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Abstract: Time scales have been the target of work of many mathematicians for more than a quarter
century. Some of these studies are of inequalities and dynamic integrals. Inequalities and fractional
maximal integrals have an important place in these studies. For example, inequalities and integrals
contributed to the solution of many problems in various branches of science. In this paper, we will use
fractional maximal integrals to establish integral inequalities on time scales. Moreover, our findings
show that inequality is valid for discrete and continuous conditions.
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1. Introduction

The founder of the study of dynamic equations on time scales is Stefan Hilger [1]. Recently,
the inequalities and dynamic equations on time scales have received great attention. Dynamic
equations and inequalities have many applications in quantum mechanics, neural networks, heat
transfer, electrical engineering, optics, economy and population dynamics [2–5]. It is possible to give
an example from the economy, seasonal investments and income [6]. Many mathematicians have
demonstrated various aspects of integral inequalities on time scales [7,8]. The most important examples
of time scale studies are differential, difference and quantum calculus [9], i.e., when T = R, T = N and
T = qN0 =

{
qt : t ∈ N0

}
where q > 1.

Fractional calculus is an extended version of non-integer integrals and derivatives. In time scales,
Lebesgue spaces and different spaces, the subject of fractional integrals has been studied by many
mathematicians [10–19]. We consider the functional [20]:

T( f , g) =
1

t− a

∫ t

a
f (x)g(x)∆x−

(
1

t− a

∫ t

a
f (x)∆x

)(
1

t− a

∫ t

a
g(x)∆x

)
where f and g are two synchronous integrable functions on [a, t]T, (i.e., [a, t]T = [a, t] ∩T).

The main subject of our article is to create new fractional inequalities by using fractional maximal
integral operators and synchronous functions on time scales. In addition, our findings include
continuous inequalities and corresponding discrete analogs.

The organization of this article is as follows. In Section 2, we will give some definitions of the
∆-maximal type fractional integral operator on time scales. In Section 3, we will create new fractional
inequalities by using fractional maximal integral operator and synchronous functions on time scales.
In Section 4, we show a few applications of our results.
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2. Preliminaries

Some basic concepts related to time scale are given below without proof. We recommend that the
reader refer to the [2–25] monographs for details.

Definition 1. [21] Given an open set Ω ⊂ Rn and a, 0 < a < n. Fractional maximal operator Maf is defined
as follows

Maf(t) = sup
B3t

1

|B|1−
a
n

∫
B∩Ω

f(y)dy

where the supremum is again taken over all balls B which contain t. In the limiting case a = 0, the fractional
maximal operator reduces to the Hardy–Littlewood maximal operator.

Definition 2. [21] Let Φ ⊂ R and p : Φ→ [1,∞) a measurable function. Lp(.) is composed of all measurable
functions f on Φ such that ∫

Φ


∣∣∣f(x)∣∣∣
λ

p(x)

dx ≤ 1

for any λ > 0. The norm in Lp(x) space is the generalization of the norm in Lp space (p is constant). The Luxemburg
norm in Lp(x) space is defined as follows.

‖f‖Lp(.) = inf

λ > 0 :
∫

Φ


∣∣∣f(x)∣∣∣
λ

p(x)

dx ≤ 1


At the same time Lp(x) becomes a Banach space.

Definition 3. [22] Let f and g be two integrable functions on [a, t]T (i.e., [a, t]T = [a, t] ∩T). If for any
x, y ∈ [a, t]T

[f(x) − f(y)][g(x) − g(y)] ≥ 0,

then f and g are called synchronous real-valued functions on [a, t]T ⊂ R.

Definition 4. [23] A time scale T is an arbitrary nonempty closed subset of the real numbers R. We define
the forward jump operator σ : T→ T by σ(t) = inf{s ∈ T : s > t} for t ∈ T and we define the backward jump
operator ρ : T→ T as defined by ρ(t) = sup{s ∈ T : s < t} for t ∈ T.

If σ(t) > t, we say that t is right-scattered and if ρ(t) < t, we say that t is left-scattered. Moreover,
if σ(t) = t, then t is called right-dense and if ρ(t) = t, then t is called left-dense. µ : T→ R+ such that
µ(t) = σ(t) − t is called graininess mapping.

If T has a left-scattered maximum m, then Tk = T− {m}. Otherwise Tk = T. Briefly

Tk =

{
Tr (ρsupT, supT], i f supT < ∞,

T, i f supT = ∞.

Along the same lines

Tk =

{
Tr [infT,σ(infT)], |infT| < ∞,

T, infT = −∞.

Definition 5 [23] A function f : [a, b]→ R is said to be right-dense continuous if it is right continuous at each
right-dense point and there exists a finite left limit at all left-dense points, and f is said to be differentiable if its
derivative exists.

The space of rd-continuous functions is denoted by Crd(T,R).
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Definition 6. [23] The generalized polynomials, that also occur in Taylor’s formula are gk, hk : T2
→ R , k ∈ N0

functions. The functions g0, h0 are g0(t, s) = h0(t, s) ≡ 1, ∀s, t ∈ T. Given gk+1 and hk+1 are

gk+1(t, s) =
∫ t

s
gk(σ(τ), s)∆τ,∀s, t ∈ T

and

hk+1(t, s) =
∫ t

s
hk(τ, s)∆τ,∀s, t ∈ T.

We claim that for k ∈ N0

gk(t, s) = hk(t, s) =
(t− s)k

k!
∀s, t ∈ R.

Definition 7. [24] If f ∈ Crd(T,R) and t ∈ Tk, then∫ σ(t)

t
f(τ)∆τ = µ(t)f(t).

For α ≥ 1 we can define the time scale ∆-maximal type fractional integral

Mα
a f(t) = sup

B3t

1

|B|
n−a

n

∫ t

a
hα−1(t,σ(τ))f(τ)∆τ,

M0
af(t) = sup

B3t

1

|B|1−
a
n

f(t),

where f ∈ L1([a, t] ∩T) and Mα
a f ∈ L1([a, t] ∩T) (for details on Lemma 2, see [25]) Lebesgue ∆-integrable

functions on [a, t] ∩T, t ∈ [a, t]∩T.

Lemma 1. (Lemma 2, [25]) Let α ≥ 1, f ∈ L1([a, t] ∩T). Assume hα−1(t,σ(τ)) is additionally Lebesgue
∆-measurable on ([a, t] ∩T)2; a, t ∈ T. Then Mα

a f ∈ L1([a, t] ∩T).

3. Main Result

We now present the inequalities with respect to fractional maximal integral type operators and
their norms in the variable exponential Lebesgue space.

Theorem 1. Let f and g be two real-valued synchronous functions on [0,∞)T ⊂ R. For ∀t > a, a > 0, α ≥ 1
we have

Mα
a (fg)(t) ≥ (hα(t, a))−1(Mα

a f)(t)(Mα
a g)(t). (1)

Proof. If f and g are two synchronous functions on [0,∞)T, then, for ∀τ, θ ≥ 0,

f(τ)g(τ) − f(τ)g(θ) − f(θ)g(τ) + f(θ)g(θ) ≥ 0.

Hence
f(τ)g(τ) + f(θ)g(θ) ≥ f(τ)g(θ) + f(θ)g(τ). (2)

For τ ∈ (a, t) multiplying both sides of (2) by hα−1(t,σ(τ)) we have

hα−1(t,σ(τ))f(τ)g(τ) + hα−1(t,σ(τ))f(θ)g(θ) ≥ hα−1(t,σ(τ))f(τ)g(θ)+
hα−1(t,σ(τ))f(θ)g(τ).

(3)
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If we take the integral of both sides of (3) through (a, t) we get∫ t

a
hα−1(t,σ(τ))f(τ)g(τ)∆τ+

∫ t

a
hα−1(t,σ(τ))f(θ)g(θ)∆τ

≥

∫ t

a
hα−1(t,σ(τ))f(τ)g(θ)∆τ+

∫ t

a
hα−1(t,σ(τ))f(θ)g(τ)∆τ.

Since f(θ), g(θ) and (f(θ)g(θ)) are independent from τ, we can take them out of integral.
Thus, the following is obtained∫ t

a
hα−1(t,σ(τ))f(τ)g(τ)∆τ+ f(θ)g(θ)

∫ t

a
hα−1(t,σ(τ))∆τ

≥ g(θ)
∫ t

a
hα−1(t,σ(τ))f(τ)∆τ+ f(θ)

∫ t

a
hα−1(t,σ(τ))g(τ)∆τ. (4)

If we take α + 1 instead of k (hk+1(t, s) =
∫ t

s hk(τ, s)∆τ, ∀s, t ∈ T and gk+1(t, s) =∫ t
s gk(σ(τ), s)∆τ, ∀s, t ∈ T) in Definition 6, we get the following.

hα(t, s) =
∫ t

s
hα−1(τ, s)∆τ,∀s, t ∈ T.

Similarly,

gα(t, s) =
∫ t

s
gα−1(σ(τ), s)∆τ,∀s, t ∈ T.

We know that,

sup
B3t

1

|B|
n−a

n

∫ t

a
hα−1(t,σ(τ))∆τ ≥

∫ t

a
hα−1(t,σ(τ))∆τ = hα(t, a) , for , 0 < a < n.

If we take the supremum of both sides of (4) over B 3 t, we get the following

sup
B3t

1

|B|
n−a

n

∫ t

a
hα−1(t,σ(τ))f(τ)g(τ)∆τ+ f(θ)g(θ)sup

B3t

1

|B|
n−a

n

∫ t

a
hα−1(t,σ(τ))∆τ

≥ g(θ)sup
B3t

1

|B|
n−a

n

∫ t

a
hα−1(t,σ(τ))f(τ)∆τ+ f(θ)sup

B3t

1

|B|
n−a

n

∫ t

a
hα−1(t,σ(τ))g(τ)∆τ

Due to (Mα
a f(t) = sup

B3t

1
|B|

n−a
n

∫ t
a hα−1(t,σ(τ))f(τ)∆τ) Definition 7, we get following

Mα
a (fg)(t) + f(θ)g(θ)(hα(t, a)) ≥ g(θ)(Mα

a f)(t) + f(θ)(Mα
a g)(t). (5)

For θ ∈ (a, t) multiplying both sides of (5) by hα−1(t,σ(θ)) we have

hα−1(t,σ(θ))Mα
a (fg)(t) + hα−1(t,σ(θ))f(θ)g(θ)(hα(t, a))

≥ hα−1(t,σ(θ))g(θ)(Mα
a f)(t) + hα−1(t,σ(θ))f(θ)(Mα

a g)(t). (6)

If we take the integral of both sides of (6) through (a, t) we get∫ t

a
hα−1(t,σ(θ))Mα

a (fg)(t)∆θ+

∫ t

a
hα−1(t,σ(θ))f(θ)g(θ)(hα(t, a))∆θ
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≥

∫ t

a
hα−1(t,σ(θ))g(θ)(Mα

a f)(t)∆θ+

∫ t

a
hα−1(t,σ(θ))f(θ)(Mα

a g)(t)∆θ.

Since Mα
a (fg)(t), (M

α
a f)(t), (Mα

a g)(t) and (hα(t, a)) are independent from θ, we can take them
out of integral.

If we take α+ 1 instead of k and if we take θ instead of τ (hk+1(t, s) =
∫ t

s hk(τ, s)∆τ, ∀s, t ∈ T and

gk+1(t, s) =
∫ t

s gk(σ(τ), s)∆τ, ∀s, t ∈ T in the Definition 6), we get the following∫ t

a
hα−1(t,σ(θ))∆θ = hα(t, a).

Thus, the following is obtained

Mα
a (fg)(t)

∫ t

a
hα−1(t,σ(θ))∆θ+ (hα(t, a))

∫ t

a
hα−1(t,σ(θ))f(θ)g(θ)∆θ

≥ (Mα
a f)(t)

∫ t

a
hα−1(t,σ(θ))g(θ)∆θ+ (Mα

a g)(t)
∫ t

a
hα−1(t,σ(θ))f(θ)∆θ.

Hence from Definitions 5 and 6 the following is obtained

Mα
a (fg)(t)(hα(t, a)) + (hα(t, a))Mα

a (fg)(t) ≥ (Mα
a f)(t)(Mα

a g)(t) + (Mα
a g)(t)(Mα

a f)(t).

Finally we get
Mα

a (fg)(t)(hα(t, a)) ≥ (Mα
a f)(t)(Mα

a g)(t).

�

Theorem 2. Let f and g be two real-valued synchronous functions on [0,∞)T ⊂ R. For ∀t > a, a > 0, α,β ≥ 1
we have

hα(t, a)Mβ
a (fg)(t) + hβ(t, a)Mα

a (fg)(t) ≥ (Mα
a f)(t)(Mβ

a g)(t) + (Mβ
a f)(t)(Mα

a g)(t).

Proof. If f and g are two synchronous functions on [0,∞)T, then for ∀τ, θ ≥ 0 we have

(f(τ) − f(θ))(g(τ) − g(θ)) ≥ 0.

Hence
f(τ)g(τ) + f(θ)g(θ) ≥ f(τ)g(θ) + f(θ)g(τ). (7)

For τ ∈ (a, t) multiplying both sides of (7) by hα−1(t,σ(τ)) we have

hα−1(t,σ(τ))f(τ)g(τ) + hα−1(t,σ(τ))f(θ)g(θ) ≥ hα−1(t,σ(τ))f(τ)g(θ) + hα−1(t,σ(τ))f(θ)g(τ). (8)

If we take the integral of both sides of (8) through (a, t) we get∫ t

a
hα−1(t,σ(τ))f(τ)g(τ)∆τ+

∫ t

a
hα−1(t,σ(τ))f(θ)g(θ)∆τ

≥

∫ t

a
hα−1(t,σ(τ))f(τ)g(θ)∆τ+

∫ t

a
hα−1(t,σ(τ))f(θ)g(τ)∆τ. (9)

We know that, sup
B3t

1
|B|

n−a
n

∫ t
a hα−1(t,σ(τ))∆τ ≥

∫ t
a hα−1(t,σ(τ))∆τ = hα(t, a), for 0 < a < n.
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If we take the supremum of both sides of (9) over B 3 t we get the following

sup
B3t

1

|B|
n−a

n

∫ t

a
hα−1(t,σ(τ))f(τ)g(τ)∆τ+ sup

B3t

1

|B|
n−a

n

∫ t

a
hα−1(t,σ(τ))f(θ)g(θ)∆τ

≥ sup
B3t

1

|B|
n−a

n

∫ t

a
hα−1(t,σ(τ))f(τ)g(θ)∆τ+ sup

B3t

1

|B|
n−a

n

∫ t

a
hα−1(t,σ(τ))f(θ)g(τ)∆τ.

Due to (Mα
a f(t) = sup

B3t

1
|B|

n−a
n

∫ t
a hα−1(t,σ(τ))f(τ)∆τ) Definition 7, we get following

Mα
a (fg)(t) + hα(t,σ(τ))f(θ)g(θ) ≥ g(θ)(Mα

a f)(t) + f(θ)(Mα
a g)(t). (10)

For θ ∈ (a, t) multiplying both sides of (10) by hβ−1(t,σ(θ)) we have

hβ−1(t,σ(θ))Mα
a (fg)(t) + hβ−1(t,σ(θ))hα(t,σ(τ))f(θ)g(θ)

≥ hβ−1(t,σ(θ))g(θ)(Mα
a f)(t) + hβ−1(t,σ(θ))f(θ)(Mα

a g)(t). (11)

If we take the integral of both sides of (11) through (a, t) we get∫ t

a
hβ−1(t,σ(θ))Mα

a (fg)(t)∆θ+

∫ t

a
hβ−1(t,σ(θ))hα(t,σ(τ))f(θ)g(θ)∆θ

≥

∫ t

a
hβ−1(t,σ(θ))g(θ)(Mα

a f)(t)∆θ+

∫ t

a
hβ−1(t,σ(θ))f(θ)(Mα

a g)(t)∆θ.

Hereby

Mα
a (fg)(t)

∫ t

a
hβ−1(t,σ(θ))∆θ+ hα(t,σ(τ))

∫ t

a
hβ−1(t,σ(θ))f(θ)g(θ)∆θ

≥ (Mα
a f)(t)

∫ t

a
hβ−1(t,σ(θ))g(θ)∆θ+ (Mα

a g)(t)
∫ t

a
hβ−1(t,σ(θ))f(θ)∆θ.

We get the following result from the above inequality

hα(t, a)Mβ
a (fg)(t) + hβ(t, a)Mα

a (fg)(t)

≥ (Mα
a f)(t)(Mβ

a g)(t) + (Mβ
a f)(t)(Mα

a g)(t).

Thus, the proof of Theorem 2 is completed. �

Theorem 3. Let
(
fi
)
i=1,...,n

be n positive increasing functions on [0,∞)T. For ∀t > a, a ≥ 0, α ≥ 1 we have

Mα
a

(∏n

i=1
fi

)
(t) ≥ (hα(t, a))1−n

∏n

i=1
Mα

a fi(t).

Proof. The induction method will be used to prove our theorem. For n = 1, and ∀t > a, a ≥ 0, α ≥ 1
we have

Mα
a (f1)(t) ≥Mα

a f1(t).

For n = 2 and ∀t > a, a ≥ 0, α ≥ 1 applying Theorem 1 we have

Mα
a (f1f2)(t) ≥ (hα(t, a))−1Mα

a f1(t)Mα
a f2(t).
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For n = n− 1 we assume that the following inequality holds.

Mα
a

(∏n−1

i=1
fi

)
(t) ≥ (hα(t, a))2−n

∏n−1

i=1
Mα

a fi(t). (12)

For n we have to prove the following inequality

Mα
a

(∏n

i=1
fi

)
(t) ≥ (hα(t, a))1−n

∏n

i=1
Mα

a fi(t).

We know that (fi)i=1,...,n is a positive increasing function. Thus,
(∏n−1

i=1 fi

)
(t) is a positive

increasing function.
Let

∏n−1
i=1 fi = f, fn = g and applying Theorem 1 we have∏n

i=1
fi =

∏n−1

i=1
fifn = fg

and
Mα

a

(∏n

i=1
fi

)
(t) = Mα

a

(∏n−1

i=1
fifn

)
(t) ≥ (hα(t, a))−1Mα

a

(∏n−1

i=1
fi

)
(t)Mα

a (fn)(t).

Multiplying both sides of (12) by (hα(t, a))−1Mα
a (fn)(t) we have

(hα(t, a))−1Mα
a (fn)(t)Mα

a

(∏n−1

i=1
fi

)
(t) ≥ (hα(t, a))−1Mα

a (fn)(t)(hα(t, a))2−n
∏n−1

i=1
Mα

a fi(t).

Herewith, we get the following result from the above inequality

Mα
a

(∏n

i=1
fi

)
(t) ≥ (hα(t, a))1−n

∏n

i=1
Mα

a fi(t).

�

Theorem 4. Let α > 2, f ∈ Crd(T). Suppose hα−2(t,σ(t)) to be continuous on ([0,∞)T)
2 with p, q >

1, 1
p + 1

q = 1. Then we have

∫
∞

0

∣∣∣Mα
0 f(t)

∣∣∣q∆t ≤


∫
∞

0
sup
B3t

1
|B|

(∫ t

0

∣∣∣hα−2(t,σ(τ))
∣∣∣ p

∆τ

) q
p

∆t


(∫

∞

0

∣∣∣f(t)∣∣∣q∆t
)
.

Proof. By Definition 6 we know that

Mα
0 f(t) = sup

B3t

1
|B|

∫ t

0
hα−2(t,σ(τ))f(τ)∆τ.

Hence, by Hölder’s inequality, we have

∣∣∣Mα
0 f(t)

∣∣∣ ≤ sup
B3t

1
|B|

∫ t

a

∣∣∣hα−2(t,σ(τ))f(τ)
∣∣∣∆τ

≤ sup
B3t

1
|B|

(∫ t

0

∣∣∣hα−2(t,σ(τ))
∣∣∣ p

∆τ

) 1
p
(∫ t

0

∣∣∣f(τ)∣∣∣q∆τ

) 1
q

≤ sup
B3t

1
|B|

(∫ t

0

∣∣∣hα−2(t,σ(τ))
∣∣∣ p

∆τ

) 1
p
(∫

∞

0

∣∣∣f(τ)∣∣∣ q
∆τ

) 1
q
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Herewith, the following result is obtained

∣∣∣Mα
0 f(t)

∣∣∣q ≤ sup
B3t

1
|B|

(∫ t

0

∣∣∣hα−2(t,σ(τ))
∣∣∣ p

∆τ

) q
p
(∫

∞

0

∣∣∣f(τ)∣∣∣ q
∆τ

)
. (13)

If we take the integral of both sides of (13) through ∀t ∈ [0,∞)T we get

∫
∞

0

∣∣∣Mα
0 f(t)

∣∣∣q∆t ≤


∫
∞

0
sup
B3t

1
|B|

(∫ t

0

∣∣∣hα−2(t,σ(τ))
∣∣∣ p

∆τ

) q
p

∆t


(∫

∞

0

∣∣∣f(t)∣∣∣q∆t
)
.

Now, we present a few applications of our results. �

4. Applications

Example 1. Let f(t) =
{

t + 1, 1 ≤ t < 5
2

2t− 1, 3 ≤ t < 8

}
, g(t) =

{
t2 + 1, 1 ≤ t < 5

2
3t3
− 2, 3 ≤ t < 8

}
; t ∈ T = N0 = {n : n ∈ N0} be

two synchronous functions on [0,∞)T. From Definition 3

[f(t) − f(z)][g(t) − g(z)] = [t + 1− z− 1]
[
t2 + 1− z2

− 1
]
= [t− z]

[
t2
− z2

]
= [t− z]2[t + z] ≥ 0

and
[f(t) − f(z)][g(t) − g(z)] = [2t− 1− 2z + 1]

[
3t2
− 2− 3z2 + 2

]
= 6[t− z]2[t + z] ≥ 0.

Then, for ∀t > a, a = 1, α = 2 we have

M2
1(fg)(t) ≥ (h2(t, 1))−1(M2

1f)(t)(M2
1g)(t).

Example 2. Let f(t) = t + 1, g(t) = t2
− 1; t ∈ T = N0 = {n : n ∈ N0} be two synchronous functions on

[0,∞)T. Then ∀t > a, a = 1, α = 2, β = 3 we have

h2(t, 1)M3
1(fg)(t) + h3(t, 1)M2

1(fg)(t) ≥ (M2
1f)(t)(M3

1g)(t) + (M3
1f)(t)(M2

1g)(t).

Example 3. Let
(
fi
)
i=1,...,9

fi(t) =
(
2ti + 12

)
; t ∈ T = N0 = {n : n ∈ N0} be a synchronous function on

[0,∞)T. Then, for ∀t > a, a = 2, α = 3 we have

M3
2

(∏9

i=1
fi

)
(t) ≥ (h3(t, 2))−8

∏9

i=1
M3

2fi(t).

Remark 1. Let p : Φ→ [1,∞) be a measurable function for Φ ⊂ R. Using Definition 2, we can easily see that
the following norm inequalities are provided in the variable exponential Lebesgue space.

(I) ‖Mα
a (fg)(t)‖Lp(x)([0,∞)T)

≥ ‖(hα(t, a))−1(Mα
a f)(t)(Mα

a g)(t)‖Lp(x)([0,∞)T)

(II) ‖hα(t, a)Mβ
a (fg)(t) + hβ(t, a)Mα

a (fg)(t)‖Lp(x)([0,∞)T)

≥ ‖(Mα
a f)(t)(Mβ

a g)(t) + (Mβ
a f)(t)(Mα

a g)(t)‖Lp(x)([0,∞)T)

(III) ‖Mα
a

(∏n
i=1 fi

)
(t)‖Lp(x)([0,∞)T)

≥ ‖(hα(t, a))1−n ∏n
i=1 Mα

a fi(t)‖Lp(x)([0,∞)T)
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5. Discussion and Conclusions

Recently, the concept of inequalities and dynamic equations in time scales has gained an important
place in the scientific literature. Mathematicians have emphasized many aspects of integral inequalities
and integral equation, for example, transformations, inverse conversions, extensions, etc. However,
these studies did not work on time scales. Moreover, the contribution of these studies to science has
been weak. In particular, apart from the science of mathematics, we see very little the effect of the
concept of time scales in different science fields. This study motivated us to find solutions to problems
in these areas. In this paper, we examined fractional maximal integral inequalities on time scales.
Furthermore, we demonstrated that different results can be obtained. These results can be examined in
two or more dimensions. Moreover, they can be extended to nabla and diamond alpha derivatives.
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