

Article On *q*-Uniformly Mocanu Functions

Rizwan S. Badar and Khalida Inayat Noor *

Department of Mathematics, COMSATS, University Islamabad, Islamabad 44000, Pakistan; rizwansbadar@gmail.com

* Correspondence: khalidan@gmail.com

Received: 28 January 2019 ; Accepted: 10 February 2019 ; Published: 11 February 2019

Abstract: Let *f* be analytic in open unit disc $E = \{z : |z| < 1\}$ with f(0) = 0 and f'(0) = 1. The *q*-derivative of *f* is defined by: $D_q f(z) = \frac{f(z) - f(qz)}{(1-q)z}$, $q \in (0,1)$, $z \in \mathcal{B} - \{0\}$, where \mathcal{B} is a *q*-geometric subset of \mathbb{C} . Using operator D_q , *q*-analogue class $k - UM_q(\alpha, \beta)$, *k*-uniformly Mocanu functions are defined as: For k = 0 and $q \rightarrow 1^-$, k- reduces to $M(\alpha)$ of Mocanu functions. Subordination is used to investigate many important properties of these functions. Several interesting results are derived as special cases.

Keywords: *q*-calculus; *q*-starlike; uniformly convex; subordination; Mocanu functions; *q*-Ruscheweyh derivative

1. Introduction

Let *A* denote the class of functions *f* that are analytic in the open unit disc *E* and are also normalized by the conditions f(0) = 0, f'(0) = 1. Let $f, g \in A$. *f* is said to be subordinate to *g* (written as $f \prec g$), if there exists a Schwartz function w(z) such that f(z) = g(w(z)).

q-calculus is ordinary calculus without a limit, and it has been used recently by many researchers in the field of geometric function theory. *q*-derivatives and *q*-integrals play an important and significant role in the study of quantum groups and *q*-deformed super-algebras, the study of fractal and multi-fractal measures and in chaotic dynamical systems. The name *q*-calculus also appears in other contexts; see [1,2]. The most sophisticated tool that derives functions in non-integer order is the long-known fractional calculus; see [1–4].

We recall here some basic concepts from q-calculus for which we refer to [5–16] and the references therein.

A subset $\beta \subset \mathbb{C}$ is called *q*-geometric, if $zq \in \beta$, whenever $z \in \mathcal{B}$, and it contains all the geometric sequences $\{zq^m\}_0^\infty$.

The *q*-derivative D_q of a function $f \in A$ is defined by:

$$D_q f(z) = \frac{f(z) - f(qz)}{(1 - q)z}, \quad (z \in \mathcal{B} - \{0\})$$
(1)

and $D_q f(0) = f'(0)$.

Under this definition, we have the following rules for q-derivative D_q .

(i).
$$D_q z^m = \frac{1-q^m}{1-q} z^{m-1} = [n,q] z^{m-1}$$
, where $[m,q] = \frac{1-q^m}{1-q}$.
Let $f(z)$ and $g(z)$ be defined on a *q*-geometric set $\mathcal{B} \subset \mathbb{C}$ such that

Let f(z) and g(z) be defined on a *q*-geometric set $\mathcal{B} \subset \mathbb{C}$ such that *q*-derivatives of f(z) and g(z) exist for all $z \in \mathcal{B}$. Then, for *a*, *b* complex numbers, we have:

(ii).
$$D_q(af(z) \pm bg(z)) = aD_qf(z) \pm bD_qg(z).$$

(iii). $D_q(f(z).g(z)) = g(z)D_qf(z) + f(qz)D_qg(z).$
(iv). $D_q(\frac{f(z)}{g(z)}) = \frac{g(z)D_qf(z) - f(z)D_qg(z)}{g(z)g(qz)}, g(z).g(qz) \neq 0.$

(v). $D_q(\log f(z)) = \frac{D_q f(z)}{f(z)}$.

Let P(z) be the class of functions $p(z) = 1 + c_1 z + ...$, analytic in *E* and satisfying:

$$\left| p(z) - \frac{1}{1-q} \right| \le \frac{1}{1-q}, \quad (z \in E, q \in (0,1)).$$
 (2)

It is known [9] that $p \in P(q)$ implies that $p(z) \prec \frac{1+z}{1-qz}$, where \prec denotes subordination, and from this, it easily follows that $Re \ p(z) > 0$, $z \in E$.

Now, we have:

Definition 1. [4,5] Let $f \in A$. Then, it is said to belong to the class $S_q^*(\alpha)$ of q-starlike functions of order α , $0 \le \alpha \le 1$, if and only if,

$$\frac{1}{1-\alpha} \left(\frac{zD_q f(z)}{f(z)} - \alpha \right) \prec \frac{1+z}{1-qz}.$$
(3)

We can write (3) as:

$$\left|\frac{zD_q f(z)}{f(z)} - \frac{1 - \alpha q}{1 - q}\right| \le \frac{1 - \alpha}{1 - q}.$$
(4)

By taking $a = \frac{1-\alpha}{1-q}$, $b = \frac{1-\alpha}{1-q}$ in 4, it has been shown in [17] that $f \in S_q^*(\alpha)$, if and only if,

$$\frac{zD_q f(z)}{f(z)} \prec \frac{1+Az}{1+Bz}, \quad -1 < B < 0 \le A \le 1,$$
(5)

where $A = 1 - (1 + q)\alpha$ and B = -q.

As a special case, we note that:

$$\lim_{q\to 1^-} S_q^*(\alpha) = S^*(\alpha) \quad \text{with} \quad A = 1 - 2\alpha,$$

which is the class of starlike functions denoted as $S^*(\alpha)$.

Furthermore, for $\alpha = 0$, we obtain the class S_q^* of *q*-starlike functions introduced and studied in [10].

Definition 2. Let $f \in A$ and $k \ge 0$, $0 \le \alpha, \beta \le 1, q \in (0, 1)$. Then,

$$f \in k - UM_q(\alpha, \beta),$$

if and only if, for $z \in E$ *,*

$$Re \left[(1-\alpha)\frac{zD_qf(z)}{f(z)} + \alpha\frac{D_q(zD_qf(z))}{D_qf(z)} \right] > k \left| (1-\beta)\frac{zD_qf(z)}{f(z)} + \beta\frac{D_q(zD_qf(z))}{D_qf(z)} - 1 \right|$$

Selecting special values of parameters α , β and k and letting $q \rightarrow 1^-$, we obtain a number of known classes of analytic functions; see [5,9,18–21]. We list some of these as follows: (i) Choosing k = 0, we get $\lim q \rightarrow 1^- M_q(\alpha) = M(\alpha)$, the class of α -convex functions; see [22]. (ii) For $\beta = 0$, k = 1, and $q \rightarrow 1^-$, we have the class MN; see [23]. (iii) Choosing $\beta = 0$, $q \rightarrow 1^-$, we get the class k - MN introduced in [18,19]. (iv) $k - UM_q(0,0) = k - sT$, $k - UM_q(1,1) = k - UCV_q$. Fractal Fract. 2019, 3, 5

Throughout this paper, we shall assume that $q \in (0,1)$, $0 \le \alpha < 1$ and $z \in E$, unless otherwise mentioned.

2. Preliminary Results

Lemma 1. [4]. Let $\phi(z)$ be analytic with $\phi(0) = 0$. If $|\phi(z_0)|$ attains its maximum value on the circle |z| = r at a point $z_0 \in E$, then we have:

$$z_0 D_q \phi(z_0 = m\phi(z_0), m \ge 1, real number.$$

Lemma 2. [24]. Let $\alpha \ge 0$ and $0 \le r < 1$. Let p(z) be analytic in E with p(0) = 1. If:

$$\left\{p(z) + \alpha \frac{zp'(z)}{p(z)}\right\} \prec \frac{1 + (1 - 2r)z}{1 - z},$$

then:

$$p(z) \prec \frac{1 + (1 - 2\S)z}{1 - z},$$

where:

$$\delta = \frac{1}{4} \left[(2r - \alpha) + \sqrt{(2r - \alpha)^2 + 8\alpha} \right].$$

3. Main Results

Theorem 1. Let p(z) be analytic in E with p(0) = 1. Let, for $k > \frac{1+q}{q}$,

$$Re \left[1 + \frac{zD_q p(z)}{p(z)}\right] > k \left|\frac{zD_q p(z)}{p(z)}\right|, \quad z \in E.$$

Then, p(z) *is subordinate to* $\frac{1}{1-qz}$ *, that is,* $p(z) \prec \frac{1}{1-qz}$ *in E*.

Proof. Let $p(z) = \frac{1}{1-q\phi(z)}$. It can easily be seen that $\phi(z)$ is analytic in *E* and $\phi(0) = 0$. We shall show that $|\phi(z)| < 1$ for all $z \in E$. We suppose on the contrary that there exists a $z_0 \in E$ such that $|\phi(z_0)| = 1$. Then:

$$Re \left[1 + \frac{z_{\circ}D_{q}p(z_{\circ})}{p(z_{\circ})}\right] - k \left|\frac{z_{\circ}D_{q}p(z_{\circ})}{p(z_{\circ})}\right| = Re \left[1 + \frac{qz_{\circ}D_{q}\phi(z_{\circ})}{1 - q\phi(z_{\circ})}\right] - k \left|\frac{qz_{\circ}D_{q}\phi(z_{\circ})}{1 - q\phi(z_{\circ})}\right|.$$
(6)

Now, by Lemma 1, $z_{\circ}D_{q}\phi(z_{\circ}) = m\phi(z_{\circ}) = me^{i\theta}$, $m \ge 1$, and we use it in (6) for:

$$Re\left[1+\frac{mqe^{i\theta}}{1-qe^{i\theta}}\right] > k \left|\frac{mqe^{i\theta}}{1-qe^{i\theta}}\right| > k \left|\frac{qe^{i\theta}}{1-qe^{i\theta}}\right|.$$
(7)

From (6), (7), and choosing $\theta = \pi$, we have:

$$Re \left[1 + \frac{z_{\circ}D_{q}p(z_{\circ})}{p(z_{\circ})}\right] - k \left|\frac{z_{\circ}D_{q}p(z_{\circ})}{p(z_{\circ})}\right| = 1 - \frac{mq}{1+q} - \frac{kq}{1+q} < 0 \quad for \ k > \frac{1+q}{q}.$$

This is a contradiction, and hence, $|\phi(z)| < 1$ for all $z \in E$. This proves that:

$$p(z) \prec \frac{1}{1-qz}$$
 in E.

We apply Theorem 1 to have the following results.

Corollary 1. Let p(z) = f'(z), $q \to 1^-$, and k > 2. Then, from Theorem 1, it follows that:

$$Re \left[1 + \frac{zf''(z)}{zf'(z)}\right] > k \left|\frac{zf''(z)}{zf'(z)}\right|$$

which implies $f \in k - UCV$, and so, $Re f'(z) > \frac{1}{2}$ in E.

Corollary 2. For $k > \frac{q+1}{q}$, let $f \in k - ST_q$. Then, $\frac{f(z)}{z} \prec \frac{1}{1-qz}$ in E. The proof is immediate when we take $p(z) = \frac{f(z)}{z}$ in Theorem 1.

As a special case, when $q \to 1^-$, k > 2, $f \in k - ST$ implies $Re \frac{f(z)}{z} > \frac{1}{2}$ in *E*. Using a similar technique, we can prove the following results.

Theorem 2. Let $k \ge 0$, $\alpha, \beta \in [0, 1]$, qk < 1, and let p(z) be analytic in E with p(0) = 1.

$$Re\left[p(z) + \frac{\alpha z D_q p(z)}{p(z)} - \frac{1 - kq}{1 + q}\right] > k \left|p(z) + \frac{\beta z D_q p(z)}{p(z)} - 1\right|,\tag{8}$$

then $p(z) \prec \frac{1}{1-qz}$, $z \in E$.

We can easily deduce some special cases of Theorem 2 as given below.

Corollary 3. Let $\beta = 0$, $p(z) = \frac{zD_q f(z)}{f(z)}$ in (8). Then:

$$\operatorname{Re}\left[(1-\alpha)\frac{zD_qf(z)}{f(z)} + \alpha\frac{D_q(zD_qf(z))}{D_qf(z)} - \frac{1-kq}{1+q}\right] - k\left|\frac{zD_qf(z)}{f(z)} - 1\right| > 0$$

implies:

$$f \in S_q^*(\frac{1}{1+q}), \ z \in E.$$

As a special case of this corollary, we observe that $UST \subset S^*(\frac{1}{2})$, when we choose k = 1, $\alpha = 0$, and let $q \to 1^-$.

Corollary 4. Let $q \to 1^-$ and p(z) = f'(z). Then:

$$\begin{aligned} Re \ \left[f'(z) + \alpha \frac{(zf'(z))'}{f'(z)} - (\alpha + \frac{1-k}{2}) \right] &> k \left| f'(z) + \beta \frac{(zf'(z))'}{f'(z)} - (1+\beta) \right| \\ &= k \left| (1+\beta) - f'(z) - \beta \frac{(zf'(z))'}{f'(z)} \right| \\ &\geq Re \ \left[(1+\beta) - f'(z) - \beta \frac{(zf'(z))'}{f'(z)} \right]. \end{aligned}$$

This gives us:

$$Re \left[f'(z) + (\frac{\alpha + \beta}{1 + k}) \frac{(zf'(z))'}{f'(z)} \right] \ge \frac{k(1 + \beta) + (\alpha + \gamma)}{1 + k} = \eta, \ (\gamma = \frac{1 - k}{2}).$$

Now, using Lemma 2 together with Theorem 2 when $q \rightarrow 1^-$ *, we obtain the result that:*

$$Re \ f'(z) > \delta = \frac{1}{4} [(2\eta - \rho) + \sqrt{(2\eta - \rho)^2 + 8\rho}], \ \rho = \frac{\alpha + \beta}{1 + k}.$$

Corollary 5. In (8), if we take $\beta = 0$, $\alpha = 1$, k = 1 and $p(z) = \frac{zD_qf(z)}{f(z)}$, then:

$$\operatorname{Re}\left[\frac{D_q(zD_qf(z))}{D_q(f(z))} - \frac{1-q}{1+q}\right] > \left|\frac{zD_qf(z)}{f(z)} - 1\right|.$$

implies

$$f \in S_q^*(\frac{1}{1+q})$$
 in E.

Furthermore, with $\beta = 1$, $\alpha = 1$, k = 1 and $p(z) = \frac{zD_q f(z)}{f(z)}$ in (8), it follows that:

$$Re \left[\frac{D_q(zD_qf(z))}{D_qf(z)} - \frac{1-q}{1+q} \right] > \left| \frac{D_q(zD_qf(z))}{D_qf(z)} - 1 \right|$$

implies $f \in S_q^*(\frac{1}{1+q})$.

Next, we prove the following:

Theorem 3. Let p(z) be analytic in E with p(0) = 1. Let:

$$Re\left[p(z) + \frac{(zD_qp(z))}{\lambda p(z) + c} - r\right] - k\left|p(z) + \frac{zD_qp(z)}{\lambda p(z) + c} - 1\right| > 0,$$
(9)

where $r = \frac{1}{1+q}$, λ , and c are positive real. Then, $p(z) \prec \frac{1}{1-qz}$ in E.

Proof. We shall follow the same procedure to prove this result as was used in Theorem 1. Let $p(z) = \frac{1}{1-q\phi(z)}$. Clearly, $\phi(0) = 0$, and $\phi(z)$ is analytic. We prove that $\phi(z)$ is a Schwartz function, that is $|\phi(z)| < 1$, $\forall z \in E$. Suppose on the contrary that there exists $z_{\circ} \in E$ such that $|\phi(z_{\circ})| = 1 = |e^{i\theta}|$, $0 \le \theta \le 2\pi$.

Now, with some computations, we have:

$$p(z) + \frac{zD_q p(z)}{\lambda p(z) + c} = \frac{1}{1 - q\phi(z)} + \frac{\left(\frac{q}{\lambda}\right)zD_q\phi(z)}{1 - q\phi(z)} - \frac{\left(\frac{q}{\lambda}\right)czD_q\phi(z)}{(\lambda + c) - qc\phi(z)}.$$
(10)

We apply Lemma 1 to have $z_{\circ}D_q\phi(z_{\circ}) = m\phi(z_{\circ}), m \ge 1$, and note that:

$$Re \left\{ \frac{\frac{q}{\lambda} z_{\circ} D_{q} \phi(z_{\circ})}{1 - q \phi(z_{\circ})} \right\} = Re \left\{ \frac{\frac{mq}{\lambda} \phi(z_{\circ})}{1 - q \phi(z_{\circ})} \right\} = Re \left\{ \frac{\frac{mq}{\lambda} e^{i\theta}}{1 - q e^{i\theta}} \right\}$$
$$= \frac{\frac{mq}{\lambda} (\cos\theta - q)}{|1 - q e^{i\theta}|^{2}}, \tag{11}$$

$$Re \left\{ \frac{\frac{q}{\lambda}cz_{\circ}D_{q}\phi(z_{\circ})}{(\lambda+c)-qc\phi(z_{\circ})} \right\} = \frac{\frac{q}{\lambda}cm(\lambda+c)cos\theta - \frac{q^{2}c^{2}m}{\lambda}}{|(\lambda+c)-qce^{i\theta}|^{2}},$$
(12)

and:

$$\left|\frac{1}{1-qe^{i\theta}} + \left\{\frac{q}{\lambda}\frac{me^{i\theta}}{(1-qe^{i\theta})}\right\} - \left\{\frac{\frac{q}{\lambda}cme^{i\theta}}{(\lambda+c)-qce^{i\theta}} - 1\right\}\right|_{\theta=\pi}$$
$$= \left|\frac{1-q}{1+q} - \frac{\frac{mq}{\lambda}}{1+q} + \frac{\frac{qcm}{\lambda}}{(\lambda+c)+qc}\right|$$
(13)

Using (10), (11), (12), and (13), we get a contradiction to the given hypothesis (9), when we assume $|\phi(z_{\circ})| = 1$ for some $z_{\circ} \in E$. Hence $|\phi(z)| < 1$ for all $z \in E$ and:

$$p(z) \prec \frac{1}{1-qz}, \ z \in E.$$

This completes the proof. \Box

In order to develop some applications of Theorem 3, we need the following. Let the operator $D_q^n : A \to A$ be defined as:

$$D_{q}^{n}f(z) = F_{n+1,q}(z) * f(z)$$

= $z + \sum_{m=2}^{\infty} \frac{[m+n-1,q]!}{[n,q]![m-1,q]!} a_{m}z^{n},$ (14)

where:

$$f(z) = z + \sum_{m=2}^{\infty} a_m z^m,$$

and:

$$F_{n+1,q}(z) = z + \sum \frac{[m+n-1,q]!}{[n,q]![m-1,q]!} z^m.$$

This series is absolutely convergent in *E*, and * denotes convolution. The operator D_q^n is called the *q*-Ruscheweyh derivative of order *n*; see [25].

It can easily be seen that $D_q^{\circ}f(z) = f(z)$ and $D_q'f(z) = zD_qf(z)$. The relation (14) can be expressed as:

$$D_q^n f(z) = \frac{z D_q^n(z^{n-1}f(z))}{[n,q]!}, \quad n \in N$$

Furthermore,

$$lim_{q\to 1}D_q^n f(z) = \frac{z}{(1-z)}^{n+1} * f(z) = D^n f(z),$$

which is called the Ruscheweyh derivative of order *n*; see [25].

Let $f \in A$. Then, f is said to belong to the class $S_q^*(n, \alpha)$, if and only if, $D_q^n f \in S_q^*(\alpha)$, $z \in E$.

The following identity can easily be obtained:

$$zD_q(D_q^n f(z)) = \left(1 + \frac{[n,q]}{q^n}\right) D_q^{n+1} f(z) - \frac{[n,q]}{q^n} D_q^n f(z)$$
(15)

We now take $p(z) = \frac{zD_q(D_q^n f(z))}{D_q^n f(z)}$ in relation (9) of Theorem 3 to have:

Theorem 4. Let $D_q^n f = F_n$ denote the q-Ruscheweyh derivative of order n for $f \in A$. Let:

$$Re\left[\frac{zD_{q}F_{n+1}(z)}{F_{n+1}(z)} - \frac{1}{1+q}\right] > k \left|\frac{zD_{q}F_{n+1}(z)}{F_{n+1}(z)} - 1\right|, \ k \ge 0.$$

Then:

$$\frac{zD_qF_n(z)}{F_n(z)}\prec\frac{1}{1-qz},\ z\in E.$$

That is, $f \in S_q^*(n, \alpha)$, $\alpha = \frac{1}{1+q}$.

Proof. Let *p* be analytic in *E* with p(0) = 0, and let:

$$p(z) = \frac{zD_q(D_q^n f(z))}{D_q^n f(z)} = \frac{zD_q F_n(z)}{F_n(z)}.$$

Using identity (15) and some computation, we have:

$$Re \left[p(z) + \frac{zD_q p(z)}{p(z) + n} - \frac{1}{1+q} \right] - k \left| p(z) + \frac{zD_q p(z)}{p(z)} - 1 \right| > 0.$$

Now, the required result follows immediately from Theorem 3. \Box

Corollary 6. In Theorem 4, we take k = 0. Then, it gives us:

$$S_q^*(n+1,\alpha) \subset S_q^*(n,\alpha) \subset ... \subset S_q^*(\alpha), \ \alpha = \frac{1}{1+q}.$$

When $q \rightarrow 1^-$, $\frac{1}{1+q} \rightarrow \frac{1}{2}$, and we have:

$$S_q^*(n+1, \frac{1}{2}) \subset S^*(n, \frac{1}{2}) \subset ... \subset S^*(\frac{1}{2}).$$

Corollary 7. *Let* $f \in A$ *, and let:*

$$Re \left[\frac{zD_q f(z)}{f(z)} - \frac{1}{1+q} \right] > k \left| \frac{zD_q f(z)}{f(z)} - 1 \right|, \ k \ge 0.$$
(16)

Define:

$$L_B(f) = F_c(z) = \frac{[c+1]_q}{z^c} \int_0^z t^{c-1} f(t) d_q t, \ c \in N_o.$$
(17)

Then:

$$rac{zD_qF_c(z)}{F_c(z)}\precrac{1}{1-qz},\ z\in E$$

Proof. The integral operator $L_B : A \to A$ defined in (16) is known as the *q*-Bernardi integral operator $L_B(f) = F_c$. When $q \to 1^-$, (16) reduces to the well-known Bernardi operator; see [7]. Let,

$$\frac{zD_qF_c(z)}{F_c(z)} = p(z).$$
(18)

Then, from (16), (17), (18), and some computations, this leads us to:

$$\begin{aligned} Re \quad \left[\frac{zD_q f(z)}{f(z)} - \frac{1}{1+q} \right] - k \left| \frac{zD_q f(z)}{f(z)} - 1 \right| &= Re \quad \left[p(z) + \frac{zD_q p(z)}{p(z) + q^c[c,q]} \right] \\ &- k \left| p(z) + \frac{zD_q p(z)}{p(z) + q^c[c,q]} - 1 \right| > 0, z \in E. \end{aligned}$$

We now apply Theorem 3, and it follows that:

$$p(z) = rac{zD_qF_c(z)}{F_c(z)} \prec rac{q}{1-qz}$$
 in E

That is, $F_c \in S_q^*(\frac{1}{1+q})$. \Box

As a special case, when $q \to 1^-$, then $f \in K - UST(\frac{1}{2})$, and then, F_c , defined by 17, belongs to $S^*(\frac{1}{2})$ in *E*.

4. Conclusions

In this paper, we have used *q*-calculus, conic domains, and subordination to define and study some new subclasses involving Mocanu functions. Some interesting inclusion and subordination properties of these new classes have been derived. The *q*-analogue of the Ruscheweyh derivative has been used to obtain a new subordination result for *q*-Mocanu functions. Some special cases have been discussed as applications of our main results. The technique and ideas of this paper may stimulate further research in this dynamic field.

Author Contributions: Conceptualization, K.I.N.; formal analysis, K.I.N.; investigation, R.S.B. and K.I.N.; methodology, R.S.B. and K.I.N.; supervision, K.I.N.; validation, R.S.B. and K.I.N.; writing, original draft, R.S.B. and K.I.N.; writing, review and editing, K.I.N.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Hristov, J. Approximate solutions to fractional subdiffusion equations. *Eur. Phys. J. Spec. Top.* **2018**, 193, 229–243. [CrossRef]
- 2. Miller K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; A Wiley-Interscience Publication: New York, NY, USA, 1993.
- 3. Dos Santos, M. Non-Gaussian distributions to random walk in the context of memory kernels. *Fract. Fract.* **2018**, *3*, 20. [CrossRef]
- 4. Ademogullari, K.; Kahramaner, Y. *q*-Harmonic mappings for which analytic part is *q*-convex function. *Nonlinear Anal. Differ. Equations* **2016**, *4*, 283–293. [CrossRef]
- 5. Agrawal S.; Sahoo, S.K. A generalization of starlike functions of order alpha. *arXiv* 2014, arXiv:1404.3988.
- 6. Aldweby, H.; Darus, M. A subclass of harmonic univalent functions associated with *q*-analogous of Dziok-Srivastava operator. *Math. Anal.* **2013**, 2013, 1–6.
- 7. Bernardi, S.D. Convex and starlike univalent functions. Trans. Am. Math. Soc. 1969, 135, 429-446. [CrossRef]
- 8. Da Costa B.G.; Borges, E.P. A position-dependent mass harmonic oscillater and defomred spaces. J. Math. Phys. 2018, 4, 042101. [CrossRef]
- 9. Goodman, A.W. On uniformly convex functions. Ann. Polon. Math. 1991, 56, 87–92. [CrossRef]
- Isamail, M.E.H.; Merks E.; Styer, D. A generalization of starlike functions, Complex Variables. *Complex Var. Theory Appl. Int. J.* 2007, 14, 77–84.
- 11. Jackson, F.H. On q-functions and certain difference operator. Transactions 2012, 46, 253–281. [CrossRef]
- 12. Kac V.; Cheung, P. Quantum Calculus; Springer-Verlag: New York, NY, USA, 2002.
- 13. Noor, K.I. On generalized q-close-to-convexity. Appl. Math. Inf. Sci. 2017, 11, 1383–1388. [CrossRef]

- 14. Noor, K.I. On generalized q-Bazilevic functions. J. Adv. Math. Stud. 2017, 10, 418–424.
- 15. Noor, K.I.; Riaz, S. Generalized q-starlike functions. Stud. Scient. Math. Hungarica 2017, 54, 1–14. [CrossRef]
- 16. Srivastava, H.M. Some generalizations and basic (q-) extensions of Bernouli, Euler and Genocchi polynomials. *Appl. Math. Inf. Sci.* **2011**, *5*, 390–444.
- 17. Polatoglu, Y.; Ucar H.; Yilmaz, B. *q*-starlike functions of order alpha. *TWMS J. Appl. Eng. Math.* **2018**, *8*, 186–192. [CrossRef]
- Kanas S.; Wisniowska, A. Conic regions and k-uniform convexity II. Folia Sci. Univ. Tech. Resov. 1998, 22, 65–78.
- Kanas S.; Wisniowska, A. Conic regions and k-uniform convexity. J. Comput. Appl. Math. 1999, 105, 327–336. [CrossRef]
- 20. Ma W.; Minda, D. Uniformly convex functions II. Ann. Polon. Math. 1993, 3, 275-285. [CrossRef]
- 21. Sokol J.; Nunokawa, M. On some classes of convex functions. C.R. Math. 2015, 353, 427-431. [CrossRef]
- 22. Mocanu, P.T. Une propriété de convexite genéraliséé dans la theorie de la représéntation conform. *Mathmatica* **1969**, *11*, 127–133.
- 23. Ruscheweyh, S. New criteria for univalent functions. Proc. Amer. Math. Soc. 1975, 49, 109-115. [CrossRef]
- 24. Miller, S.S. Differential inequalities and Caratheodory functions. *Bull. Amer. Math. Soc.* **1975**, *81*, 79–81. [CrossRef]
- 25. Kanas S.; Raducanu, D. Some classes of analytic functions related to conic domains. *Math. Slovaca* **2014**, *64* 1183–1196. [CrossRef]

 \odot 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).