B − {0}, where B is

a q-geometric subset of C. Using operator Dq, q-analogue class k−UMq(α, β), k-uniformly Mocanu
functions are defined as: For k = 0 and q → 1−, k− reduces to M(α) of Mocanu functions.
Subordination is used to investigate many important properties of these functions. Several interesting
results are derived as special cases.

Keywords: q-calculus; q-starlike; uniformly convex; subordination; Mocanu functions; q-Ruscheweyh
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1. Introduction

Let A denote the class of functions f that are analytic in the open unit disc E and are also
normalized by the conditions f (0) = 0, f

′
(0) = 1. Let f , g ∈ A. f is said to be subordinate to g (written

as f ≺ g), if there exists a Schwartz function w(z) such that f (z) = g(w(z)).
q-calculus is ordinary calculus without a limit, and it has been used recently by many researchers

in the field of geometric function theory. q-derivatives and q-integrals play an important and
significant role in the study of quantum groups and q-deformed super-algebras, the study of fractal
and multi-fractal measures and in chaotic dynamical systems. The name q-calculus also appears in
other contexts; see [1,2]. The most sophisticated tool that derives functions in non-integer order is the
long-known fractional calculus; see [1–4].

We recall here some basic concepts from q-calculus for which we refer to [5–16] and the
references therein.

A subset β ⊂ C is called q-geometric, if zq ∈ β, whenever z ∈ B, and it contains all the geometric
sequences {zqm}∞

0 .
The q-derivative Dq of a function f ∈ A is defined by:

Dq f (z) =
f (z)− f (qz)
(1− q)z

, (z ∈ B − {0}) (1)

and Dq f (0) = f
′
(0).

Under this definition, we have the following rules for q-derivative Dq.

(i). Dqzm = 1−qm

1−q zm−1 = [n, q]zm−1, where [m, q] = 1−qm

1−q .
Let f (z) and g(z) be defined on a q-geometric set B ⊂ C such that q-derivatives of f (z) and g(z)

exist for all z ∈ B. Then, for a, b complex numbers, we have:
(ii). Dq(a f (z)± bg(z)) = aDq f (z)± bDqg(z).
(iii). Dq( f (z).g(z)) = g(z)Dq f (z) + f (qz)Dqg(z).

(iv). Dq(
f (z)
g(z) ) =

g(z)Dq f (z)− f (z)Dqg(z)
g(z)g(qz) , g(z).g(qz) 6= 0.

Fractal Fract. 2019, 3, 5; doi:10.3390/fractalfract3010005 www.mdpi.com/journal/fractalfract

http://www.mdpi.com/journal/fractalfract
http://www.mdpi.com
http://dx.doi.org/10.3390/fractalfract3010005
http://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/2504-3110/3/1/5?type=check_update&version=2


Fractal Fract. 2019, 3, 5 2 of 9

(v). Dq(log f (z)) = Dq f (z)
f (z) .

Let P(z) be the class of functions p(z) = 1 + c1z + ..., analytic in E and satisfying:∣∣∣∣p(z)− 1
1− q

∣∣∣∣ ≤ 1
1− q

, (z ∈ E, q ∈ (0, 1)). (2)

It is known [9] that p ∈ P(q) implies that p(z) ≺ 1+z
1−qz , where ≺ denotes subordination, and from

this, it easily follows that Re p(z) > 0, z ∈ E.

Now, we have:

Definition 1. [4,5] Let f ∈ A. Then, it is said to belong to the class S∗q (α) of q-starlike functions of order α,
0 ≤ α ≤ 1, if and only if,

1
1− α

(
zDq f (z)

f (z)
− α

)
≺ 1 + z

1− qz
. (3)

We can write (3) as: ∣∣∣∣ zDq f (z)
f (z)

− 1− αq
1− q

∣∣∣∣ ≤ 1− α

1− q
. (4)

By taking a = 1−α
1−q , b = 1−α

1−q in 4, it has been shown in [17] that f ∈ S∗q (α), if and only if,

zDq f (z)
f (z)

≺ 1 + Az
1 + Bz

, −1 < B < 0 ≤ A ≤ 1, (5)

where A = 1− (1 + q)α and B = −q.
As a special case, we note that:

lim
q→1−

S∗q (α) = S∗(α) with A = 1− 2α,

which is the class of starlike functions denoted as S∗(α).
Furthermore, for α = 0, we obtain the class S∗q of q-starlike functions introduced and

studied in [10].

Definition 2. Let f ∈ A and k ≥ 0, 0 ≤ α, β ≤ 1, q ∈ (0, 1). Then,

f ∈ k−UMq(α, β),

if and only if, for z ∈ E,

Re
[
(1− α)

zDq f (z)
f (z)

+ α
Dq(zDq f (z))

Dq f (z)

]
> k

∣∣∣∣(1− β)
zDq f (z)

f (z)
+ β

Dq(zDq f (z))
Dq f (z)

− 1
∣∣∣∣.

Selecting special values of parameters α, β and k and letting q → 1−, we obtain a number of
known classes of analytic functions; see [5,9,18–21]. We list some of these as follows:
(i) Choosing k = 0, we get lim q→ 1−Mq(α) = M(α), the class of α-convex functions; see [22].
(ii) For β = 0, k = 1, and q→ 1−, we have the class MN; see [23].
(iii) Choosing β = 0, q→ 1−, we get the class k−MN introduced in [18,19].
(iv) k−UMq(0, 0) = k− sT, k−UMq(1, 1) = k−UCVq.
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Throughout this paper, we shall assume that q ∈ (0, 1), 0 ≤ α < 1 and z ∈ E, unless
otherwise mentioned.

2. Preliminary Results

Lemma 1. [4]. Let φ(z) be analytic with φ(0) = 0. If |φ(z0)| attains its maximum value on the circle |z| = r
at a point z0 ∈ E, then we have:

z0Dqφ(z0 = mφ(z0), m ≥ 1, real number.

Lemma 2. [24]. Let α ≥ 0 and 0 ≤ r < 1. Let p(z) be analytic in E with p(0) = 1. If:{
p(z) + α

zp
′
(z)

p(z)

}
≺ 1 + (1− 2r)z

1− z
,

then:

p(z) ≺ 1 + (1− 2§)z
1− z

,

where:
δ =

1
4
[
(2r− α) +

√
(2r− α)2 + 8α

]
.

3. Main Results

Theorem 1. Let p(z) be analytic in E with p(0) = 1. Let, for k > 1+q
q ,

Re
[

1 +
zDq p(z)

p(z)

]
> k

∣∣∣∣ zDq p(z)
p(z)

∣∣∣∣, z ∈ E.

Then, p(z) is subordinate to 1
1−qz , that is, p(z) ≺ 1

1−qz in E.

Proof. Let p(z) = 1
1−qφ(z) . It can easily be seen that φ(z) is analytic in E and φ(0) = 0. We shall show

that |φ(z)| < 1 for all z ∈ E. We suppose on the contrary that there exists a z0 ∈ E such that |φ(z0)| = 1.
Then:

Re
[

1 +
z◦Dq p(z◦)

p(z◦)

]
− k
∣∣∣∣ z◦Dq p(z◦)

p(z◦)

∣∣∣∣ = Re
[

1 +
qz◦Dqφ(z◦)
1− qφ(z◦)

]
− k
∣∣∣∣ qz◦Dqφ(z◦)

1− qφ(z◦)

∣∣∣∣. (6)

Now, by Lemma 1, z◦Dqφ(z◦) = mφ(z◦) = meiθ , m ≥ 1, and we use it in (6) for:

Re
[

1 +
mqeiθ

1− qeiθ

]
> k

∣∣∣∣ mqeiθ

1− qeiθ

∣∣∣∣ > k
∣∣∣∣ qeiθ

1− qeiθ

∣∣∣∣. (7)

From (6), (7), and choosing θ = π, we have:

Re
[

1 +
z◦Dq p(z◦)

p(z◦)

]
− k
∣∣∣∣ z◦Dq p(z◦)

p(z◦)

∣∣∣∣ = 1− mq
1 + q

− kq
1 + q

< 0 f or k >
1 + q

q
.

This is a contradiction, and hence, |φ(z)| < 1 for all z ∈ E. This proves that:

p(z) ≺ 1
1− qz

in E.
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We apply Theorem 1 to have the following results.

Corollary 1. Let p(z) = f
′
(z), q→ 1−, and k > 2. Then, from Theorem 1, it follows that:

Re
[

1 +
z f
′′
(z)

z f ′(z)

]
> k

∣∣∣∣ z f
′′
(z)

z f ′(z)

∣∣∣∣,
which implies f ∈ k−UCV, and so, Re f

′
(z) > 1

2 in E.

Corollary 2. For k > q+1
q , let f ∈ k− STq. Then, f (z)

z ≺
1

1−qz in E.

The proof is immediate when we take p(z) = f (z)
z in Theorem 1.

As a special case, when q→ 1−, k > 2, f ∈ k− ST implies Re f (z)
z > 1

2 in E.
Using a similar technique, we can prove the following results.

Theorem 2. Let k ≥ 0, α, β ∈ [0, 1], qk < 1, and let p(z) be analytic in E with p(0) = 1.

If:

Re
[

p(z) +
αzDq p(z)

p(z)
− 1− kq

1 + q

]
> k

∣∣∣∣p(z) + βzDq p(z)
p(z)

− 1
∣∣∣∣, (8)

then p(z) ≺ 1
1−qz , z ∈ E.

We can easily deduce some special cases of Theorem 2 as given below.

Corollary 3. Let β = 0, p(z) = zDq f (z)
f (z) in (8). Then:

Re
[
(1− α)

zDq f (z)
f (z)

+ α
Dq(zDq f (z))

Dq f (z)
− 1− kq

1 + q

]
− k
∣∣∣∣ zDq f (z)

f (z)
− 1
∣∣∣∣ > 0

implies:

f ∈ S∗q (
1

1 + q
), z ∈ E.

As a special case of this corollary, we observe that UST ⊂ S∗( 1
2 ), when we choose k = 1, α = 0,

and let q→ 1−.

Corollary 4. Let q→ 1− and p(z) = f
′
(z). Then:

Re
[

f
′
(z) + α

(z f
′
(z))

′

f ′(z)
− (α +

1− k
2

)

]
> k

∣∣∣∣ f ′(z) + β
(z f

′
(z))

′

f ′(z)
− (1 + β)

∣∣∣∣
= k

∣∣∣∣(1 + β)− f
′
(z)− β

(z f
′
(z))

′

f ′(z)

∣∣∣∣
≥ Re

[
(1 + β)− f

′
(z)− β

(z f
′
(z))

′

f ′(z)

]
.

This gives us:

Re
[

f
′
(z) + (

α + β

1 + k
)
(z f

′
(z))

′

f ′(z)

]
≥ k(1 + β) + (α + γ)

1 + k
= η, (γ =

1− k
2

).



Fractal Fract. 2019, 3, 5 5 of 9

Now, using Lemma 2 together with Theorem 2 when q→ 1−, we obtain the result that:

Re f
′
(z) > δ =

1
4
[(2η − ρ) +

√
(2η − ρ)2 + 8ρ], ρ =

α + β

1 + k
.

Corollary 5. In (8), if we take β = 0, α = 1, k = 1 and p(z) = zDq f (z)
f (z) , then:

Re
[

Dq(zDq f (z))
Dq( f (z))

− 1− q
1 + q

]
>

∣∣∣∣ zDq f (z)
f (z)

− 1
∣∣∣∣.

implies

f ∈ S∗q (
1

1 + q
) in E.

Furthermore, with β = 1, α = 1, k = 1 and p(z) = zDq f (z)
f (z) in (8), it follows that:

Re
[

Dq(zDq f (z))
Dq f (z)

− 1− q
1 + q

]
>

∣∣∣∣Dq(zDq f (z))
Dq f (z)

− 1
∣∣∣∣

implies f ∈ S∗q (
1

1+q ).

Next, we prove the following:

Theorem 3. Let p(z) be analytic in E with p(0) = 1. Let:

Re
[

p(z) +
(zDq p(z))
λp(z) + c

− r
]
− k
∣∣∣∣p(z) + zDq p(z)

λp(z) + c
− 1
∣∣∣∣ > 0, (9)

where r = 1
1+q , λ, and c are positive real. Then, p(z) ≺ 1

1−qz in E.

Proof. We shall follow the same procedure to prove this result as was used in Theorem 1. Let
p(z) = 1

1−qφ(z) . Clearly, φ(0) = 0, and φ(z) is analytic. We prove that φ(z) is a Schwartz function,
that is |φ(z)| < 1, ∀z ∈ E. Suppose on the contrary that there exists z◦ ∈ E such that |φ(z◦)| = 1 =

|eiθ |, 0 ≤ θ ≤ 2π.
Now, with some computations, we have:

p(z) +
zDq p(z)

λp(z) + c
=

1
1− qφ(z)

+
( q

λ )zDqφ(z)
1− qφ(z)

−
( q

λ )czDqφ(z)
(λ + c)− qcφ(z)

. (10)

We apply Lemma 1 to have z◦Dqφ(z◦) = mφ(z◦), m ≥ 1, and note that:

Re
{ q

λ z◦Dqφ(z◦)
1− qφ(z◦)

}
= Re

{ mq
λ φ(z◦)

1− qφ(z◦)

}
= Re

{ mq
λ eiθ

1− qeiθ

}
=

mq
λ (cosθ − q)
|1− qeiθ |2

, (11)

Re
{ q

λ cz◦Dqφ(z◦)
(λ + c)− qcφ(z◦)

}
=

q
λ cm(λ + c)cosθ − q2c2m

λ

|(λ + c)− qceiθ |2
, (12)
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and: ∣∣∣∣ 1
1− qeiθ + { q

λ

meiθ

(1− qeiθ)
} − {

q
λ cmeiθ

(λ + c)− qceiθ − 1}
∣∣∣∣
θ=π

=

∣∣∣∣1− q
1 + q

−
mq
λ

1 + q
+

qcm
λ

(λ + c) + qc

∣∣∣∣ (13)

Using (10), (11), (12), and (13), we get a contradiction to the given hypothesis (9), when we assume
|φ(z◦)| = 1 for some z◦ ∈ E. Hence |φ(z)| < 1 for all z ∈ E and:

p(z) ≺ 1
1− qz

, z ∈ E.

This completes the proof.

In order to develop some applications of Theorem 3, we need the following.
Let the operator Dn

q : A→ A be defined as:

Dn
q f (z) = Fn+1,q(z) ∗ f (z)

= z +
∞

∑
m=2

[m + n− 1, q]!
[n, q]![m− 1, q]!

amzn, (14)

where:

f (z) = z +
∞

∑
m=2

amzm,

and:

Fn+1,q(z) = z + ∑
[m + n− 1, q]!
[n, q]![m− 1, q]!

zm.

This series is absolutely convergent in E, and ∗ denotes convolution. The operator Dn
q is called

the q-Ruscheweyh derivative of order n; see [25].
It can easily be seen that D◦q f (z) = f (z) and D

′
q f (z) = zDq f (z).

The relation (14) can be expressed as:

Dn
q f (z) =

zDn
q (zn−1 f (z))
[n, q]!

, n ∈ N.

Furthermore,

limq→1Dn
q f (z) =

z
(1− z)

n+1
∗ f (z) = Dn f (z),

which is called the Ruscheweyh derivative of order n; see [25].
Let f ∈ A. Then, f is said to belong to the class S∗q (n, α), if and only if, Dn

q f ∈ S∗q (α), z ∈ E.

The following identity can easily be obtained:

zDq(Dn
q f (z)) =

(
1 +

[n, q]
qn

)
Dn+1

q f (z)− [n, q]
qn Dn

q f (z) (15)

We now take p(z) =
zDq(Dn

q f (z))
Dn

q f (z) in relation (9) of Theorem 3 to have:



Fractal Fract. 2019, 3, 5 7 of 9

Theorem 4. Let Dn
q f = Fn denote the q-Ruscheweyh derivative of order n for f ∈ A. Let:

Re
[

zDqFn+1(z)
Fn+1(z)

− 1
1 + q

]
> k

∣∣∣∣ zDqFn+1(z)
Fn+1(z)

− 1
∣∣∣∣, k ≥ 0.

Then:

zDqFn(z)
Fn(z)

≺ 1
1− qz

, z ∈ E.

That is, f ∈ S∗q (n, α), α = 1
1+q .

Proof. Let p be analytic in E with p(0) = 0, and let:

p(z) =
zDq(Dn

q f (z))
Dn

q f (z)
=

zDqFn(z)
Fn(z)

.

Using identity (15) and some computation, we have:

Re
[

p(z) +
zDq p(z)
p(z) + n

− 1
1 + q

]
− k
∣∣∣∣p(z) + zDq p(z)

p(z)
− 1
∣∣∣∣ > 0.

Now, the required result follows immediately from Theorem 3.

Corollary 6. In Theorem 4, we take k = 0. Then, it gives us:

S∗q (n + 1, α) ⊂ S∗q (n, α) ⊂ ... ⊂ S∗q (α), α =
1

1 + q
.

When q→ 1−, 1
1+q →

1
2 , and we have:

S∗q (n + 1,
1
2
) ⊂ S∗(n,

1
2
) ⊂ ... ⊂ S∗(

1
2
).

Corollary 7. Let f ∈ A, and let:

Re
[

zDq f (z)
f (z)

− 1
1 + q

]
> k

∣∣∣∣ zDq f (z)
f (z)

− 1
∣∣∣∣, k ≥ 0. (16)

Define:

LB( f ) = Fc(z) =
[c + 1]q

zc

z∫
0

tc−1 f (t)dqt, c ∈ N◦. (17)

Then:
zDqFc(z)

Fc(z)
≺ 1

1− qz
, z ∈ E.

Proof. The integral operator LB : A→ A defined in (16) is known as the q-Bernardi integral operator
LB( f ) = Fc. When q→ 1−, (16) reduces to the well-known Bernardi operator; see [7].

Let,

zDqFc(z)
Fc(z)

= p(z). (18)
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Then, from (16), (17), (18), and some computations, this leads us to:

Re
[

zDq f (z)
f (z)

− 1
1 + q

]
− k
∣∣∣∣ zDq f (z)

f (z)
− 1
∣∣∣∣ = Re

[
p(z) +

zDq p(z)
p(z) + qc[c, q]

]
− k

∣∣∣∣p(z) + zDq p(z)
p(z) + qc[c, q]

− 1
∣∣∣∣ > 0, z ∈ E.

We now apply Theorem 3, and it follows that:

p(z) =
zDqFc(z)

Fc(z)
≺ q

1− qz
in E.

That is, Fc ∈ S∗q (
1

1+q ).

As a special case, when q → 1−, then f ∈ K−UST( 1
2 ), and then, Fc, defined by 17, belongs to

S∗( 1
2 ) in E.

4. Conclusions

In this paper, we have used q-calculus, conic domains, and subordination to define and study
some new subclasses involving Mocanu functions. Some interesting inclusion and subordination
properties of these new classes have been derived. The q-analogue of the Ruscheweyh derivative has
been used to obtain a new subordination result for q-Mocanu functions. Some special cases have been
discussed as applications of our main results. The technique and ideas of this paper may stimulate
further research in this dynamic field.
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