
fractal and fractional

Article

The Fractal Calculus for Fractal Materials

Fakhri Khajvand Jafari 1, Mohammad Sadegh Asgari 2 and Amir Pishkoo 1,3,∗

1 Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran;
fjafari81@yahoo.com

2 Department of Mathematics, Central Tehran Branch, Islamic Azad University, Tehran, Iran;
moh.asgari@iauctb.ac.ir

3 Physics and Accelerators Research School, Nuclear Science and Technology Research Institute,
P.O. Box 14395-836, Tehran, Iran

* Correspondence: apishkoo@gmail.com

Received: 10 February 2019; Accepted: 5 March 2019; Published: 6 March 2019
����������
�������

Abstract: The major problem in the process of mixing fluids (for instance liquid-liquid mixers) is
turbulence, which is the outcome of the function of the equipment (engine). Fractal mixing is an
alternative method that has symmetry and is predictable. Therefore, fractal structures and fractal
reactors find importance. Using Fα-fractal calculus, in this paper, we derive exact Fα-differential
forms of an ideal gas. Depending on the dimensionality of space, we should first obtain the integral
staircase function and mass function of our geometry. When gases expand inside the fractal structure
because of changes from the i + 1 iteration to the i iteration, in fact, we are faced with fluid mixing
inside our fractal structure, which can be described by physical quantities P, V, and T. Finally, for the
ideal gas equation, we calculate volume expansivity and isothermal compressibility.
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1. Introduction

“Euclidean geometry” is able to model a limited number of known phenomena precisely.
Introducing the concept of “fractal” provided a framework of modeling called “fractal geometry”
for a large number of known phenomena in the fields of the humanities, basic sciences, medical
sciences, and engineering, which have complicated forms to model [1–3]. Computer graphics has
provided the possibility of making complicated and meanwhile beautiful fractal shapes by applying
the mathematical language in the system of the iterative function for such shapes [4]. This prepares the
ground for simulation and numerical solving of various problems with complicated geometries [3,5].

The complicated shapes of known phenomena are described with a parameter called “fractal
dimension”. In the engineering field, this is simply calculated by the definition of the box-counting
dimension. In addition to fractal geometry, the fractional calculus and fractal calculus can also be
helpful in the description of phenomena, with the difference that the operators in the latter calculi are
respectively non-local and local [6–18].

Unfortunately, a fractal cannot be represented by an equation. In spite of the valuable efforts made
to apply measure theory and harmonic analysis in fractals [19,20], the main step in the foundation of
fractal calculus was taken by Parvate and Gangal. They suggested the algorithmic and Riemann-like
method calculus on the fractal that can be mathematical models for many phenomena in nature [16,21].
By presenting an algorithmic method in fractal calculus, they introduced a proper mathematical
modeling for many phenomena in nature [16,17,21]. Differentiation and integration in this method are
done by introducing the step function and fractal mass function. Applying this method has led to a
new formulation for Newtonian, Lagrangian, and Hamiltonian mechanics from which the Schrödinger
equation for fractal curves can be solved [22].
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In this paper first, the fractal dimension is computed for a specific geometric shape in the language
of the iterative function system. Then, the step function in the fractal calculus is shown for the first
three iterations in the algorithmic method. After that, by applying this geometry for ideal gases [23],
the relations associated with exact differential equations for the physical quantities of temperature,
pressure, and volume are presented.

2. Preliminaries

We first give the main definitions relating to the basic tools in fractal calculus.

2.1. The Integral Staircase Function on Cantor Cubes

Let F be the triadic Cantor set. We define F = F× F× F ⊂ R3 as a fractal Cantor cubes set that is
the subset of I = [a, b]× [c, d]× [e, f ], a, b, c, e, f ∈ R (Real-line) [24]. We plot the cross-section of the
Cantor cubes with fractal dimension log 8

log 3 in Figure 1.

Figure 1. Fractal dimension of Cantor cubes = log 8/log 3 = 1.89.

The “flag function” for F is defined as [18,25]:

Θ(F, I) =

{1 if F∩I 6=∅

0 otherwise

.

Let us consider a subdivision of I = [a, b]× [c, d]× [e, f ] as follows:

P[a,b]×[c,d]×[e, f ] = {x0 = a, x1, x2, ..., xn = b} × {y0 = c, y1, y2, ..., yn = d}

× {z0 = e, z1, z2, ..., zn = f }. (1)

The “mass function” γξ(F, a, b, c, d, e, f ) is defined as:

γξ(F, a, b, c, d, e, f ) = lim
δ→0 P[a,b]×[c,d]×[e, f ]

inf
|P|≤δ

n

∑
i=1

(xi − xi−1)
α

Γ(α + 1)
(yi − yi−1)

β

Γ(β + 1)
(zi − zi−1)

µ

Γ(µ + 1)

×Θ(F, [xi−1, xi])Θ(F, [yi−1, yi])Θ(F, [zi−1, zi]), (2)

where ξ = α + β + µ and 0 < β ≤ 1, 0 < β ≤ 1, 0 < µ ≤ 1. The value of ξ for the case of fractal Cantor
cubes is ξ = 0.6 + 0.6 + 0.6 = 1.8.

Using the concept of the mass function, the “integral staircase function” for the fractal Cantor
cubes Sξ

F(x, y, z) of order ξ for a fractal set F is defined as follows:

Sξ
F(x, y, z) =

{γξ (F,a0,c0,e0,x,y,z) if x≥a0,y≥c0,z≥e0

−γξ (F,a0,c0,e0,x,y,z) otherwise

,

where a0, c0, e0 are arbitrary real numbers. For the fractal object such as a Cantor set, we plot the
staircase function for the first three iterations as they are shown in Figures 2–4, respectively.
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Figure 2. Staircase function for the first iteration.

Figure 3. Staircase function for the second iteration.

Figure 4. Staircase function for the third iteration.

To recall the definition of the ternary Cantor function F and Cantor set C, one can see [26].
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The Cantor function F(x) is defined as the function on [0, 1] such that for values of x on the
Cantor set:

Example 1. Let anx = 2 in Equation (1.1) [26]. If the Cantor set is:

x =
∞

∑
n=1

2.3−n

then the Cantor function will be:

F(x) =
∞

∑
n=1

2−n.

The triadic Cantor function of the fractals is a set that can be obtained by an iterative process.
The first step defines a segment of unit length. The second step is to divide the segment into three
equal parts of length 1

3 and remove the central one. The triadic Cantor set is created by repeating this
process to infinity. In general, at each stage n, there are 2n segments with length 3−n with 2n − 1 gaps
between them [18].

2.2. Fα-Differentiation

Definition 1. [16] If F is an ξ-perfect set, then the Fξ-partial derivative of f with respect to x is:

xDξ
F =

{F−lim
(x′ ,y,z)−→(x,y,z)

f (x
′
,y,z)− f (x,y,z)

Sξ
F(x′ ,y,z)−Sξ

F(x,y,z)
if (x,y,z)∈F

0 otherwise

.

If the limit exists, likewise yDξ
F f (x, y, z) and zDξ

F f (x, y, z) can be defined.

Now, in the following, we utilized the Fξ-fractional calculus on the fractal subset of R3.

Definition 2. [27] Fξ-fractional one-forms: A differential fractional one-form on an F subset of R3 is
an expression H(x, y, z)dα

Fx + G(x, y, z)dβ
Fy + N(x, y, z)dγ

Fz where H, G, N are functions on the open set.
If f (x, y, z) is C1

ξ a function, then its Fξ-fractional total differential (or exterior derivative) is:

dξ
F

f (x, y, z) =x Dα
F

f (x, y, z)dα
F
x +y Dβ

F
f (x, y, z)dβ

F
y +z Dγ

F
f (x, y, z)dγ

F
z,

where ξ = α + β + γ.

Definition 3. [27] Fξ-fractional exactness:
Suppose that Hdα

F
x + Gdβ

F y + Ndγ
F

z is a Fξ-fractional differential on F with C2
ξ function f (x, y, z) with

dξ
F

f = Hdα
F
x + Gdβ

F y + Ndγ
F

z. We will call an Fξ-fractional differential closed if:

xDξ
F

f = H yDξ
F

f = G zDξ
F

f = N.

However, in our discussion, the main variables are p, v, θ instead of x, y, z, respectively. Therefore,

pDξ
F

f = H vDξ
F

f = G θ Dξ
F

f = N. (3)

Therefore, Hdα
Fx + Gdβ

Fy + Ndγ
Fz is exact if for variables x, y, z, we have:

yDβ
F N =z Dγ

F
G, xDα

F
G =y Dβ

F
H, zDγ

F
H =x Dα

F
N.
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However, the conditions of exactness for variables pressures, volumes, and temperatures are:

vDβ
F

N =θ Dγ
F

G, pDα
F
G =v Dβ

F
H, θ Dγ

F
H =p Dα

F
N. (4)

3. Results

If V was a geometrical quantity referring to the volume of space, then dV could be used to denote
a portion of that space arbitrarily small. If the change of P is very small in comparison with P and very
large in comparison with molecular fluctuations, then it also may be represented by the differential dP.
Every infinitesimal in thermodynamics must satisfy the requirement that it represents a change in
a quantity, which is small with respect to the quantity itself and large in comparison with the effect
produced by the behavior of a few molecules. We may imagine the equation of state solved for any
coordinate in terms of the other two. Thus,

V = f1(θ, P).

A fundamental theorem in partial differential calculus enables us to write:

dV =
(∂V

∂θ

)
p
dθ +

(∂V
∂P
)

θ
dP,

while we define its fractional counterpart:

dξ
F f1 = dξ

FV =
(θ Dξ

FV
)

P
dγ

Fθ +
(PDξ

FV
)

θ
dγ

F P,

where each partial derivative is itself a function of θ and P.
Both the above partial derivatives have an important physical meaning. If the change of

temperature is made infinitesimal, then the change in volume also becomes infinitesimal, and we have
what is known as the instantaneous volume expansivity, or just volume expansivity, which is denoted
by β. Thus,

β =
1
V
(∂V

∂θ

)
p

(for integer differentiation),

while for the fractional case, the volume expansivity is defined as:

β =
1
V
(θ Dξ

FV
)

P
. (5)

As a rule, β may be regarded as a constant within a small temperature range. The quantity β is
expressed in reciprocal degrees. The effect of a change of pressure on the volume of a hydrostatic system
when the temperature is kept constant is expressed by a quantity called isothermal compressibility
and is represented by the symbol κ (Greek Kappa). Thus,

κ = − 1
V
(∂V

∂P
)

θ
(for integer differentiation),

while for the fractional case, the isothermal compressibility is defined as:

κ = − 1
V
(PDξ

FV
)

θ
. (6)

Notice that if this time, the equation of state is solved for P, then:

P = f2(θ, V).

Differentiation gives:
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dP =
(∂P

∂θ

)
v
dθ +

( ∂P
∂V
)

θ
dV,

and:
dα

F p =
(θ Dξ

FP
)

V
dγ

Fθ +
(V Dξ

FP
)

θ
dβ

FV, (7)

where the former is an integer differentiation and the latter is the fractional differentiation.
Finally, writing temperature θ as a function of pressure P and volume V gives one:

dθ =
( ∂θ

∂P
)

v
dP +

( ∂θ

∂V
)

p
dV,

and:
dγ

Fθ =
( ∂θ

∂P
)

v
dα

F p +
( ∂θ

∂V
)

p
dβ

Fv. (8)

In the most general case, if it were possible, we write:

dξ
F f (p, v, θ) =p Dα

F f (p, v, θ)dα
F p +v Dβ

F f (p, v, θ)dβ
Fv +θ Dγ

F f (p, v, θ)dγ
Fθ, (9)

in which ξ = α + β + γ, and n = 2, 1, 0.
At each stage of the contraction of space, for gas molecules, the following formula holds:

Nn = 8n,

Ln = 3−n,

Vn = L3
nNn =

( 8
27
)n, (10)

and vice versa for the expanding process (see Figure 5).

Figure 5. Reverse process in each iteration.

3.1. Equations of State

Although the three quantities temperature, pressure, and gas are sufficient to study the behavior
of gases, the governing equation is simple only for the limited range, namely ideal gas. For the whole
range, we should apply different equations starting from:

PV = nRθ (11)

to the Beattie–Bridgman equation:
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P =
Rθ(1− ε)

v2 (v + B)− A
v2 , (12)

in which A = A0(1− a
v ), B = B0(1− b

v ), ε = c
vθ3 , and V = v

n , respectively.
Using (5) and (6), for the ideal gas equation, we calculate β and κ as follows, respectively:

β =
1
V
(θ Dξ

FV
)

P
=

P
nRθ

∂0.6V
∂θ0.6 =

1
θ

∂0.6θ

∂θ0.6 =
1
θ

Γ(2)
Γ(1.4)

θ0.4 = 1.127θ−0.6,

and:

κ = − 1
V
(PDξ

FV
)

θ
= − P

nRθ

∂0.6V
∂P0.6 = −P

∂0.6P−1

∂P0.6 = − Γ(0)
Γ(−0.6)

P−0.6.

4. Conclusions

This paper investigated fractal mixing of four different types of ideal gases inside a fractal
structure by using Fα-calculus. The flag function, mass function, and staircase function are building
blocks of Fα-calculus. Physical systems involving ideal gas are described by the equation of state,
while inside the fractal object, the relations between pressure, volume, and temperature are deduced
as the fractional forms here. In order to maximize symmetry and, on the other hand, minimize the
unforeseeable features of mixing such as turbulence, fractal objects are a good offer.
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