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Abstract: In this paper, it is shown that the mathematical description of the bulk fluid flow and that
of content impurity spread, which uses temporal Caputo or temporal Riemann–Liouville fractional
order partial derivatives, having integral representation on a finite interval, in the case of a horizontal
unconfined aquifer is non-objective. The basic idea is that different observers using this type of
description obtain different results which cannot be reconciled, in other words, transformed into each
other using only formulas that link the numbers representing a moment in time for two different
choices from the origin of time measurement. This is not an academic curiosity; it is rather a problem
to find which one of the obtained results is correct.
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1. Introduction

The mathematical description of a real-world phenomenon is objective if it is independent of the
observer. That is, it is possible to reconcile the observation of a phenomenon into a single coherent
description of it. This requirement was pointed out by Galileo Galilee (1564–1642), Isaac Newton
(1643–1727), and Albert Einstein (1879–1955) in the context of mathematical description of a mechanical
movement: “The mechanical event is independent of the observer”. A possible and elementary
understanding of the independence of the mechanical event from the observer is the independence of
the event from the choice of the frame of reference and from the choice of the moment considered the
origin for time measurement, made by an observer. What this means precisely in this paper is presented
in the following. To describe mathematically the evolution of a mechanical event, an observer chooses
a fixed orthogonal reference frame in the affine Euclidean space, a fixed moment in time (called origin
for time measurement), and a unit for time measuring (second). For different observers this choice can
be different. In this paper the “objectivity of a mathematical description” means that the description
is independent of the choice of the fixed orthogonal reference frame and of the choice of origin for
time measuring. This means that the results obtained by two different observers can be reconciled,
in other words, transformed into each other, using only formulas that link the coordinates of a point
in two fixed orthogonal reference frames and formulas that link the numbers representing a moment
in time for two different choices of the origin of time measurement. This concept of “objectivity
of a mathematical description” is different from the concept of “objectivity in physics” presented
in [1]. The advantage of our kind of understanding of the “objectivity of a mathematical description”
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used in this paper, is that it is less restrictive than Galilean invariance, Lorentz invariance or Einstein
covariance and General covariance, it can be easily applied in a specific case and the reader does not
need prior knowledge of either Galilean or Lorentz invariance, or Einstein or General covariance.
Mathematical descriptions which depend on the choice of the fixed orthogonal reference frame or
on the choice of the origin of time measurement are non-objective in the sense of this paper. In the
case of descriptions which are non-objective, two observers who describe the same mechanical event
obtain two different results that cannot be reconciled, in other words, cannot be transformed into each
other, using only formulas that link the coordinates of a point in two fixed orthogonal reference frames
and formulas that link the numbers representing the same moment in time for two different choices
of the origin of time measurement. This concept of non-objective description can be easily applied
in a specific case and the reader does not need prior knowledge of either Galilean or Lorentz invariance,
or Einstein or General covariance. The majority of mathematical descriptions formulated in terms
of integer-order derivatives or integer-order partial derivatives, reported in the literature (books of
differential equations of mathematical physics), are objective in the sense of this manuscript.

In the following, the objectivity of the description formulated in terms of integer-order derivatives
of some phenomena appearing in hydrology is illustrated. The details related to the verification of
objectivity in the case of the mathematical description of the groundwater flow to the well and the
spreading of impurities were introduced in the manuscript for several reasons:

In the literature, accessible to us for free, we have not found the justification of the objectivity of
the mathematical description that uses integer-order derivatives.

We wanted to show how the objectivity of a mathematical description in terms of integer-order
derivatives can be verified directly by a simple case occurring in nature.

In these details there are formulas, which represent partial results, that are also used in Sections 2–5
in which the non-objectivity is discussed in the case of the use of temporal Caputo or Riemann–Liouville
fractional derivatives having integral representation on a finite interval.

The reasoning that is done to prove the objectivity of the mathematical description in the case
of integer-order derivatives, helps in understanding the reasoning that is done to demonstrate the
non-objectivity of the description in the case of using temporal Caputo or Riemann–Liouville fractional
derivatives, having integral representation on a finite interval. In the case of using fractional derivatives,
the reasoning is by "reduction ad absurdum". At the beginning it is assumed that the description
is objective. After this, the steps are followed when demonstrating objectivity in the case of using
integer-order derivatives. So an equality is obtained, which follows from the assumption of the
objectivity. In general, the obtained equality is not true. Hence the conclusion that the hypothesis
of the objectivity of the description (in this case of the use of fractional derivatives, having integral
representation on a finite interval), is false.

In hydrology [2] and [3] the horizontal unconfined aquifer around the well is represented as
a subset Ω of points of the affine Euclidean space E3. A vertical section of Ω is shown in Figure 1.
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A particle Q of the bulk fluid at a moment in time M is represented by a point P of Ω. P is the
place occupied by the fluid particle Q at the moment in time M. To describe the position of P, observer
O chooses a fixed orthogonal reference frame RO = (O;

→
e 1,
→
e 2,
→
e 3) in E3 and describes the position of

P with the coordinates (x1, x2, x3) of P respecting the reference frame RO. The unit vector
→
e 3 is usually

oriented vertically upward and the plane determined by the vectors
→
e 1,
→
e 2 (the datum plane) is under

the bottom of the aquifer. To describe the time evolution, observer O chooses a moment in time MO for
fixing the origin for time measurement (the moment, when his stopwatch for time measurement, starts)
and a unit for time measuring (second). A moment in time M that is earlier than MO is represented by
a negative real number tM < 0 (representing the units of time between the moment M and the moment
MO), a moment in time M which is later than MO is represented by a positive real number tM > 0
(representing the units of time between the moment M and the moment MO) and the moment in time
MO is represented by the real number tMO = 0.

Observer O describes the flow to the well in the horizontal unconfined aquifer with a real valued

function hO = hO(tM, x1, x2, x3) and a vector valued function
⇀
UO =

⇀
UO(tM, x1, x2, x3). The function hO

is the piezometric head and the function
⇀
UO is the associated flow velocity. The number hO(tM, x1, x2, x3)

represents the piezometric head at the moment in time tM in the point P of coordinates (x1, x2, x3).

The vector
⇀
UO(tM, x1, x2, x3) represents the associated velocity of the fluid particle Q, that at the moment

in time tM is in the point P of coordinates (x1, x2, x3). To describe the position of P, observer O∗ chooses
a fixed orthogonal reference frame RO∗ = (O∗;

→
e ∗1,

→
e ∗2,

→
e ∗3) in E3 and describes the position of P with

the coordinates (x∗1, x∗2, x∗3) of P respecting the reference frame RO∗ = (O∗;
→
e ∗1,

→
e ∗2,

→
e ∗3). The unit

vector
→
e ∗3 is usually oriented vertically upward and the plane determined by the vectors

→
e ∗1,

→
e ∗2

(the datum plane) is under the bottom of the aquifer. To describe the time evolution, observer O∗
chooses a moment in time MO∗ for fixing the origin for time measurement (the moment, when its
stopwatch for time measurement starts) and a unit for time measuring (second). A moment in time M
that is earlier than MO∗ is represented by a negative real number t∗M < 0 (representing the units of
time between the moment M and the moment MO∗), a moment in time M which is later than MO∗ is
represented by a positive real number t∗M > 0 (representing the units of time between the moment M
and the moment MO∗) and the moment in time MO∗ is represented by the real number t∗MO∗ = 0.

Observer O∗ describes the flow to the well in the same horizontal unconfined aquifer with a real

valued function hO∗ = hO∗(t∗M, x∗1, x∗2, x∗3) and a vector valued function
⇀
UO∗ =

⇀
UO∗(t∗M, x∗1, x∗2, x∗3).

The function hO∗ is the piezometric head and the function
⇀
UO∗ is the associated flow velocity. The number

hO∗(t∗M, x∗1, x∗2, x∗3) represents the piezometric head at the moment in time t∗M in the point P of

coordinates (x∗1, x∗2, x∗3). The vector
⇀
UO∗(t∗M, x∗1, x∗2, x∗3) represents the associated velocity of the

fluid particle Q, that at the moment in time t∗M is in the point P of coordinates (x∗1, x∗2, x∗3).
Note that a moment in time M in case of the observer O is described by the real number tM and

in case of the observer O∗ by the real number t∗M. For the numbers tM and t∗M the following relations
hold:

tM = t ∗M +tMO∗ (1)

t∗M = tM + t∗MO (2)

In the above mentioned relations tMO∗ is the real number, that represents the moment MO∗ in the
system of time measurement of the observer O and t∗MO is the real number, that represents the moment
MO in the system of time measurement of the observer O∗.
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At any moment in time M, the coordinates (x1, x2, x3) with respect to RO and (x∗1, x∗2, x∗3) with
respect to RO∗ represent the same point P in the three dimensional affine Euclidean space E3. Therefore,
for the coordinates the following relations hold:

xk = xkO∗ +
i=3∑
i=1

aik · x∗i k = 1, 2, 3 (3)

or equivalently

x∗k = x ∗kO +
i=3∑
i=1

akixi k = 1, 2, 3 (4)

The significance of the quantities appearing in the above mentioned relations are:
ai j =

〈
→
e ∗i,

→
e j
〉
= constant = scalar product of the unit vectors

→
e ∗i and

→
e j in E3, in other words,

→
e ∗i =

k=3∑
k=1

aik
→
e k

→
e i =

k=3∑
k=1

aki
→
e ∗k (5)

(x1O∗, x2O∗, x3O∗) are the coordinates of the point O∗ with respect to the reference frame RO,
(x∗1O, x∗2O, x∗3O) are the coordinates of the point O with respect to the reference frame RO∗. At any

moment in time M, and at any point P the vectors
⇀
UO(tM, x1, x2, x3) and

⇀
UO∗(t∗M, x∗1, x∗2, x∗3) represent

the velocity of the same flow and the scalars hO(tM, x1, x2, x3) with hO∗(t∗M, x∗1, x∗2, x∗3) represent the
same piezometric head.

Therefore, the following relations hold:

UOk(tM, x1, x2, x3) =
i=3∑
i=1

aikUO∗i(t∗M, x1∗, x2∗, x3∗) k = 1, 2, 3 (6)

UO∗k(t∗M, x∗1, x∗2, x∗3) =
i=3∑
i=1

akiUOi(tM, x1, x2, x3) k = 1, 2, 3 (7)

hO(tM, x1, x2, x3) = hO∗(tM + t∗MO , x ∗1O +
i=3∑
i=1

a1ixi, x ∗2O +
i=3∑
i=1

a2ixi, x ∗3O +
i=3∑
i=1

a3ixi) (8)

hO∗(t∗M, x∗1, x∗2, x∗3) = hO(t ∗M +tMO∗, x1O∗ +
i=3∑
i=1

ai1 · x∗i, x2O∗ +
i=3∑
i=1

ai2 · x∗i, x3O∗ +
i=3∑
i=1

ai3 · x∗i) (9)

Equations (1)–(4) and (6)–(9) reconcile the mathematical description of the bulk groundwater
flow made by the two observers, and enable the flow description by the piezometric head hO and the

associated velocity
⇀
UO, or by the piezometric head hO∗ and the associated velocity

⇀
UO∗. This means that

the above presented mathematical description of the bulk groundwater flow to the well, in a horizontal
unconfined aquifer, is objective.

In classical theory of the 2D flow to the well, in a horizontal unconfined aquifer, [2] and [3], the real

valued function hO = hO(tM, x1, x2) and the vector valued function
⇀
UO =

⇀
UO(tM, x1, x2) that describe

the 2D flow in terms of the observer O, verify the equations:

S ·
∂hO
∂tM

+ T · (
∂2hO

∂2x1
+
∂2hO

∂2x2
) = QS (10)

⇀
UO(tM, x1, x2) = −

K
ϕ
· (
∂hO
∂x1
·
→
e 1 +

∂hO
∂x2
·
→
e 2) (11)
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where S is the storage coefficient; T is the transmissivity of the aquifer; QS is the leakage rate; K is the
hydraulic conductivity and ϕ is the porosity.

The real valued function hO∗ = hO∗(t∗M, x∗1, x∗2) and the vector valued function
⇀
UO∗ =

⇀
UO∗(t∗M, x∗1, x∗2), that in terms of the observer O∗, describe the bulk fluid 2D flow to

the well, verify the equations:

S ·
∂hO∗
∂t∗M

+ T · (
∂2hO∗

∂2x∗1
+
∂2hO∗

∂2x∗2
) = QS (12)

⇀
UO∗(t∗M, x∗1, x∗2) = −

K
ϕ
· (
∂hO∗
∂x∗1

·
→
e ∗1 +

∂hO∗
∂x∗2

·
→
e ∗2) (13)

where S is the storage coefficient; T is the transmissivity of the aquifer; QS is the leakage rate; K is the
hydraulic conductivity and ϕ is the porosity.

Description with Equations (10) and (11) is objective if and only if it describes the same flow as
(12), (13).

The objectivity of the description can be proven showing that:

If hO(tM, x1, x2) and
⇀
UO(tM, x1, x2) verify Equations (10) and (11), then the functions

hO∗(t∗M, x∗1, x∗2) and
⇀
UO∗(t∗M, x∗1, x∗2), defined by:

hO∗(t∗M, x∗1, x∗2) = hO(t ∗M +tMO∗, x1O∗ +
i=2∑
i=1

ai1 · x∗i, x2O∗ +
i=2∑
i=1

ai2 · x∗i) (14)

→

UO∗(t∗M, x∗1, x∗2) =
→

UO(t ∗M +tMO∗ , x1O∗ +
j=2∑
j=1

a j1 · x∗ j, x2O∗ +
j=2∑
j=1

a j2 · x∗ j)

verify Equations (12) and (13) and if hO∗(t∗M, x∗1, x∗2) and
⇀
UO∗(t∗M, x∗1, x∗2) verify

Equations (12) and (13), then the functions hO(tM, x1, x2) and
⇀
UO(tM, x1, x2), defined by:

hO(tM, x1, x2) = hO∗(tM + t∗MO , x ∗1O +
i=2∑
i=1

a1i · xi, x ∗2O +
i=2∑
i=1

a2i · xi) (15)

→

UO(tM, x1, x2) =
→

UO∗(tM + t∗MO , x ∗1O +
j=2∑
j=1

a1 j · x j, x ∗2O +
j=2∑
j=1

a2 j · x j)

verify Equations (10) and (11).
A short proof of the objectivity of this description is the following: assume that the

functions hO(tM, x1, x2) and
⇀
UO(tM, x1, x2) verify Equations (10) and (11) and consider the functions

hO∗(t∗M, x∗1, x∗2),
⇀
UO∗(t∗M, x∗1, x∗2), defined by (14). Note that the following equalities hold:

∂hO∗
∂t∗M

=
∂hO
∂tM

; ∂hO∗
∂xi∗

=
∂hO
∂x1
· ai1 +

∂hO
∂x2
· ai2;

∂2hO∗
∂x2

i∗
= ai1 · (

∂2hO
∂x1

2 · ai1 +
∂2hO
∂x1∂x2

· ai2) + ai2 · (
∂2hO
∂x2∂x1

· ai1 +
∂2hO
∂x22 · ai2)

(16)

∂2hO∗
∂x2

1∗
+

∂2hO∗
∂x22∗

=a11 · (
∂2hO
∂x1

2 · a11 +
∂2hO
∂x1∂x2

· a12) + a12 · (
∂2hO
∂x2∂x1

· a11 +
∂2hO
∂x22 · a12)+

a21 · (
∂2hO
∂x1

2 · a21 +
∂2hO
∂x1∂x2

· a22) + a22 · (
∂2hO
∂x2∂x1

· a21 +
∂2hO
∂x22 · a22) =

∂2hO
∂x2

1
+

∂2hO
∂x22

−
K
ϕ · (

∂hO∗
∂x∗1
·
→
e ∗1 +

∂hO∗
∂x∗2
·
→
e ∗2) = −K

ϕ · ((
∂hO
∂x1
· a11 +

∂hO
∂x2
· a12) ·

→
e ∗1 +(

∂hO
∂x1
· a21 +

∂hO
∂x2
· a22) ·

→
e ∗2) =

−
K
ϕ · (

∂hO
∂x1
· (a11 ·

→
e ∗1 +a21 ·

→
e ∗2) +

∂hO
∂x2
· (a12 ·

→
e ∗1 +a22 ·

→
e ∗2)) = −K

ϕ · (
∂hO
∂x1
·
→
e 1 +

∂hO
∂x2
·
→
e 2)
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Using Equations (16) and replacing the terms in (12) and (13), follows that the functions

hO∗(t∗M, x∗1, x∗2),
⇀
UO∗(t∗M, x∗1, x∗2), defined by (14), verify Equations (12) and (13). The second

part of the proof is similar.
Therefore, the description with Equations (10) and (11) is objective. That is, different observers,

describing the groundwater flows with these tools, obtain results that can be reconciled, in other words,
transformed into each other, using Equations (1)–(4) that link the coordinates of a point in two fixed
orthogonal reference frames and formulas that link the numbers representing a moment in time for
two different choices of the origin of time measurement.

The spread of an impurity, contained in the bulk fluid flowing in a porous media, is described
by the concentration of that impurity. Observer O describes the concentration with the real valued
function CO = CO(tM, x1, x2, x3), that verifies the partial differential equation (PDE):

∂CO
∂tM

=
i=3∑
i=1

∂
∂xi

(

j=3∑
j=1

Di j
O ·

∂CO
∂x j

) −
i=3∑
i=1

∂
∂xi

(UOi(tM, x1, x2, x3) ·CO) + SO (17)

where DO = DO(x1, x2, x3) is the diffusion tensor, UOi(tM, x1, x2, x3) are the components of the bulk

fluid flow velocity, given by Equation (11), the term
i=3∑
i=1

∂
∂xi

(
j=3∑
j=1

Di j
O ·

∂CO
∂x j

) describes the impurity spread

by diffusion, the term −
i=3∑
i=1

∂
∂xi

(UOi(tM, x1, x2, x3) · CO) describes the impurity spread by convection,

SO = SO(tM, x1, x2, x3) describes the source or the sinks of the impurity. See [3–6].
In PDE (17) Di j

O = Di j
O(x1, x2, x3), SO = SO(tM, x1, x2, x3), and UOi(tM, x1, x2, x3) are assumed to

be known and CO = CO(tM, x1, x2, x3) is unknown.
Observer O∗ describes the spread of the impurity by the real valued function

CO∗ = CO∗(t∗M, x∗1, x∗2, x∗3), that verifies the following PDE:

∂CO∗
∂t∗M

=
i=3∑
i=1

∂
∂x∗i

(

j=3∑
j=1

Di j
O∗ ·

∂CO∗
∂x∗ j

) −
i=3∑
i=1

∂
∂x∗i

(UO∗i(t∗M, x∗1, x∗2, x∗3) ·CO∗) + RO∗ (18)

where Di j
O∗ = Di j

O∗(x1∗, x2∗, x3∗) = Di j
O(x1, x2, x3) and SO∗ = SO∗(t ∗M x1∗, x2∗, x3∗) =

SO(tM, x1, x2, x3)

In case of the 2D flow to a well, in a horizontal unconfined aquifer, for observer O,
CO = CO(tM, x1, x2), Di j

O = Di j
O(x1, x2), SO = SO(tM, x1, x2), and PDE (17) becomes:

∂CO
∂tM

=
i=2∑
i=1

∂
∂xi

(

j=2∑
j=1

Di j
O ·

∂CO
∂x j

) −
i=2∑
i=1

∂
∂xi

(UOi(tM, x1, x2) ·CO) + SO (19)

Under the same hypothesis, for observer O∗ we have CO∗ = CO∗(t∗M, x∗1, x∗2),
Di j

O∗ = Di j
O∗(x∗1, x∗2), SO∗ = SO∗(t∗M, x∗1, x∗2) and PDE (18) becomes:

∂CO∗
∂t∗M

=
i=2∑
i=1

∂
∂x∗i

(

j=2∑
j=1

Di j
O∗ ·

∂CO∗
∂x∗ j

) −
i=2∑
i=1

∂
∂x∗i

(UO∗i(t∗M, x∗1, x∗2) ·CO∗) + SO∗ (20)

where t∗M = tM + t∗MO ; x∗k = x ∗kO +
i=2∑
i=1

akixi k = 1, 2, DO∗ = DO∗(x1∗, x2∗) = DO(x1, x2) and

SO∗ = SO∗(t ∗M x1∗, x2∗) = SO(tM, x1, x2).
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Objectivity of the impurity spread description means that the solutions of PDEs (19) and (20)
describe the same spread. Objectivity can be proven showing that if CO = CO(tM, x1, x2) is a solution
of Equation (19), then the function CO∗(t∗M, x∗1, x∗2), defined by

CO∗(t∗M, x∗1, x∗2) = CO(t ∗M +tMO∗ , x1O∗ +
i=2∑
i=1

ai1xi∗,x2O∗ +
i=2∑
i=1

ai2xi∗) (21)

verifies Equation (20) and if CO∗ = CO∗(t∗M, x∗1, x∗2) is a solution of Equation (20), then the function
CO(tM, x1, x2), defined by

CO(tM, x1, x2) = CO∗(tM + t∗MO , x ∗1O +
i=2∑
i=1

a1ixi,x ∗2O +
i=2∑
i=1

a2ixi) (22)

verifying Equation (19).
In the following we provide a short proof of the objectivity of this description in the case, when the

aquifer is homogeneous, isotropic, and D and S are constants.
In this case Equations (19) and (20) become:

∂CO
∂tM

= D ·
i=2∑
i=1

∂2CO

∂x2i
−

i=2∑
i=1

UOi(tM, x1, x2) ·
∂CO
∂xi

+ S (23)

∂CO∗
∂t∗M

= D ·
i=2∑
i=1

∂2CO∗

∂x ∗i 2 −

i=2∑
i=1

UO∗i(t∗M, x∗1, x∗2) ·
∂CO∗
∂x∗i

+ S (24)

We start with CO = CO(tM, x1, x2), the solution of Equation (23), and the function CO∗(t∗M, x∗1, x∗2),
defined by (21). For this function the following equalities hold:

∂CO∗
∂t∗M

=
∂CO
∂tM

;
∂CO∗
∂x∗i

=
k=2∑
k=1

aik ·
∂CO
∂xk

(25)

i=2∑
i=1

UO∗i(t∗M, x∗1, x∗2) ·
∂CO∗
∂x∗i

=
i=2∑
i=1

(
j=2∑
j=1

ai jUO j(tM, x1, x2)) · (
k=2∑
k=1

aik ·
∂CO
∂xk

) =

j=2∑
j=1

k=2∑
k=1

UO j(tM, x1, x2) ·
∂CO
∂xk
· (

i=2∑
i=1

ai j · aik) =
j=2∑
j=1

k=2∑
k=1

UO j(tM, x1, x2) ·
∂CO
∂xk
· δ jk =

k=2∑
k=1

UOk(tM, x1, x2) ·
∂CO
∂xk

(26)

i=2∑
i=1

∂2CO∗
∂x∗i2

=
i=2∑
i=1

∂
∂x∗i

(
∂CO
∂x∗i

) =
i=2∑
i=1

∂
∂x∗i

(
k=2∑
k=1

aik ·
∂CO
∂xk

) =
i=2∑
i=1

k=2∑
k=1

l=2∑
l=1

aik · ail ·
∂2CO
∂xk∂xl

=

k=2∑
k=1

∂2CO
∂xk

2
(27)

Replacing in (20) the terms ∂CO∗
∂t∗M

;
i=2∑
i=1

∂2CO∗
∂x∗i2

and
i=2∑
i=1

UO∗i(t∗M, x∗1, x∗2) ·
∂CO∗
∂x∗i

with those obtained

in Equations (25)–(27), equality (20) is obtained. Therefore, the function CO∗(t∗M, x∗1, x∗2), defined by
(21), is a solution of Equation (20).

If we start with a solution CO∗ = CO∗(t∗M, x∗1, x∗2) of Equation (20) and we consider the function
CO(tM, x1, x2) given by (22), then, in a similar way, we obtain that this function is a solution of
Equation (19).
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So, the description of the impurity spread with (23) is objective. That is, different observers,
describing the impurity spread with these tools, obtain results that can be reconciled, in other words,
transformed into each other, using Equations (1)–(4).

The objectivity of the above presented descriptions implies that different observers describing
the same phenomenon, using integer-order partial derivatives, obtain results that can be reconciled,
in other words, transformed into each other, using Equations (1)–(4).

Beside the objective mathematical descriptions of the bulk fluid flow and impurity spread
in porous media (see references [1–7]) formulated in terms of integer-order partial derivatives, there
are mathematical descriptions of the bulk fluid flow and impurity spread in porous media which use
fractional order temporal or spatial partial derivatives. See, for instance, references [8–21]. In these
works, the analysis of the objectivity is missing. At first, we thought that in the case of the description
with fractional derivatives, the objectivity is fulfilled and therefore it is ignored. However, curiosity has
pushed us to see how the fulfillment of the objectivity condition (in sense of our manuscript) can be
proven mathematically. For this special issue, we have chosen fractional behavior in nature for the very
simple case of groundwater flow to well and the spread of impurities. Thus were “born” Sections 2
and 3 of the manuscript in which we analyzed the objectivity of the description of the groundwater
flow and Sections 4 and 5, in which we analyzed the of objectivity of the description of the spread
of impurities, instead of using the integer-order derivatives temporal Caputo or Riemann–Liouville
fractional partial derivatives, having integral representation on finite interval. The purpose of the
present paper is to show that, in case of an unconfined horizontal aquifer, the mathematical descriptions,
that use Caputo or Riemann–Liouville fractional order temporal partial derivatives, having integral
representation on a finite interval, generally are non-objective. Two observers, who use fractional
derivatives, obtain different results that cannot be reconciled, in other words, transformed into each
other, using Equations (1)–(4).

Remember that for a continuously differentiable function f : [0,∞) × [0,∞)→ R the Caputo
temporal fractional partial derivative of order α, 0 < α, is defined with the following integral
representation on a finite interval (see [22]):

C
0Dt

α f (t, x) =
1

Γ(n− α)
·

t∫
0

∂n f
∂τn (τ, x)

(t− τ)α+1−n dτ (28)

Note that the derivative defined with (28) was considered by other people before Caputo,
like Gherasimov (see [22]). So, the name of Caputo used in this paper may not be appropriate.

For a continuously differentiable function f : [0,∞) × [0,∞)→ R the Riemann–Liouville temporal
fractional partial derivative of order α, 0 < α, is defined with the following integral representation on
a finite interval (see [22]):

R−L
0Dt

α f (t, x) =
1

Γ(n− α)
·
∂n

∂tn

t∫
0

f (τ, x)

(t− τ)α+1−n dξ (29)

In Equations (28) and (29), Γ is the Euler gamma function and n = [α] + 1, [α] is the integer part
of α.

2. In Case of an Unconfined Horizontal Aquifer the Piezometric Head Dynamics Description,
Using Temporal Caputo Fractional Order Partial Derivatives, with Integral Representation on
a Finite Interval, Is Non-Objective

Assume that in the piezometric head dynamics description that the temporal Caputo fractional
partial derivative of order α, 0 < α < 1, with integral representation on a finite interval, is used.
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In case of the 2D flow to a well, in a horizontal unconfined aquifer, Equation (10) for observer O and
Equation (12) for observer O∗ become:

S ·C 0DtM
αhO + T · (

∂2hO

∂2x1
+
∂2hO

∂2x2
) = QS (30)

S ·C 0Dt∗M
αhO∗ + T · (

∂2hO∗

∂2x∗1
+
∂2hO∗

∂2x∗2
) = QS (31)

Objectivity of the piezometric head dynamics description means that the solutions of the fractional
partial differential Equations (30) and (31) describe the same dynamics.

That is:
if hO(tM, x1, x2) verifies Equation (30), then the function hO∗(t∗M, x∗1, x∗2), defined by (14),

verifies Equation (31) and if hO∗(t∗M, x∗1, x∗2) verifies Equation (31), then the function hO(tM, x1, x2),
defined by (15), verifies Equation (30).

Assume that the reference frames RO and RO∗ of the observers O and O∗ coincide, in other words,
x∗1 = x1 and x∗2 = x2. Assume also that the piezometric head dynamics described by Equation (30) is
objective. Start with a solution hO(tM, x1, x2) of Equation (30) and consider for this particular situation
the function hO∗(t∗M, x1, x2), defined by (14). Note that, in this particular situation, the following
equalities hold:

C
0Dt∗M

αhO∗(t∗M, x1, x2) =
C

0DtM
αhO(tM, x1, x2) +

1
Γ(1− α)

·

t∗MO∫
0

∂hO∗
∂τ∗ (τ∗, x1, x2)

(t ∗M −τ∗)
α dτ∗ (32)

T · (
∂2hO

∂2x1
+
∂2hO

∂2x2
) = T · (

∂2hO∗

∂2x∗1
+
∂2hO∗

∂2x∗2
)

Using Equation (32) and replacing the terms in (31), it follows that: if the function hO∗(t∗M, x1, x2)

(defined by (14)) verifies Equation (31), then the following equality holds:

1
Γ(1− α)

·

t∗MO∫
0

∂hO∗
∂τ∗ (τ∗, x1, x2)

(t ∗M −τ∗)
α dτ∗ (33)

Equation (33) is a consequence of the assumption that the mathematical description (30) is objective.
However, generally (33) it is not verified. This means that the assumption that the piezometric head
dynamics description with Equation (30) is objective, is false. It follows that the mathematical
description with Equation (30) is non-objective. That is, observers O and O∗, describing the same
piezometric head dynamics, with (30) and (31) respectively, obtain different results which cannot
be reconciled, in other words, transformed into each other, using Equations (1) and (2), that link
the numbers representing the same moment in time for two different choices of the origin of time
measurement. The problem is to find which one of the results is correct.

3. In Case of an Unconfined Horizontal Aquifer the Piezometric Head Dynamics Description
which Uses Temporal Riemann–Liouville Fractional Order Partial Derivatives, with Integral
Representation on a Finite Interval, Is Non-Objective

Assume that in the piezometric head dynamics description that the temporal Riemann–Liouville
fractional partial derivative of order α, 0 < α < 1, with integral representation on a finite interval,
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is used. In case of the 2D flow to a well, in a horizontal unconfined aquifer, Equation (10) for observer
O and Equation (12) for observer O∗ become:

S ·R−L
0DtM

αhO + T · (
∂2hO

∂2x1
+
∂2hO

∂2x2
) = QS (34)

S ·R−L
0Dt∗M

αhO∗ + T · (
∂2hO∗

∂2x∗1
+
∂2hO∗

∂2x∗2
) = QS (35)

Objectivity of the piezometric head dynamics description means that the solutions of the fractional
partial differential Equations (34) and (35) describe the same dynamics.

That is:
if hO(tM, x1, x2) verifies Equation (34), then the function hO∗(t∗M, x∗1, x∗2), defined by (14),

verifies Equation (35) and if hO∗(t∗M, x∗1, x∗2) verifies Equation (35), then the function hO(tM, x1, x2),
defined by (15), verifies Equation (34).

Assume that the reference frames RO and RO∗ of the observers O and O∗ coincide, in other words,
x∗1 = x1 and x∗2 = x2. Assume also that the piezometric head dynamics described by Equation (34) is
objective. Start with a solution hO(tM, x1, x2) of Equation (34) and consider for this particular situation
the function hO∗(t∗M, x1, x2), defined by (14). Note that, in this particular situation, the following
equalities hold:

R−L
0Dt∗M

αhO∗(t∗M, x1, x2) =
R−L

0DtM
αhO(tM, x1, x2)+

1
Γ(1−α) ·

∂
∂t∗M

t∗MO∫
0

hO∗(τ∗,x1,x2)

(t∗M−τ∗)
α dτ∗

(36)

T · (
∂2hO

∂2x1
+
∂2hO

∂2x2
) = T · (

∂2hO∗

∂2x∗1
+
∂2hO∗

∂2x∗2
)

Using (36) and replacing the terms in (35) it follows that:
if the function hO∗(t∗M, x1, x2) (defined by (14)) verifies Equation (35), then the following equality

holds:

1
Γ(1− α)

·
∂

∂t∗M

t∗MO∫
0

hO∗(τ∗, x1, x2)

(t ∗M −τ∗)
α dτ∗ = 0 (37)

Equation (37) is a consequence of the assumption that the mathematical description (34) is objective.
However, generally, (37) is not verified. This means that the assumption that the piezometric head
dynamics described by Equation (34) is objective, is false. It follows that the mathematical description
with Equation (34) is non-objective. That is, observers O and O∗, describing the same piezometric head
dynamics, with (34) and (35), respectively, obtain different results, that cannot be reconciled, in other
words, transformed into each other, using Equations (1) and (2): that link the numbers representing
a moment in time for two different choices of the origin of time measurement. The problem is to find
which one of the results is correct.

4. In Case of an Unconfined Horizontal Aquifer the Impurity Spread Description which Uses
Temporal Caputo fractional Order Partial Derivatives, with Integral Representation on a Finite
Interval, Is Non-Objective

Assume that in the impurity spread dynamics description the temporal Caputo fractional partial
derivative of order α, 0 < α < 1, with integral representation on a finite interval, is used. In case of
the 2D flow to a well, in a horizontal unconfined isotropic homogeneous aquifer, Equation (23) for
observer O and Equation (24) for observer O∗ becomes:

C
0DtM

αCO = D ·
i=2∑
i=1

∂2CO

∂x2i
−

i=2∑
i=1

UOi(tM, x1, x2) ·
∂CO
∂xi

+ S (38)
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∂CO∗
∂t∗M

= D ·
i=2∑
i=1

∂2CO∗

∂x ∗i 2 −

i=#∑
i=1

UO∗i(t∗M, x∗1, x∗2) ·
∂CO∗
∂x∗i

+ S (39)

Objectivity of the impurity spread description means that the solutions of the fractional partial
differential Equations (38) and (39) describe the same dynamics.

That is:
if CO(tM, x1, x2) verifies Equation (38), then the function CO∗(t∗M, x∗1, x∗2), defined by (21),

verifies Equation (39) and if CO∗(t∗M, x∗1, x∗2); verifies Equation (39), then the function, CO(tM, x1, x2)

defined by (22), verifies Equation (38).
Assume that the reference frames RO and RO∗ of the observers O and O∗ coincide, in other words,

x∗1 = x1 and x∗2 = x2. Also assume that the impurity spread dynamics described with Equation (38) is
objective. Start with a solution CO(tM, x1, x2) of Equation (38) and consider for this particular situation
the function CO∗(t∗M, x1, x2), defined by (21). Note that, in this particular situation, the following
equalities hold:

C
0Dt∗M

αCO∗(t∗M, x1, x2) =
C

0DtM
αCO +

1
Γ(1− α)

·

t∗MO∫
0

∂CO∗
∂τ∗ (τ∗, x1, x2)

(t ∗M −τ∗)
α dτ∗ (40)

D ·
i=2∑
i=1

∂2CO

∂x2i
−

i=2∑
i=1

UOi(tM, x1, x2) ·
∂CO
∂xi

+ S = D ·
i=2∑
i=1

∂2CO∗

∂x ∗i 2 −

i=2∑
i=1

UO∗i(t∗M, x∗1, x∗2) ·
∂CO∗
∂x∗i

+ S

Using Equation (40) and replacing the terms in (39) it follows that: if the function CO∗(t∗M, x1, x2)

defined by (21), verifies Equation (39), then the following equality holds:

1
Γ(1− α)

·

t∗MO∫
0

∂CO∗
∂τ∗ (τ∗, x1, x2)

(t ∗M −τ∗)
α dτ∗ = 0 (41)

Equation (41) is a consequence of the assumption that the mathematical description with
Equation (38) is objective. However, generally (41) is not verified. This means that the assumption
that, the impurity spread dynamics description with Equation (38) is objective, is false. It follows
that the mathematical description with Equation (38) is non-objective. That is, observers O and O∗,
describing the dynamics of the impurity spread, with (38) and (39), respectively, obtain different results
which cannot be reconciled, in other words, transformed into each other, using Equations (1) and (2):
that link the numbers representing a moment in time for two different choices of the origin of time
measurement. The problem is to find which one of the results is correct.

5. In Case of an Unconfined Horizontal Aquifer, the Impurity Spread Description which Uses
Temporal Riemann–Liouville Fractional Order Partial Derivatives, with Integral Representation
on a Finite Interval, Is Non-Objective

Assume that, in the impurity spread dynamics description the temporal Riemann–Liouville
fractional partial derivative of order α, 0 < α < 1, with integral representation on finite interval, is
used. In case of the 2D flow to a well, in a horizontal unconfined isotropic homogeneous aquifer,
Equation (23) for observer O and Equation (24) for observer O∗ become:

R−L
0DtM

αCO = D ·
i=2∑
i=1

∂2CO

∂x2i
−

i=2∑
i=1

UOi(tM, x1, x2) ·
∂CO
∂xi

+ S (42)

R−LDt∗M = D ·
i=2∑
i=1

∂2CO∗

∂x ∗i 2 −

i=#∑
i=1

UO∗i(t∗M, x∗1, x∗2) ·
∂CO∗
∂x∗i

+ S (43)
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Objectivity of the impurity spread description means that the solutions of the fractional partial
differential Equations (42) and (43) describe the same dynamics.

That is:
if CO(tM, x1, x2) verifies Equation (42), then the function CO∗(t∗M, x∗1, x∗2), defined by (21),

verifies Equation (43) and if CO∗(t∗M, x∗1, x∗2) verifies Equation (43), then the function CO(tM, x1, x2),
defined by (22), verifies Equation (42).

Assume that the reference frames RO and RO∗ of the observers O and O∗ coincide, in other words,
x∗1 = x1 and x∗2 = x2. Also assume, that the impurity spread dynamics described by Equation (42) is
objective. Start with a solution CO(tM, x1, x2) of Equation (42) and consider for this particular situation
the function CO∗(t∗M, x1, x2), defined by (21). Note that, in this particular situation, the following
equalities hold:

R−L
0Dt∗M

αCO∗(t∗M, x1, x2) =
R−L

0DtM
αCO(tM, x1, x2)+

1
Γ(1−α) ·

∂
∂t∗M

t∗MO∫
0

CO∗(τ∗,x1,x2)

(t∗M−τ∗)
α dτ∗

(44)

D ·
i=2∑
i=1

∂2CO

∂x2i
−

i=2∑
i=1

UOi(tM, x1, x2) ·
∂CO
∂xi

+ S = D ·
i=2∑
i=1

∂2CO∗

∂x ∗i 2 −

i=2∑
i=1

UO∗i(t∗M, x∗1, x∗2) ·
∂CO∗
∂x∗i

+ S

Using Equation (44) and replacing the terms in (43), it follows that: if the functions CO∗(t∗M, x1, x2),
defined by (21), verify Equation (43), then the following equality holds:

1
Γ(1− α)

·
∂

∂t∗M

t∗MO∫
0

CO∗(τ∗, x1, x2)

(t ∗M −τ∗)
α dτ∗ = 0 (45)

Equation (45) is a consequence of the assumption that the mathematical description with
Equation (42) is objective. However, generally (45) is not verified. This means, the assumption
that the impurity spread dynamics described by Equation (42) is objective, is false. It follows that the
mathematical description with Equation (42) is non-objective. That is, observers O and O∗, describing
the dynamics of the impurity spread, with (42) and (43), respectively, obtain different results which
cannot be reconciled, in other words, transformed into each other, using Equations (1) and (2): that link
the numbers that represent a moment in time for two different choices of the origin of time measurement.
The problem is to find which one of the results is correct.

6. Conclusions and Comments

1. Mathematical descriptions of the bulk groundwater flow to well in a horizontal unconfined aquifer
and that of the spread of the contained impurity, which use integer-order partial derivatives
are objective. This means, that the results obtained by different observers can be reconciled,
in other words, transformed into each other, using Equations (1)–(4) that link the coordinates of
a point in two fixed orthogonal reference frames and formulas that link the numbers representing
a moment in time for two different choices of the origin of time measurement.

2. Mathematical descriptions of the bulk groundwater flow to a well in a horizontal unconfined
aquifer and that of the spread of the contained impurity which use temporal Caputo or
Riemann–Liouville fractional order partial derivatives, having integral representation on a finite
interval, are non-objective, in other words, they depend on the choice of the origin of time
measurement. Due to that, two observers describing the groundwater flow and spread of
impurity with these tools, generally obtain different results that cannot be reconciled, in other
words, transformed into each other using Equations (1) and (2) that link the numbers representing
a moment in time for two different choices of the origin of time measurement. This is not
an academic curiosity, it is rather a challenge to find which one of the reported results is correct.
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3. The results obtained by us in Sections 2 and 3 can be instructive for the authors of some of
the papers [8–15], because they show that the use of temporal Caputo and Riemann–Liouville
fractional partial derivatives affect the objectivity of the description of the flow in porous media.
It is an argument for why the analysis of the objectivity of the mathematical description of the
flow in porous media proposed in the papers that use temporal Caputo and Riemann–Liouville
fractional order partial derivatives, having integral representation on a finite interval, is necessary.
The results obtained by us in Sections 4 and 5 can be instructive for the authors of some of
the papers [16–21], because they show that the use of temporal Caputo and Riemann–Liouville
fractional partial derivatives affect the objectivity of the description of the spread of impurities in
porous media. There is an argument for why the analysis of the objectivity of the mathematical
description of the spread of impurities in porous media proposed in the papers that use temporal
Caputo and Riemann–Liouville fractional order partial derivatives, having integral representation
on a finite interval, is necessary.

4. In the early 2000s a discussion started about the initialization problems in [23–28]. Some published
results in [26] and [27] concluded in the inconsistency of Caputo and Riemann–Liouville’s
definition to take into account initial conditions if these definitions are used in fractional partial
differential equations or in ordinary differential equations. In [23], [26], and [27] a time shift
was used to highlight the above mentioned problem. Our approach to the question: why can
integer-order derivatives not simply be replaced by fractional-order derivatives to develop the
fractional-order theories? is different. What we know from the scientific literature is that the
assertion “integer-order derivatives cannot be simply replaced by fractional-order derivatives to
develop the fractional-order theories” has not been proven so far. In fact, the general assertion,
as formulated, refers to all the equations of mathematical physics and we do not think it will be
proven soon. However, what we think is fact is that this statement can be demonstrated in some
proper cases. In this paper we actually demonstrate this statement in the case of describing
fluid flow in porous media and impurity spread also showing the cause, in other words, that the
objectivity of the description is lost.

5. A given mathematical tool is not necessarily appropriate for the mathematical description of
a certain real word phenomenon.
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