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Abstract: In this paper, the approximated analytical solution for the fractional Swift–Hohenberg (S–H)
equation has been investigated with the help of the residual power series method (RPSM). To ensure
the applicability and efficiency of the proposed technique, we consider a non-linear fractional order
Swift–Hohenberg equation in the presence and absence of dispersive terms. The effect of bifurcation
and dispersive parameters with physical importance on the probability density function for distinct
fractional Brownian and standard motions are studied and presented through plots. The results
obtained show that the proposed technique is simple to implement and very effective for analyzing
the complex problems that arise in connected areas of science and technology.

Keywords: fractional Swift–Hohenberg equation; residual power series method; Caputo fractional
derivative; Taylor series

1. Introduction

Fractional calculus (FC) is a general expansion of integer order calculus to arbitrary order and
was discussed in an early letter between the mathematicians Leibniz and L’Hospital in 1695. In recent
years, many authors have started to study the fractional calculus due to its ability to provide an exact
description for various types of non-linear phenomena. Fractional order differential equations are
the generalization of traditional differential equations having non-local and genetic consequence in
material properties. The concept of fractional calculus was studied and described by many senior
scholars and they defined revolutionary definitions of fractional calculus, which laid the foundations
for fractional calculus [1–7]. Nowadays, fractional partial differential equations have gained popularity
in developing procedure for non-linear models and investigation of dynamical systems. The theory of
fractional-order calculus has been related to practical projects and it has been applied to analyze and
study different phenomena including chaos theory [8], financial models [9], a noisy environment [10],
optics [11], and others [12–15]. The solutions of fractional differential equations play a vital role in
describing the characteristics of non-linear problems that arise in nature. It is difficult to obtain exact
solutions for the fractional differential equations describing non-linear phenomena, so we come across
various analytical and numerical techniques.

The Swift–Hohenberg (S–H) equation was introduced and nurtured by Jack Swift and Pierre
Hohenberg, as a universal model of the Rayleigh–Benard convective instability of the fluid with
thermal fluctuations for fluid velocity dynamics and temperature of convection [16].

vt(x, t) = αv−
(

1 +∇2
)2

v− v3, x ∈ R, t > 0. (1)
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The Swift–Hohenberg equation plays a vital role in pattern formation theory (specifically,
the mechanism of the amplitude of optical electrical field in the interior of cavity, the pattern within
thin vibrated granular layers and so on) in fluid layers confined between horizontal well-conducting
boundaries [17]. The proposed problem serves as a paradigm for a motivating plethora of localized
as well as non-localized patterns that originate in various biological structures [18–20]. In many
physical phenomena including the study of lasers, hydrodynamics, liquid crystals, flame dynamics
and statistical mechanics [21–23], the portrayal of the S–H equation is very essential. In the present
investigation, we consider the time-fractional non-linear S–H equation [24,25] as follows:

Dµ
t v(x, t) +

∂4v(x, t)
∂x4 + 2

∂2v(x, t)
∂x2 + (1− µ)v(x, t) + v3(x, t) = 0, 0< µ ≤ 1, t >0, (2)

and in the presence of the dispersive term [26] as:

Dµ
t v(x, t) +

∂4v(x, t)
∂x4 + 2

∂2v(x, t)
∂x2 − η

∂3v(x, t)
∂x3 − αv(x, t)− 2v2(x, t) + v3(x, t) = 0, (3)

where v(x, t) is probability density function, η and α are respectively dispersive and bifurcation parameters.
In this paper, the solution for a fractional S–H equation has been investigated by employing

the residual power series method (RPSM). The future technique was proposed by Arqub to analyze
and find the solution for strongly non-linear problems arising in science and technology [27,28].
This technique does not necessitate any change while moving from the first order to the higher order.
Due to this, the future technique can be directly employed to the considered problems by picking
suitable initial conditions. By this method, we obtain an analytic Taylor series solution. The proposed
scheme does not require linearization, discretization or perturbation and, additionally, it will decrease
huge mathematical computations, requires less computer memory, and is free from obtaining difficult
polynomials, integrations and physical parameters. It provides us with extremely large freedom to
choose the equation type of linear sub-problems, initial guess, and base function of the solution; due
to this, complicated non-linear differential equations can often be solved in a simple way. It is worth
mentioning that, the proposed method can reduce the computation of the time and work as compared
with other traditional techniques while maintaining the efficiency of the results obtained.

Recently, due to its consistency and efficacy, it has aided by many researchers to interpret results
for various kinds of nonlinear problem, like the authors in [29]; analyze and find the solution for
the Biswas–Milovic equation having fractional order; the arbitrary order Schrodinger equation has
been profitably analyzed in [30]; the authors in [31] employed it to find the solution for the Fisher
equation with fractional order; the applicability and efficiency of RPSM is presented in [32] to solve
PDEs; scholars in [33], have analyzed coupled equations arising in fluid flow; and many other are
aided by the considered scheme to analyze and find the solution for complex non-linear problems
describing complex phenomena.

The solution for the S–H equation is studied by many scholars using distinct techniques like Vishal
et al. who employed Homotopy Analysis Method (HAM) [24] and Homotopy Perturbation Transform
Method (HPTM) [26], Merdan who studied with the help of the variational iteration technique using
the Riemann–Liouville derivative [34], Khan et al. who used the differential transform technique [25],
and others [35–38]. Motivated by the above work, we find the approximated analytical solution for
proposed problem by using RPSM.

2. Preliminaries

We recall the definitions and basic notions of the fractional calculus and Laplace transform, which
will be used in the present frame work:
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Definition 1. The Riemann-Liouville fractional integral for a function f (t) ∈ Cδ(δ ≥ −1) is presented [1,2] as:

Jµ f (t) =
1

Γ(µ)

∫ t

0
(t− ϑ)µ−1 f (ϑ)dϑ,J0 f (t) = f (t). (4)

Definition 2. The Caputo fractional derivative for a function f ∈ Cn
−1 is defined as [3]:

Dµ
t f (t) =

{
dn f (t)

dtn , µ = n ∈ N
1

Γ(n−µ)

∫ t
0 (t− ϑ)n−µ−1 f (n)(ϑ)dϑ, n− 1 < µ < n, n ∈ N.

(5)

Definition 3. An expanding power series (PS) and the shape of the PS are, respectively, presented as:

∞

∑
m=0

cm(t− t0)
mµ = c0 + c1(t− t0)

µ + c2(t− t0)
2µ + · · · , (6)

and,
∞

∑
m=0

fm(x)(t− t0)
mµ = f0(x) + f1(x)(t− t0)

µ + f2(x)(t− t0)
2µ + · · · (7)

0 ≤ m− 1 < µ ≤ m, t ≥ t0, (8)

is called fractional PS at t = t0 [39].

Remark 1. The FPS expanded of v(x, t) at point t0 should be of the shape

v(x, t) =
∞

∑
m=0

Dmµ
t v(x, t0)

Γ(mµ + 1)
(t− t0)

mα, 0 ≤ m− 1 < µ ≤ m, x ∈ I, t0 ≤ t < t0 + R, (9)

which is a generalized Taylor’s series expression.

3. Basic Idea of Proposed Algorithm

In this segment, we present a fundamental solution procedure of the proposed technique.
We consider the following generalized non-linear fractional differential equation to present the basic
idea of RPSM as follows:

Dµ
t v(x, t) = N(v) + R(v), 0< µ ≤ 1, t >0, (10)

with initial condition,
v(x, 0) = f (x), (11)

where Dµ
t v(x, t) symbolised the Caputo fractional derivative for the function v(x, t), N(v) is the

non-linear term and R(v) is linear term. The solution for Equation (10) in a fractional power series
about the initial point t = 0 is proposed by RPSM as follows:

v(x, t) =
∞

∑
n=0

fn(x)
tnµ

Γ[nµ + 1]
, 0 < µ ≤ 1, −∞ < x < ∞, 0 ≤ t < R. (12)

The kth truncated series of v(x, t) is defined as follows:

vk(x, t) =
k

∑
n=0

fn(x)
tnµ

Γ(nµ + 1)
. (13)
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The zeroth RPS approximate solution of v(x, t) is given by:

v0(x, t) = v(x, 0) = f (x). (14)

Now, from Equation (13) we have:

vk(x, t) = f (x) +
k

∑
n=1

fn(x)
tnµ

Γ(nµ + 1)
, k = 1, 2, 3, . . . (15)

We define the residual function for Equation (10) as follows:

Resv(x, t) = Dµ
t v(x, t)− N(v)− R(v). (16)

Then, the kth residual function becomes:

Resv,k(x, t) = Dµ
t vk(x, t)− N(vk)− R(vk). (17)

As in [40,41], it is clear that Res(x, t) = 0 and lim
n→∞

Resk(x, t) = Res(x, t). Therefore, Dnµ
t Resv(x, t) = 0,

since the fractional derivative of a constant in the Caputo sense is zero and the fractional derivatives
Dnµ

t of Res(x, t) and Resk(x, t) are matching at t = 0 for each n = 0, 1, 2, . . . , k; that is Dnµ
t Res(x, 0) =

Dnµ
t Resk(x, 0) = 0, k = 0, 1, 2, . . . , n.

Now, we consider k = 0, 1, 2, . . ., in Equation (13) to evaluate f 1(x), f 2(x), f 3(x), . . . , and put the
obtained values in Equation (15), then on applying the fractional derivative D(k−1)µ

t in both results
we have:

D(k−1)µ
t Resv,k(x, 0) = 0, k = 1, 2, . . . (18)

4. Solution for Fractional Swift–Hohenberg (S–H) Equation

In this part, we consider fractional S–H equation to validate the applicability and efficiency of the
considered algorithms.

Example 1. Consider non-linear fractional S–H equation of the form [24,25]:

Dµ
t v(x, t) +

∂4v(x, t)
∂x4 + 2

∂2v(x, t)
∂x2 + (1− α)v(x, t) + v3(x, t) = 0, (19)

Subjected to initial condition:

v(x, 0) =
1
10

sin
(πx

l

)
. (20)

Now, we define the residual function for Equation (19) as follows:

Resv(x, t) = Dµ
t v + vxxxx + 2vxx + (1− α)v + v3. (21)

Now, the kth residual function Resv,k(x, t) is given by:

Resv,k(x, t) = Dµ
t vk + (vk)xxxx + 2(vk)xx + (1− α)vk + v3

k . (22)

To determine f1(xx), we consider kk = 1 in Equation (22) and we have:

Resv, 1(x, t) = Dµ
t v1 + (v1)xxxx + 2(v1)xx + (1− α)v1 + v3

1. (23)

For kk = 1, Equation (15) reduces to:

v1(x, t) = f (x) + f1(x)
tµ

Γ[µ + 1]
. (24)
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Then, we have:
Resv, 1 = f1 + fxxxx + ( f1)xxxx

tµ

Γ[µ+1] + 2 fxx + 2( f1)xx
tµ

Γ[µ+1]

+ (1− α)
(

f (x) + f1(x) tµ

Γ[µ+1]

)
+
(

f (x) + f1(x) tµ

Γ[µ+1]

)3
.

(25)

But, depending on the result of Equation (18) in the case of kk = 1 we have Resv, 1(x, 0) = 0. Therefore, we get:

f1 = − fxxxx − 2 fxx − (1− α) f − f 3

=
(400l2π2−200π4+l4(−201+200α)+l4 cos( 2πx

l )) sin( πx
l )

2000l4 .
(26)

At kk = 2, Equation (22) reduces to:

Resv, 2(x, t) = Dµ
t v2 + (v2)xxxx + 2(v2)xx + (1− µ)v2 + v3

2.

Now, from Equation (15) for kk = 2 we have:

v2(x, t) = f (x) + f1(x)
tµ

Γ[µ + 1]
+ f2(x)

t2µ

Γ[2µ + 1]
.

Then, we obtained:

Resv,2 = f1 + f2
tµ

Γ[µ+1] + fxxxx + ( f1)xxxx
tµ

Γ[µ+1] + ( f2)xxxx
t2µ

Γ[2µ+1] + 2 fxx

+ 2( f1)xx
tµ

Γ[µ+1] + 2( f2)xx
t2µ

Γ[2µ+1] + (1− α)
(

f + f1
tµ

Γ[µ+1] + f2
t2µ

Γ[2µ+1]

)
+
(

f + f1
tµ

Γ[µ+1] + f2
t2µ

Γ[2µ+1]

)3
.

(27)

Depending on the result of Equation (18) in the case of kk = 2, we have Resv, 2(xx, 0) = 0. Therefore, the above
equation simplifies to:

f2 = −( f1)xxxx − 2( f1)xx − (1− α) f1 − 3 f 2 f1

= 1
800000l8 (81609l8 − 320000l6π2 + 465600l4π4 − 320000l2π6 + 80000π8

− 161600l8α + 320000l6π2α− 160000l4π4α + 80000l8α2 − 4l4(−2400l2π2

+ 8400π4 + l4(403− 400α)) cos
( 2πx

l
)
+ 3l8 cos

(
4πx

l

)
) sin

(
πx
l
)
.

(28)

For kk = 3 in Equation (22), one can get:

Resv, 3(x, t) = Dµ
t v3 + (v3)xxxx + 2(v3)xx + (1− µ)v3 + v3

3. (29)

But from Equation (15) at kk = 3, we obtain:

v3(x, t) = f (x) + f1(x)
tµ

Γ[µ + 1]
+ f2(x)

t2µ

Γ[2µ + 1]
+ f3(x)

t3µ

Γ[3µ + 1]
. (30)

On simplification, we get:

Resv,3 = f1 + f2
tµ

Γ[µ+1] + f3
t3µ

Γ[2µ+1] + fxxxx + ( f1)xxxx
tµ

Γ[µ+1] + ( f2)xxxx
t2µ

Γ[2µ+1]

+ ( f3)xxxx
t3µ

Γ[3µ+1] + 2 fxx + 2( f1)xx
tµ

Γ[µ+1] + 2( f2)xx
t2µ

Γ[2µ+1] + 2( f3)xx
t3µ

Γ[3µ+1]

+ (1− α)
(

f + f1
tµ

Γ[µ+1] + f2
t2µ

Γ[2µ+1] + f3
t3µ

Γ[3µ+1]

)
+
(

f + f1
tµ

Γ[µ+1] + f2
t2µ

Γ[2µ+1] + f3
t3µ

Γ[3µ+1]

)3
.

(31)
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For kk = 3 in Equation (18), we obtain ReResv, 3(x, 0) = 0 and then Equation (31) reduces to:

f3 = −( f2)xxxx − 2( f2)xx − (1− α) f2 − 3 f f 2
1 − 3 f 2 f2

=
sin( πx

l )
32×1014 l16 (4× 109l4(480000l2π10 − 80000π12 + 3200l6π6(287− 300α)

+ 4800l4π8(33 + 50α)− 15l8π4(69783 + 640α(−142 + 25α)) + l12(−1 + α)

×(81609 + 1600α(−101 + 50α)) + 30l10π2(15679 + 320α(−99 + 50α)))

+ 4× 109l8 × (4(−345600l2π6 + 680400π8 + 15l4π4(5589− 2720α)

+30l6π2(−321 + 320α) + l8(−1 + α)(−403 + 400α)) cos
( 2πx

l
)

+3l4
(
−
(
l2 − 25π2)2

+ l4α
)

cos
(

4πx
l

)
)(−320000l2π6 + 80000π8

+ 1600l4π4(291− 100α) + 320000l6π2(−1 + α) + l8(81609 + 1600α(−101

+50α)) + 4l4(2400l2π2 − 8400π4 + l4(−403 + 400α)
)

cos
( 2πx

l
)
+ 3l8 cos

(
4πx

l

)
)

−9
(
400l2π2 − 200π4 + l4(−201 + 200α) + l4 cos

( 2πx
l
))2

sin5(πx
l
)
).

(32)

Similarly, we can find f4(x), f5(x), · · · . In the present investigation, we find a fourth-order RPSM solution
and corresponding analysis has been presented in terms of 2D and 3D plots.

Example 2. Consider the fractional S–H equation with dispersion of the form [26]:

Dµ
t v(x, t) +

∂4v(x, t)
∂x4 + 2

∂2v(x, t)
∂x2 − η

∂3v(x, t)
∂x3 − αv(x, t)− 2v2(x, t) + v3(x, t) = 0, (33)

with initial condition:
v(x, 0) =

1
10

sin
(πx

l

)
. (34)

For Equation (33), the residual function is defined as:

Resv(x, t) = Dµ
t v + vxxxx + 2vxx − ηvxxx − αv− 2v2 + v3. (35)

Now, the kth residual function Resv,k(x, t) is given by:

Resv, k(x, t) = Dµ
t vk + (vk)xxxx + 2(vk)xx − η(vk)xxx − αvk − 2v2

k + v3
k . (36)

To find f1(x), we set kk = 1 in Equation (36), then:

Resv, 1(x, t) = Dµ
t v1 + (v1)xxxx + 2(v1)xx − η(v1)xxx − αv1 − 2v2

1 + v3
1. (37)

But from Equation (15) at kk = 1,

v1(x, t) = f (x) + f1(x)
tµ

Γ[µ + 1]
. (38)

Then, Equation (37) becomes:

Resv,1 = f1 + fxxxx + ( f1)xxxx
tµ

Γ[µ+1] + 2 fxx + 2( f1)xx
tµ

Γ[µ+1] − η fxxx

− η( f1)xxx
tµ

Γ[µ+1] − α
(

f + f1
tµ

Γ[µ+1]

)
− 2
(

f + f1
tµ

Γ[µ+1]

)2
+
(

f + f1
tµ

Γ[µ+1]

)3
.

(39)

Now, depending on the result of Equation (18) in the case of kk = 1, we have Resv,1(x, 0) = 0, therefore:

f1 = − fxxxx − 2 fxx + η fxxx + α f + 2 f 2 − f 3

=
−100lπ3η cos( πx

l )+sin( πx
l )(100(2l2π2−π4+l4α)+20l4 sin( πx

l )−l4 sin2( πx
l ))

1000l4 .
(40)
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At kk = 2, Equation (36) reduces to:

Resv, 2(x, t) = Dµ
t v2 + (v2)xxxx + 2(v2)xx − η(v2)xxx − αv2 − 2v2

2 + v3
2. (41)

Since, from Equation (15) at kk = 1

v2(x, t) = f (x) + f1(x)
tµ

Γ[µ + 1]
+ f2(x)

t2µ

Γ[2µ + 1]
. (42)

From the above result, Equation (41) becomes:

Resv,2 = f1 + f2
tµ

Γ[µ+1] + fxxxx + ( f1)xxxx
tµ

Γ[µ+1] + ( f2)xxxx
t2µ

Γ[µ+1] + 2 fxx

+ 2( f1)xx
tµ

Γ[µ+1] + 2( f2)xx
t2µ

Γ[2µ+1] − η fxxx − η( f1)xxx
tµ

Γ[µ+1]

− η( f2)xxx
t2µ

Γ[2µ+1] − α
(

f + f1
tµ

Γ[µ+1] + f2
t2µ

Γ[2µ+1]

)
− 2

(
f + f1

tµ

Γ[µ+1] + f2
t2µ

Γ[2µ+1]

)2
+
(

f + f1
tµ

Γ[µ+1] + f2
t2µ

Γ[2µ+1]

)3

(43)

Depending on the result of Equation (16) in the case of k = 2, we have Resv,2(x, 0) = 0,

f2 = −( f1)xxxx − 2( f1)xx + η( f1)xxx + α f1 + 2 f f1 − 3 f f1

= 1
800000l8 (100l4(320l2π2 − 160π4 + 3l4(−1 + 80α)

)
+ 400lπ3(−800l2π2

+ 400π4 + l4(3− 400α))η cos
(

πx
l
)
+ 400l4(−240l2π2 + 360π4 + l4(1

− 60α)) cos
( 2πx

l
)
− 6000l5π3η cos

( 3πx
l
)
− 100l8 cos

(
4πx

l

)
+ 5(16000π8

+ 160l4π4(403− 200α) + 320l6π2(−3 + 200α) + l8(963 + 160α(−3
+ 100α))− 16000l2π6(4 + η2)) sin

(
πx
l
)
− 80000l5π3η sin

( 2πx
l
)

+ 5
2 l4(1920l2π2 − 6720π4 + l4(−643 + 320α)

)
sin
( 3πx

l
)
+ 3

2 l8 sin
( 5πx

l
)
).

(44)

To evaluate f3(t), we put kk = 3 in Equation (36) which gives:

Resv, 3(x, t) = Dµ
t v3 + (v3)xxxx + 2(v3)xx − η(v3)xxx − αv3 − 2v2

3 + v3
3. (45)

But from Equation (15) at kk = 1,

v3(x, t) = f (x) + f1(x)
tµ

Γ[µ + 1]
+ f2(x)

t2µ

Γ[2µ + 1]
+ f3(x)

t3µ

Γ[3µ + 1]
. (46)

Then, we have:

Resv,3 = f1 + f2
tµ

Γ[µ+1] + f3
t3µ

Γ[2µ+1] + fxxxx + ( f1)xxxx
tµ

Γ[µ+1] + ( f2)xxxx
t2µ

Γ[2µ+1]

+ ( f3)xxxx
t3µ

Γ[3µ+1] + 2 fxx + 2( f1)xx
tµ

Γ[µ+1] + 2( f2)xx
t2µ

Γ[2µ+1]

+2( f3)xx
t3µ

Γ[3µ+1] − η fxxx − η( f1)xxx
tµ

Γ[µ+1] − η( f2)xxx
t2µ

Γ[2µ+1]

− η( f3)xxx
t3µ

Γ[3µ+1] − α
(

f + f1
tµ

Γ[µ+1] + f2
t2µ

Γ[2µ+1] + f3
t3µ

Γ[3µ+1]

)
− 2

(
f + f1

tµ

Γ[µ+1] + f2
t2µ

Γ[2µ+1] + f3
t3µ

Γ[3µ+1]

)2

+
(

f + f1
tµ

Γ[µ+1] + f2
t2µ

Γ[2µ+1] + f3
t3µ

Γ[3µ+1]

)3
.

(47)

For kk = 3, Equation (18) gives ReResv, 3 = 0, therefore:

f3 = −( f2)xxxx − 2( f2)xx + η( f2)xxx + α f2 + 4 f f2 + 2 f1 f1 − 3 f f 2
1 − 3 f 2 f2. (48)

In a similar manner, we can evaluate the values of f4, f5, · · · . In this paper, we evaluate up to a fourth RPSM
series solution, and the corresponding results are presented through plots.
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5. Numerical Results and Discussion

The solution for a fractional order non-linear S–H equation is obtained in present framework with
the aid of RPSM for both cases in the domain (0, l). Furthermore, the consequences of dispersion and
bifurcation on the solution obtained are presented in Figures 1–10. The overshoot of Figure 1 reveals
that the surfaces of the solution obtained for distinct fractional order (µ) considered in Example 1 at
l = 3, and in the same manner the nature of the RPSM solution for l = 10 is presented in Figure 2.
These plots help us to understand the behaviour of probability density function with changing space
and time-scale variables. The nature of obtained solution for Example 1 at distinct values of time (t)
for l = 3 and l = 10 is presented in Figure 3, and for the corresponding equation the behaviour of the
solution obtained for distinct µ is plotted in Figure 4.
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Figure 3. Nature of solution obtained for Example 1 for distinct t at (a) l = 3, (b)l = 10 when µ = 1
and α = 1.

The nature of the RPSM solution for the FSH equation considered in Example 2 is captured in
Figures 5–10. The surfaces of the solution obtained for the FSH equation with dispersion considered in
Equation (33) with diverse µ is presented in Figures 5 and 6, respectively, for l = 3 and 10. Figure 7
presents the temperament of the obtained solution with gradual changes of time t at l = 3 and 10.
Figures 8 and 9 show that, for α = −0.7 the nature of damping is maximum when l = 3 and there is
no damping at l = 10, and v(x, t) increases with decreasing µ. As compared to α = −0.7, the damping
is minimum for the corresponding equation at α = 0.7 and is cited in Figures 8 and 9, and we can see
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that the nature of curves changes and solution lose their periodicity. In Figure 10, we plot the solution
obtained for diverse µ at l = 3 and l = 10. The present investigation will benefit the scholars working
in the pattern formation theory, laser patterns and statistical mechanics to understand the behaviour of
the probability density function.
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6. Conclusions

In this paper, we applied RPSM to find the approximate analytical solution for a non-linear S–H
equation of fractional order with the absence and presence of the dispersion term. The consequences
of dispersion and bifurcation parameters on the probability density function for the proposed fruition
equation is analyzed in terms of plots, and the time and space domain are also illustrated during the
investigation. From these results, we learned that both dispersion and fractional order parameters
control the nature of the probability density function. The oscillatory value (+ve and −ve) of the
bifurcation parameter specifies the behaviour of hydrodynamic stability. Finally, from the results
obtained we can conclude that the proposed algorithm is highly efficient and can be employed to
examine a wide class of non-linear fractional order mathematical models for understanding the nature
of complex phenomena.
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