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Abstract: Julia and Mandelbrot sets, which characterize bounded orbits in dynamical systems over
the complex numbers, are classic examples of fractal sets. We investigate the analogs of these sets for
dynamical systems over the hyperbolic numbers. Hyperbolic numbers, which have the form x + τy
for x, y ∈ R, and τ2 = 1 but τ 6= ±1, are the natural number system in which to encode geometric
properties of the Minkowski space R1,1. We show that the hyperbolic analog of the Mandelbrot set
parameterizes the connectedness of hyperbolic Julia sets. We give a wall-and-chamber decomposition
of the hyperbolic plane in terms of these Julia sets.
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1. Introduction

The Mandelbrot set, arising from the study of dynamical systems on the complex plane, has been
an object of interest ever since its introduction by Robert W. Brooks and Peter Matelski [1]. With its
combination of simplicity of definition and complexity of structure, the set exhibits one of the most
classical fractal patterns in mathematics.

The Mandelbrot set gives the set of complex parameter values c for which the orbit of the initial
point z0 = 0 is bounded under iterations of the map fc : C→ C defined by

fc(z)
.
= z2 + c.

Definition 1. The Mandelbrot set MC is the set of complex numbers c ∈ C for which there exists some
Bc ∈ R such that for all n ∈ N, the inequality

∣∣∣ f n
c (0) f n

c (0)
∣∣∣ < Bc is satisfied.

The left panel of Figure 1 shows the Mandelbrot set.
Julia sets, studied by the pioneers of complex dynamics Gaston Julia and Pierre Fatou, are subsets

of complex phase space and also exhibit fractal structure.

Definition 2. Fix a polynomial f : C → C. The filled Julia set associated with f , denoted by KC( f ),
is the set of values z0 ∈ C for which there exists some Bz0 ∈ R such that for all n ∈ N, the inequality∣∣∣ f n(z0) f n(z0)

∣∣∣ < Bz0 is satisfied. The Julia set associated with f , denoted by JC( f ), is the boundary
of KC( f ).

Julia sets associated with the complex quadratic polynomial fc that defines the Mandelbrot set are
shown in the center and right panels of Figure 1. These examples illustrate a surprising connection of
a topological nature between Mandelbrot and Julia sets given by the dichotomy theorem.
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Figure 1. The Mandelbrot and examples of Julia sets. Left panel: The Mandelbrot set is shown as
a subset of parameter space C. Center right panels: The filled Julia set for fc(z) = z2 + c with c = 0.2
(center panel) and c = −1+ 0.5i (right panel). Colors represent the number of iterations before reaching
the divergence criteria as described in [2]. That is, the colors represent the iterations performed before
the norm of the iterate grew larger than a chosen bound (chosen to be four for these simulations).
Red represents the quickest growth beyond our divergence criterion, whereas blue represents an initial
condition whose orbit did not grow beyond the bound in the number of iterations we performed (200).

Dichotomy Theorem. The Mandelbrot set parameterizes the connectedness of filled Julia sets: The filled
Julia set KC( fc) is connected if c is in the Mandelbrot set and totally disconnected otherwise.

For the examples of Figure 1, the choice c = 0.2 for the center panel lies in the Mandelbrot set,
and the Julia set is connected; whereas the choice c = −1 + 0.5i for the right panel lies outside the
Mandelbrot set, and the Julia set is totally disconnected. A discussion and proof of this significant
result in complex dynamics may be found in [2]. The dichotomy theorem showcases the idea of
viewing C as both the parameter space and the dynamical plane for a dynamical system.

Given the rich results for iterations of quadratic maps on the complex plane, it is natural to
wonder about the behavior of dynamics on a less well-known, but also very useful sibling of the
complex numbers, the hyperbolic numbers, H [3]. This number system has connections to diverse
topics such as general relativity, differential equations, and the study of abstract algebras [4,5].

The first to explore a hyperbolic number analog to the hyperbolic numbers (under the name
of perplex numbers) was Senn [6], who in 1990 performed numerical experiments revealing that the
hyperbolic analog to the Mandelbrot set has a completely different character from the (complex)
Mandelbrot set. For the quadratic map f (z) = z2 + c, for z, c ∈ H, Senn’s simulations indicated
that the set of values of c for which the orbit f n(0) is bounded consists of a square with one of its
diagonals on the real axis between (−2, 0) and ( 1

4 , 0). Artzy [7] and Metzler [8] independently proved
this conjecture. Artzy further showed that Julia sets for quadratic maps with the constant c in the
hyperbolic Mandelbrot set are connected, rectangular sets. This suggests that the dichotomy theorem
may also hold for hyperbolic quadratic maps. Artzy states that the hyperbolic Julia set is disconnected
for values of c outside of the Mandelbrot set. Fishback [9] describes, with reference to Artzy [7],
these disconnected hyperbolic Julia sets as being stretched Cantor sets or products of Cantor sets.
Proofs or explicit descriptions of these disconnected hyperbolic Julia sets are, however, not found in [7]
or [9].

In this paper, we provide explicit descriptions, with proofs, for Julia sets over H. Hyperbolic
Julia sets turn out to have one of four characteristics: they may be empty, the product of intervals,
the product of a Cantor set and an interval, or the product of two Cantor sets. Our main result is
a wall-and-chamber decomposition of the hyperbolic plane, which gives the regions of the parameter
space that give rise to each of these types of Julia sets. This clarifies the results and statements of [7,9] by
providing an explicit statement and proof of the hyperbolic-number analog to the dichotomy theorem:
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Quadchotomy Theorem. The hyperbolic Mandelbrot set parameterizes the connectedness of filled
hyperbolic Julia sets.

The quadchotomy theorem is stated explicitly as Theorem 2.

Structure of the Paper

In Section 2, we provide an introduction to the hyperbolic numbers, emphasizing characteristic
coordinates. Section 3 explicitly defines the hyperbolic Mandelbrot and Julia sets (slightly differently
from Artzy [7] in the choice of a hyperbolic analog of boundedness). We give an explicit description
of the former, mirroring the results of Artzy [7] and Metzler [8]. The main result, the quadchotomy
theorem, is proven in Section 4.

2. Hyperbolic Numbers

The hyperbolic numbers H, sometimes called perplex numbers, motor variables, split-complex numbers,
Lorentz numbers, Minkowski numbers, or a variety of other names, can be understood in several
contexts [3–5,10]. Algebraically, H can be identified with the ring R[t]/(t2 − 1), where we call τ

the image of t in the quotient. Hence, they are abstractly isomorphic to R⊕ R as a module over
R, with generators 1and τ. In analogy to the complex numbers, we write z = u + τv for u, v ∈ R,
where τ2 = 1, but τ 6= ±1.

Seen as a module over R, hyperbolic numbers admit an automorphism, which acts trivially on
the component generated by 1, called hyperbolic conjugation. If z = x + τy, the hyperbolic conjugate is
z = x− τy. Hyperbolic conjugation shares properties with complex conjugation; z = z, z + w = z + w,
and z w = zw.

We will refer to H as the hyperbolic plane in analogy to the complex plane; our usage is entirely
distinct from the geometric notion of the plane equipped with a hyperbolic metric, which would
typically be modeled with the Poincaré disk or upper half plane. Indeed, the hyperbolic numbers are
equipped with a quadratic form, but it does not give rise to a metric or norm. Instead, if z = x + τy,

||z|| = zz = x2 − y2.

Representing the hyperbolic number z = x + τy as the matrix:

z =

[
x y
y x

]
=

[
1 1
−1 1

] [
x− y 0

0 x + y

] [
1 1
−1 1

]−1

,

and addition z1 + z2 = (x1 + τy1) + (x2 + τy2) = (x1 + x2) + j(y1 + y2) and multiplication z1z2 =

(x1 + τy1)(x2 + τy2) = (x1x2 + y1y2) + τ(x1y2 + x2y1) correspond respectively to matrix addition
and multiplication. The matrix approach reveals the natural characteristic coordinates X = x− y and
Y = x + y with which to work with hyperbolic numbers, as noted by Fishback [9]. Representing
a hyperbolic number in characteristic coordinates as

z =

(
X 0
0 Y

)
,

the hyperbolic multiplication

z1z2 =

[
x1 y1

y1 x1

] [
x2 y2

y2 x2

]
=

[
x1x2 + y1y2 x1y2 + x2y1

x1y2 + x2y1 x1x2 + y1y2

]
is simply

z1z2 =

(
X1 0
0 Y1

)(
X2 0
0 Y2

)
=

(
X1X2 0

0 Y1Y2

)
.
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In addition, the quadratic form has a simple form in characteristic coordinates:

zz = (x + τy)(x− τy) = x2 − y2 = (x− y)(x + y) = XY. (1)

The sets D+ := {z = x + τx} and D− := {z = x − τx} in the hyperbolic plane where either
characteristic coordinate vanishes form the axes of the characteristic coordinate system. Note that D+

and D− are closed under addition and multiplication.

3. The Hyperbolic Mandelbrot Set

The simple representation of multiplication for hyperbolic numbers in characteristic coordinates
gives rise to hyperbolic Mandelbrot and Julia sets that contrast significantly with the classical
Mandelbrot and Julia sets of complex numbers. Our definitions for hyperbolic Mandelbrot and
Julia sets closely follow the corresponding definitions over C. If f : H → H is a function, we again
write f 2(z) := f ( f (z)), f 3(z) := f ( f ( f (z))), etc.

Definition 3. For each c ∈ H, consider the map

fc(z) = z2 + c.

The hyperbolic Mandelbrot setMH is the set of values c ∈ H for which there exists some Bc ∈ R such that
for all n ∈ N, the inequality

∣∣∣ f n
c (0) f n

c (0)
∣∣∣ < Bc is satisfied.

Definition 4. Fix a polynomial f (z) : H→ H. The hyperbolic filled Julia set associated with f , denoted
by KH( f ), is the set of values z0 ∈ H for which there exists some Bz0 ∈ R such that for all n ∈ N, the inequality∣∣∣ f n(z0) f n(z0)

∣∣∣ < Bz0 is satisfied. The hyperbolic Julia set associated with f , denoted by JH( f ), is the
boundary of KH( f ).

The quantity
∣∣∣ f n(z0) f n(z0)

∣∣∣ is equal to zero on the characteristic axes D±, and therefore,

the bound
∣∣∣ f n(z0) f n(z0)

∣∣∣ < Bz0 automatically holds on these sets even though the real and hyperbolic
components of f n(z0) may be limited to infinity. Artzy [7] makes a different choice in the definition of
the hyperbolic Julia set in that he bounds the real and hyperbolic parts.

The similarities in definition to the complex case lead to several of the same immediate results.
We will use the fact that, as for the complex Mandelbrot set [2],MH is invariant under conjugation.
We note as well that since both complex and hyperbolic conjugations fix R ⊂ C,H, we must have
MH ∩R =MC ∩R.

Remark 1. The two definitions are in many ways similar, but the Mandelbrot set is a subset of parameter
space, whereas a Julia set is said to lie in the dynamical plane. Theorem 2 makes the connection betweenMH
and KH( f ) explicit for f quadratic.

Key to determining the hyperbolic Mandelbrot and Julia sets is the observation that in
characteristic coordinates, the map fc(z) = z2 + c1 + τc2 decouples into the real quadratic map
fc(x) = x2 + c on each coordinate. Indeed, fc can be written as

fc(x, y) = (x2 + y2 + c1, 2xy + c2)

=

(
1
2

(
X2 + Y2

)
+ c1,

1
2

(
Y2 − X2

)
+ c2

)
;
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or, writing fc as a function characteristic coordinates,

fc(X, Y) =
(

X2 + c1 − c2, Y2 + c1 + c2

)
=
(

X2 + cX , Y2 + cY

)
(2)

= ( fcX (X), fcY (Y)) ,

where cX = c1 − c2 and cY = c1 + c2 are representations of the constants in characteristic coordinates.
In characteristic coordinates, the map decouples into a map on each coordinate, so that under iteration,
we have

f n
c (X, Y) =

(
f n
cX
(X), f n

cY
(Y)
)

. (3)

The map fc(x) = x2 + c : R→ R (for x, c ∈ R), whose behavior is well known [2], is therefore key to
finding hyperbolic Julia sets.

For c ≤ 1
4 , the behavior of the dynamical system xn+1 = fc(xn) may be understood by a change

of coordinates to the well-known logistic map. Writing

ρ+(c) =
1 +
√

1− 4c
2

, ξ =
1
2

(
1− x

ρ+(c)

)
, r = 2ρ+(c),

the dynamical system xn+1 = fc(xn) becomes the logistic dynamical system ξn+1 = gr(ξn) for
gr(ξ) = r(1− ξ)ξ.

The case c < −2 corresponds to r > 4, for which all orbits of the logistic map diverge to infinity
except for points in a Cantor set. For gr(ξ), the Cantor set is contained in [0, η−] ∪ [η+, 1], where η± =
1
2r (r±

√
r2 − 4r). For fc(x), this translates to a Cantor set contained in [−ρ+(c),−γ(c)]∪ [γ(c), ρ+(c)],

where 4γ2(c) = −4c− 2− 2
√

1− 4c. Note that for c < −2, γ(c) < 0, so the Cantor set for fc(x) is
bounded away from zero.

The case −2 ≤ c ≤ 1
4 corresponds to 1 ≤ r ≤ 4, for which orbits of the logistic map are bounded

for ξ ∈ [0, 1] and diverge to infinity otherwise. That is, for c ∈ [−2, 1
4 ], the orbit f n

c (x) is bounded if
and only if −ρ+(c) ≤ x ≤ ρ+(c). In this case, the fixed points are x = 1

2 (1±
√

1− 4c); there is a fixed
point equal to zero only for c = 0.

That KC( fc) ∩ R is empty for 1
4 < c may be seen as follows: For any x ∈ R, the minimum

value of fc(x)− x is c− 1
4 . Thus, for any x0 ∈ R and positive integer n, f n+1

c (x0) ≥ f n
c (x0) + c− 1

4 ;

f n
c (x0) ≥ x0 + n

(
c− 1

4

)
. It follows that for c > 1

4 , f n
c (x0)→ ∞ as n→ ∞.

In summary, we have the following:

Lemma 1. Let fc(z) = z2 + c for c ∈ R. Then, the intersection KC( fc) ∩R is

(i) a Cantor set not containing zero if c < −2,

(ii) the interval −ρ+(c) ≤ x ≤ ρ+(c) if −2 < c < 1
4 ,

(iii) empty if 1
4 < c.

The decoupling of the characteristic coordinates endowsMH with a much simpler structure than
MC, as detailed in the next theorem, due to Artzy and Metzler [7,8].

Theorem 1. Let S be the square given by

S : =
{

max
(

x− 1
4

,−x− 2
)
≤ y ≤ min

(
x + 2,−x +

1
4

)}
=

{
(X, Y) ∈

[
−2, 1

4

]2
}

,
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and let D = D+ ∪ D− be the union of the diagonals in H. Then,MH = S ∪ D.

Proof. We need to determine the values of c for which | f n
c (0 = 0 + 0τ)| is bounded as n approaches

infinity. The expression (3) for iterates of the map fc(z) in characteristic coordinates allows us to write
| f n

c (0)| = | f n
cX
(0) f n

cY
(0)|. According to Lemma 1, f n

cX,Y
(0) are bounded for (and only for)−2 ≤ cX,Y ≤ 1

4 .

Thus, | f n
c (0)| is bounded for (cX , cY) ∈ S =

{
(X, Y) ∈

[
−2, 1

4

]2
}

.

It could also be the case that, without loss of generality, f n
cX
(0)→ 0, but f n

cY
(0)→ ∞ in a manner

so that their product is bounded. Since f n
cX
(0)→ 0 only for cX = 0, such cases occur only for (cX , cY)

on the union D. D is, in fact, inMH: Since D+ and D− are closed under addition and multiplication,
the restrictions fc

∣∣
D±

: D± → D± are well defined. However, since |zz| = 0 for all z ∈ D, we have that
D ⊂MH.

The center panel of Figure 2 depicts the hyperbolic Mandelbrot set.

1/4�2 x

y

.

.
.

.A

B
D

C

C

D

A

B

Figure 2. The hyperbolic Mandelbrot set is shown as a subset of parameter space H in the center panel.
The four points labeled A–D in the center panel taken as parameter values c in fc(z) = z2 + c give
rise to the four types of Julia sets shown on the side panels: A, totally disconnected; B, disconnected;
C, connected; and D, empty. As with Figure 1, the colors represent the iterations performed before the
norm of the iterate grew larger than the bound (chosen to be four for these simulations). Red represents
the quickest growth beyond our divergence criterion, whereas blue represents an initial condition
whose orbit did not grow beyond the bound in the number of iterations we performed (200).

Remark 2. As implied by Theorem 2 below, the fact that the part of D outside of S is in the Mandelbrot set is
largely an artifact of the fact that D+ and D− are ideals of H.

4. Hyperbolic Julia Sets

Over the complex numbers,MC determines the points in parameter space that correspond to
connected Julia sets. One may ask ifMH performs the analogous role for the hyperbolic numbers. The
positive answer may be given more nuance, as H as a parameter space admits a wall-and-chamber
decomposition based on the form of KH( f ), in which MH is the chamber corresponding to
connectedness of nonempty filled Julia sets. We now develop this decomposition explicitly.

Proposition 1. For c ∈ H, let c = (cX, cY) be its description in characteristic coordinates, and let fc(z) =
z2 + c. Write fcX (X) = X2 + cX and fcY (Y) = Y2 + cY. For cX , cY 6= 0, the filled hyperbolic Julia set KH( fc)

is equal to the Cartesian product of KC( fcX ) ∩R and KC( fcY ) ∩R.
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Proof. Let z0 = (X0, Y0) in characteristic coordinates. By equation (1),
∣∣∣ f n(z0) f n(z0)

∣∣∣ =∣∣∣ f n
cX
(X0) f n

cY
(Y0)

∣∣∣ =
∣∣∣ f n

cX
(X0)

∣∣∣∣∣∣ f n
cY
(Y0)

∣∣∣. According to the discussion leading to Lemma 1,

limn→∞ f n
c (X0) = 0 only for c = 0. For cX, cY 6= 0, there is a Bz0 such that

∣∣∣ f n
cX
(X0) f n

cY
(Y0)

∣∣∣ < Bz0 for

all n if and only if there is some Mz0 ∈ R such that for all n
∣∣∣ f n

cX
(X0)

∣∣∣, ∣∣∣ f n
cY
(Y0)

∣∣∣ < Mzo . However, since

cX , X0 ∈ R, we have
∣∣∣ f n

cX
(X0)

∣∣∣ < Mz0 if and only if X0 ∈ KC( fcX )∩R, Y0 ∈ KC( fcY )∩R. We conclude
that, for cX , cY 6= 0,

KH( fc) =
{
(X, Y) :

∣∣∣ f n
c,X(X) · f n

c,Y(Y)
∣∣∣ < Bz0

}
= {KC( fcX ) ∩R} × {KC( fcY ) ∩R} .

Examples of filled hyperbolic Julia sets are shown in the side panels of Figure 2. The filled
hyperbolic Julia sets may be totally disconnected (Panel A), connected but not totally disconnected
(Panel B), connected and nonempty (Panel C), or empty (Panel D). These examples represent the
decomposition of H stated in the following analog to the dichotomy theorem of complex Mandelbrot
and filled Julia sets and depicted in Figure 3:

Theorem 2 (Quadchotomy). For c ∈ H, let fc(z) = z2 + c, and let c = (cX , cY) in characteristic coordinates,
with cX , cY 6= 0. Then, H admits a wall-and-chamber decomposition as follows:

(i) if c ∈ S, then KH( fc) is nonempty and connected;
(ii) if one of cX , cY is in [−2, 1

4 ] and the other is less than or equal to −2, then KC( fc) is disconnected;
(iii) if cX , cY < −2, then KC( fc) is totally disconnected;
(iv) otherwise, KH( fc) is empty.

X

Y

Connected

∅

∅

∅

∅ ∅

Totally Disconnected Disconnected

Disconnected

(−2,−2)

( 1
4 , 1

4 )

Figure 3. The wall-and-chamber decomposition of the quadchotomy theorem, Theorem 2.
The hyperbolic plane in characteristic coordinates is divided into regions, as labeled, in which parameter
values (cX , cY) yield Julia sets for fc(z) = z2 + c, c = 1

2 (cX + cY) + τ 1
2 (cY − cX), cX , cY 6= 0, which are

connected and nonempty, disconnected, but not totally disconnected, totally disconnected, or empty.
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Proof. By Proposition 1, we need to understand KC( fcX ) ∩R and KC( fcY ) ∩R, which are given in
Lemma 1.

Part (i): When c ∈ S, cX, cY ∈ [−2, 1
4 ], and KC( fcX ) and KC( fcY ) are both simply connected and

conjugate-invariant. Thus, KC( fcX ) ∩R and KC( fcY ) ∩R are both connected, so KH( fc) is as well.
Part (ii): In this case, exactly one of KC( fcX )∩R or KC( fcY )∩R is connected; the other is a Cantor

set. The product of a Cantor set and a connected set is a disconnected set.
Part (iii): Both KC( fcX ) ∩R and KC( fcY ) ∩R are Cantor sets, which are totally disconnected, and

the product of two totally disconnected sets is again totally disconnected.
Part (iv): By Lemma 1, at least one of KC( fcX ) ∩R or KC( fcY ) ∩R is empty, so their product is as

well.

We ignored the characteristic axes in Theorem 2. We compute their Julia sets as follows: If, say,

cY = 0, then
∣∣∣ f n

c (z0) f n
c (z0)

∣∣∣ = ∣∣∣ f n
cX
(X0) f n

cY
(Y0)

∣∣∣ = Y2n
0

∣∣∣ f n
cX
(X0)

∣∣∣. The ratio of
∣∣∣ f n+1(z0) f n+1(z0)

∣∣∣ to∣∣∣ f n(z0) f n(z0)
∣∣∣ is Y2

0

∣∣∣ f n+1
cX

(X0)

∣∣∣∣∣∣ f n
cX (X0)

∣∣∣ = Y2
0

∣∣∣ fcX

(
f n
cX

(X0)
)∣∣∣∣∣∣ f n

cX (X0)

∣∣∣ = Y2
0 R
(

f n
cX
(X0)

)
, for R(x) = x + cX

x . If
∣∣∣ f n

cX
(X0)

∣∣∣ is

unbounded, then so is this ratio since R(x) approaches infinity with x. That is, for cX > 1
4 , the filled

Julia set is empty. For cX < 1
4 , the Julia set is the product (X0, Y0) ∈ C× [−1, 1] for a Cantor set C

contained in [−ρ+(cX),−γ(cX)] ∪ [γ(cX), ρ+(cX)].

5. Discussion

The decoupling into characteristic coordinates allows for the computation of Mandelbrot and
Julia sets for hyperbolic numbers. These sets are simpler than their counterparts in the complex
number setting. However, an analog to the dichotomy theorem for complex dynamics carries over to
hyperbolic dynamics.

Complex numbers and hyperbolic numbers are two of the three classes of what are called binary
numbers. Senn [6] also numerically investigated the third class of binary numbers, namely parabolic
numbers z = a + bε, where ε2 = 0. Fishback [9] found the Mandelbrot set of these numbers, which
form what is called the Laguerre plane. Fishback and Horton further showed that an analog of the
dichotomy theorem extends to three-component number systems, the ternary numbers [11].

Binary numbers are two-dimensional examples of Clifford algebras. Do analogs of the dichotomy
theorem also hold for higher dimensional Clifford algebras, such as quaternions, octonions, and their
hyperbolic counterparts?
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