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Abstract: Motivated from studies on anomalous relaxation and diffusion, we show that the memory
function M(t) of complex materials, that their creep compliance follows a power law, J(t) ∼ tq with

q ∈ R+, is proportional to the fractional derivative of the Dirac delta function, dqδ(t−0)
dtq with q ∈ R+.

This leads to the finding that the inverse Laplace transform of sq for any q ∈ R+ is the fractional

derivative of the Dirac delta function, dqδ(t−0)
dtq . This result, in association with the convolution

theorem, makes possible the calculation of the inverse Laplace transform of sq

sα∓λ where α < q ∈ R+,
which is the fractional derivative of order q of the Rabotnov function εα−1(±λ, t) = tα−1Eα, α(±λtα).
The fractional derivative of order q ∈ R+ of the Rabotnov function, εα−1(±λ, t) produces singularities
that are extracted with a finite number of fractional derivatives of the Dirac delta function depending
on the strength of q in association with the recurrence formula of the two-parameter Mittag–Leffler
function.

Keywords: generalized functions; laplace transform; anomalous relaxation; diffusion; fractional
calculus; mittag–leffler function
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1. Introduction

The classical result for the inverse Laplace transform of the function F (s) = 1
sq is [1]

L−1
{

1
sq

}
=

1
Γ(q)

tq−1 with q > 0 (1)

In Equation (1) the condition q > 0 is needed because when q = 0, the ratio 1
Γ(0) = 0

and the right-hand side of Equation (1) vanishes, except when t = 0, which leads to
a singularity. Nevertheless, within the context of generalized functions, when q = 0,
the right-hand side of Equation (1) becomes the Dirac delta function [2] according to the
Gel’fand and Shilov [3] definition of the nth (n ∈ N0) derivative of the Dirac delta function

dnδ(t− 0)
dtn =

1
Γ(−n)

1
tn+1 = Φ−n(t) with n ∈ {0, 1, 2 ...} (2)

with a proper interpretation of the quotient 1
tn+1 as a limit at t = 0. Thus, according to the

Gel’fand and Shilov [3] definition expressed by Equation (2), Equation (1) can be extended
for values of q ∈ {0, − 1, − 2, −3 ...}, and in this way one can establish the following
expression for the inverse Laplace transform of sn with n ∈ N0:

L−1{sn} = 1
Γ(−n)

1
tn+1 =

dnδ(t− 0)
dtn n ∈ {0, 1, 2 ...} (3)
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For instance when n = 1, Equation (3) yields

L−1{s} = 1
Γ(−1)

1
t2 =

dδ(t− 0)
dt

(4)

which is the correct result, since the Laplace transform of dδ(t−0)
dt is

L
{

dδ(t− 0)
dt

}
=
∫ ∞

0−

dδ(t− 0)
dt

e−stdt = −d(e−st)

dt

∣∣∣∣
t=0

= −(−s) = s (5)

Equation (5) is derived by making use of the property of the Dirac delta function and
its higher-order derivatives∫ ∞

0−

dnδ(t− 0)
dtn f (t)dt = (−1)n dn f (0)

dtn with n ∈ {0, 1, 2 ...} (6)

In Equations (5) and (6), the lower limit of integration, 0− is a shorthand notation for

lim
ε→0+

∫ ∞

−ε
, and it emphasizes that the entire singular function dnδ(t−0)

dtn (n ∈ N0) is captured

by the integral operator. In this paper we first show that Equation (3) can be further
extended for the case where the Laplace variable is raised to any positive real power; sq

with q ∈ R+. This generalization, in association with the convolution theorem, allows for
the derivation of some new results on the inverse Laplace transform of irrational functions
that appear in problems with fractional relaxation and fractional diffusion [4–11]. This
work complements recent progress on the numerical and approximate Laplace-transform
solutions of fractional diffusion equations [12–15].

Most materials are viscoelastic; they both dissipate and store energy in a way that
depends on the frequency of loading. Their resistance to an imposed time-dependent shear

deformation, γ(t), is parametrized by the complex dynamic modulus G(ω) =
τ(ω)
γ(ω)

where

τ(ω) =
∫ ∞

−∞
τ(t)e− i ωtdt and γ(ω) =

∫ ∞

−∞
γ(t)e− i ωtdt are the Fourier transforms of the

output stress, τ(t), and the input strain, γ(t), histories. The output stress history, τ(t), can
be computed in the time domain with the convolution integral

τ(t) =
∫ t

0−
M(t− ξ)γ(ξ)dξ (7)

where M(t− ξ) is the memory function of the material [16–18] defined as the resulting
stress at time t due to an impulsive strain input at time ξ(ξ < t), and it is the inverse
Fourier transform of the complex dynamic modulus

M(t) =
1

2π

∫ ∞

−∞
G(ω)ei ωtdω (8)

2. The Fractional Derivative of the Dirac Delta Function

Early studies on the behavior of viscoelastic materials, that their time-response func-
tions follow power laws, have been presented by Nutting [4], who noticed that the stress
response of several fluid-like materials to a step strain decays following a power law,
τ(t) ∼ t−q with 0 ≤ q ≤ 1. Following Nutting’s observation and the early work of
Gemant [5,6] on fractional differentials, Scott Blair [19,20] pioneered the introduction of
fractional calculus in viscoelasticity. With analogy to the Hookean spring, in which the
stress is proportional to the zero-th derivative of the strain and the Newtonian dashpot,
in which the stress is proportional to the first derivative of the strain, Scott Blair and his co-
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workers [19–21] proposed the springpot element—that is a mechanical element in-between
a spring and a dashpot with constitutive law

τ(t) = µq
dqγ(t)

dtq (9)

where q is a positive real number, 0 ≤ q ≤ 1, µq is a phenomenological material parameter

with units [M][L]−1[T]q−2 (say Pa·secq), and dqγ(t)
dtq is the fractional derivative of order q of

the strain history, γ(t).
A definition of the fractional derivative of order q is given through the convolution

integral

c Iqγ(t) =
1

Γ(q)

∫ t

c
(t− ξ)q−1γ(ξ)dξ (10)

where Γ(q) is the Gamma function. When the lower limit, c = 0, the integral given by Equa-
tion (10) is often referred to as the Riemann–Liouville fractional integral 0 Iqγ(t) [22–25].
The integral in Equation (10) converges only for q > 0, or in the case where q is a complex
number, the integral converges forR(q) > 0. Nevertheless, by a proper analytic continua-
tion across the lineR(q) = 0, and provided that the function γ(t) is n times differentiable,
it can be shown that the integral given by Equation (10) exists for n−R(q) > 0 [26]. In this
case the fractional derivative of order q ∈ R+ exists and is defined as

dqγ(t)
dtq = 0Dqγ(t) = Φ−q(t) ∗ γ(t) =

1
Γ(−q)

∫ t

0−

γ(ξ)

(t− ξ)q+1 dξ, q ∈ R+ (11)

where R+ is the set of positive real numbers, and Φ−q(t) = 1
Γ(−q)

1
tq+1 is a generaliza-

tion of the Gel’fand and Shilov kernel given by Equation (2) for q ∈ R+. Gorenflo and
Mainardi [27] and subsequently Mainardi [28] concluded that within the context of gen-
eralized functions, Equation (11) is indeed a formal definition of the fractional derivative
of order q ∈ R+ of a sufficiently differentiable function by making use of the property
of the Dirac delta function and its higher-order derivatives given by Equation (6) in as-
sociation with the 1964 Gel’fand and Shilov [3] definition of the Dirac delta function and
its higher-order derivatives given by Equation (2). Accordingly, the nth-order derivative,
n ∈ {0, 1, 2, ...}, of a sufficiently differentiable function γ(t) is the convolution of γ(t) with
Φ−n(t) defined by Equation (2)

dnγ(t)
dtn = Φ−n(t) ∗ γ(t) =

∫ t

0−

dnδ(t− ξ)

dtn γ(ξ)dξ =
1

Γ(−n)

∫ t

0−

γ(ξ)

(t− ξ)n+1 dξ, t > 0 (12)

By replacing n ∈ {0, 1, 2, ...}with q ∈ R+ in Equation (12), Gorenflo and Mainardi [27]
and Mainardi [28] explain that Equation (11) is a formal definition of the fractional deriva-
tive of order q ∈ R+ and should be understood as the convolution of the function γ(t) with
the kernel Φ−q(t) = 1

Γ(−q)
1

tq+1 as indicated in Equation (11) [22–24,27,28]. The formal

character of Equation (11) is evident in that the kernel Φ−q(t) is not locally absolutely
integrable in the classical sense; therefore, the integral appearing in Equation (11) is in
general divergent. Nevertheless, when dealing with classical functions (not just generalized
functions) the integral can be regularized as shown in [27,28].

The Fourier transform of the fractional derivative of a function defined by Equation (11)
is

F
{

dqγ(t)
dtq

}
=
∫ ∞

−∞

dqγ(t)
dtq e− i ωtdt =

∫ ∞

0

dqγ(t)
dtq e− i ωtdt = (i ω)qγ(ω) (13)
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where F indicates the Fourier transform operator [1,24,28]. The one-sided integral appear-
ing in Equation (13) that results from the causality of the strain history, γ(t) is also the
Laplace transform of the fractional derivative of the strain history, γ(t)

L
{

dqγ(t)
dtq

}
=
∫ ∞

0

dqγ(t)
dtq e−stdt = sqγ(s) (14)

where s = i ω is the Laplace variable, and L indicates the Laplace transform opera-
tor [28,29].

For the elastic Hookean spring with elastic modulus, G, its memory function as
defined by Equation (8) is M(t) = Gδ(t− 0), which is the zero-order derivative of the Dirac
delta function; whereas, for the Newtonian dashpot with viscosity, η, its memory function

is M(t) = η
dδ(t−0)

dt , which is the first-order derivative of the Dirac delta function [16].
Since the springpot element defined by Equation (9) with 0 ≤ q ≤ 1 is a constitutive model
that is in-between the Hookean spring and the Newtonian dashpot, physical continuity
suggests that the memory function of the springpot model given by Equation (9) shall be of

the form of M(t) = µq
dqδ(t−0)

dtq , which is the fractional derivative of order q of the Dirac
delta function [22,25].

The fractional derivative of the Dirac delta function emerges directly from the property
of the Dirac delta function [2] ∫ ∞

−∞
δ(t− ξ) f (t)dt = f (ξ) (15)

By following the Riemann–Liouville definition of the fractional derivative of a function
given by the convolution appearing in Equation (11), the fractional derivative of order
q ∈ R+ of the Dirac delta function is

dqδ(t− ξ)

dtq =
1

Γ(−q)

∫ t

0−

δ(τ − ξ)

(t− τ)1+q dτ, q ∈ R+ (16)

and by applying the property of the Dirac delta function given by Equation (15);
Equation (16) gives

dqδ(t− ξ)

dtq =
1

Γ(−q)
1

(t− ξ)1+q , q ∈ R+ (17)

The result of Equation (17) has been presented in [22,25] and has been recently used to
study problems in anomalous diffusion [11] and anomalous relaxation [30]. Equation (17)
offers the remarkable result that the fractional derivative of the Dirac delta function of
any order q ∈ {R+ −N} is finite everywhere other than at t = ξ; whereas, the Dirac delta
function and its integer-order derivatives are infinite-valued, singular functions that are
understood as a monopole, dipole and so on; and we can only interpret them through
their mathematical properties as the one given by Equations (6) and (15). Figure 1 plots the
fractional derivative of the Dirac delta function at ξ = 0

dqδ(t− 0)
dtq =

1
Γ(−q)

1
t1+q = Φ−q(t) with q ∈ R+, t > 0 (18)
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Figure 1. Plots of the fractional derivative of the Dirac delta function of order q ∈
{
R+ −N

}
, which

are the 1 + q order derivative of the constant 1 for positive times. The functions are finite everywhere
other than the time origin, t = 0. Figure 1 shows that the fractional derivatives of the singular Dirac
delta function, and these of the constant unit at positive times are expressed with the same family
of functions.

The result of Equation (18) for q ∈ R+ is identical to the Gel’fand and Shilov [3]
definition of the nth (n ∈ N0) derivative of the Dirac delta function given by Equation (2),
where N0 is the set of positive integers including zero and shows that the fractional

derivative of the Dirac delta function dqδ(t−0)
dtq with q ∈ R+ is merely the kernel Φ−q(t)

in the formal definition of the fractional derivative given by Equation (11). Accordingly,
in analogy with Equation (12) the fractional derivative of order q ∈ R+ of a sufficiently
differentiable function is

dqγ(t)
dtq = Φ−q(t) ∗ γ(t) =

∫ t

0−

dqδ(t− ξ)

dtq γ(ξ)dξ =
1

Γ(−q)

∫ t

0−

γ(ξ)

(t− ξ)q+1 dξ, q ∈ R+ (19)

3. The Inverse Laplace Transform of sqsqsq with q ∈ R+q ∈ R+q ∈ R+

The memory function, M(t) appearing in Equation (7) of the Scott–Blair (springpot
when 0 ≤ q ≤ 1) element expressed by Equation (9) results directly from the defini-
tion of the fractional derivative expressed with the Reimann–Liouville integral given by
Equation (11). Substitution of Equation (11) into Equation (9) gives

τ(t) =
µq

Γ(−q)

∫ t

0−

γ(ξ)

(t− ξ)q+1 dξ, q ∈ R+ (20)

By comparing Equation (20) with Equation (7), the memory function, M(t), of the
Scott–Blair element is merely the kernel of the Riemann–Liouville convolution multiplied
with the material parameter µq

M(t) =
µq

Γ(−q)
1

tq+1 = µq
dqδ(t− 0)

dtq , q ∈ R+ (21)

where the right-hand side of Equation (21) is from Equation (18). Equation (21) shows
that the memory function of the springpot element is the fractional derivative of order
q ∈ R+ of the Dirac delta function as was anticipated by using the argument of physical
continuity given that the springpot element interpolates the Hookean spring and the
Newtonian dashpot.
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In this study we adopt the name “Scott–Blair element” rather than the more restrictive
“springpot” element given that the fractional order of differentiation q ∈ R+ is allowed to
take values larger than one. The complex dynamic modulus, G(ω), of the Scott–Blair fluid
described by Equation (9) with now q ∈ R+ derives directly from Equation (13)

G(ω) =
τ(ω)

γ(ω)
= µq(i ω)q (22)

and its inverse Fourier transform is the memory function, M(t), as indicated by Equation (8).
With the introduction of the fractional derivative of the Dirac delta function expressed by
Equations (17) or (21), the definition of the memory function given by Equation (8) offers a
new (to the best of our knowledge) and useful result regarding the Fourier transform of
the function F (ω) = (i ω)q with q ∈ R+

F−1(i ω)q =
1

2π

∫ ∞

−∞
(i ω)qei ωtdω =

dqδ(t− 0)
dtq =

1
Γ(−q)

1
tq+1 , q ∈ R+, t > 0 (23)

In terms of the Laplace variable s = i ω (see equivalence of Equations (13) and (14)),
Equation (23) gives that

L−1{sq} = dqδ(t− 0)
dtq =

1
Γ(−q)

1
tq+1 , q ∈ R+, t > 0 (24)

where L−1 indicates the inverse Laplace transform operator [1,28,29].
When t > 0 the right-hand side of Equations (23) or (24) is non-zero only when

q ∈ {R+ −N}; otherwise it vanishes because of the poles of the Gamma function when q is
zero or any positive integer. The validity of Equation (23) can be confirmed by investigating
its limiting cases. For instance, when q = 0, then (i ω)q = 1; and Equation (23) yields that
1

2π

∫ ∞

−∞
ei ωtdω = δ(t− 0); which is the correct result. When q = 1, Equation (23) yields that

1
2π

∫ ∞

−∞
i ωei ωtdω =

dδ(t−0)
dt . Clearly, the function F (ω) = i ω is not Fourier integrable in

the classical sense, yet the result of Equation (23) can be confirmed by evaluating the Fourier

transform of dδ(t−0)
dt in association with the properties of the higher-order derivatives

of the Dirac delta function given by Equation (6). By virtue of Equation (6), the Fourier

transform of dδ(t−0)
dt is

∫ ∞

−∞

dδ(t− 0)
dt

e− i ωtdt = −(− i ω)e− i ω0 = i ω (25)

therefore, the functions i ω and dδ(t−0)
dt are Fourier pairs, as indicated by Equation (23).

More generally, for any q = n ∈ N, Equation (23) yields that 1
2π

∫ ∞

−∞
(i ω)nei ωtdω

=
dnδ(t−0)

dtn and by virtue of Equation (6), the Fourier transform of dnδ(t−0)
dtn is

∫ ∞

−∞

dnδ(t− 0)
dtn e− i ωtdt = (−1)n(− i ω)n = (i ω)n (26)

showing that the functions (i ω)n and dnδ(t−0)
dtn are Fourier pairs, which is a special result

for q ∈ N0 of the more general result offered by Equation (23). Consequently, fractional
calculus and the memory function of the Scott–Blair element with q ∈ R+ offer an alter-
native avenue to reach the Gel’fand and Shilov [3] definition of the Dirac delta function
and its integer-order derivatives given by Equation (2). By establishing the inverse Laplace
transform of sq with q ∈ R+ given by Equation (24) we proceed by examining the inverse
Laplace transform of sq

(s∓λ)α with α < q ∈ R+.
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4. The Inverse Laplace Transform of sq

(s∓λ)α
sq

(s∓λ)α
sq

(s∓λ)α with α < q ∈ R+α < q ∈ R+α < q ∈ R+

The inverse Laplace transform of F (s) = sq

(s∓λ)α with α < q ∈ R+ is evaluated with

the convolution theorem [29]

f (t) = L−1{F (s)} = L−1{H(s)G(s)} =
∫ t

0
h(t− ξ)g(ξ)dξ (27)

where h(t) = L−1{H(s)} = L−1{sq} given by Equation (24) and g(t) = L−1{G(s)}
= L−1

{
1

(s∓λ)α

}
= 1

Γ(α) tα−1e±λt shown in entry (2) of Table 1 [1] which summarizes

selective known inverse Laplace transforms of functions with arbitrary power. Accordingly,
Equation (27) gives

L−1
{

sq

(s∓ λ)α

}
=

1
Γ(−q)

∫ t

0

1
(t− ξ)q+1

1
Γ(α)

ξα−1e±λξdξ (28)

Table 1. Known inverse Laplace transforms of irrational functions with an arbitrary power.

(1)
Special case of (1)

(1)

F(s) = L{ f (t)} =∫ ∞

0
f (t)e−stdt f (t) = L−1{F(s)}

(1)
Special case of (1)

1
sα α ∈ R+ tα−1

Γ(α)

(2)
Special case of (2)

1
(s∓λ)α α ∈ R+ 1

Γ(α) tα−1e±λt

(3)
Special case of (3)

1
sα(s∓λ)

α ∈ R+ tαE1, 1+α(±λt)
= Iαe±λt

(4)
Special case of (4)

sα

s∓λ 0 < α < 1 t−αE1, 1−α(±λt)

=
dαe±λt

dtα

(5)
Special case of (5)

sα−β

sα∓λ α, β ∈ R+ tβ−1Eα, β(±λtα)

(6)
Special case of (5)

for β = 1

sα−1

sα∓λ α ∈ R+ Eα(±λtα)

(7)
Special case of (5)

for α = β

1
sα∓λ α ∈ R+ tα−1Eα, α(±λtα)

= εα−1(±λ, t)

(8)
Special case of (5)

α− β = −1

1
s(sα∓λ)

α ∈ R+ tαEα, α+1(±λtα)

(9)
Special case of (5)

with 0 < α− β = q < α

sq

sα∓λ 0 < q < α ∈ R+ tα−q−1Eα, α−q(±λtα)

With reference to Equation (11), Equation (28) is expressed as

L−1
{

sq

(s∓ λ)α

}
=

1
Γ(α)

dq

dtq

[
tα−1e±λt

]
, α, q ∈ R+ (29)
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For the special case where λ = 0 and after using that dqtα−1

dtq =
Γ(α)

Γ(α−q) tα−1−q [24],

Equation (29) reduces to

L−1{sq−α
}
=

1
Γ(α)

dq

dtq tα−1 =
1

Γ(α)
Γ(α)

Γ(−q + α)

1
tq−α+1 =

dq−αδ(t− 0)
dtq−α , α < q ∈ R+ (30)

and the result of Equation (24) is recovered. Equation (30) also reveals the intimate relation
between the fractional derivative of the Dirac delta function and the fractional derivative
of the power law.

dq−αδ(t− 0)
dtq−α =

1
Γ(α)

dq

dtq tα−1, α < q ∈ R+ (31)

For the special case where q = α, Equation (31) yields δ(t− 0) = 1
Γ(α)

Γ(α)
Γ(0) t−1 = 1

Γ(0)
1
t

and the Gel’fand and Shilov [3] definition of the Dirac delta function given by Equation (2)
is recovered. The new results, derived in this paper, on the inverse Laplace transform of
irrational functions with arbitrary powers are summarized in Table 2.
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Table 2. New results on the inverse Laplace transform of irrational functions with arbitrary powers.

(1)
Special case of (1)

(1)

F(s) = L{ f (t)} =
∫ ∞

0
f (t)e−stdt f (t) = L−1{F(s)}

(1)
(1)

Special case of (1)

sq q ∈ R+ 1
Γ(−q)

1
tq+1 =

dqδ(t−0)
dtq

(2)
(2)

Special case of (1)

sq

(s∓λ)α α, q ∈ R+ 1
Γ(α)

dq

dtq

[
tα−1e±λt

]
(3)

Extension of entry
(9) of Table 1 for
α < q < 2α ∈ R+

sq

sα∓λ α < q < 2α ∈ R+ 1
Γ(−q+α)

1
tq−α+1±λt2α−q−1Eα, 2α−q(±λtα) =

dq−α

dtq−α δ(t− 0)± λt2α−q−1Eα, 2α−q(±λtα)

(4)
Special case of (3)

for α = 1

sq

s∓λ 1 < q < 2 1
Γ(−q+1)

1
tq±λt1−qE1, 2−q(±λt) =

dq−1δ(t−0)
dtq−1 ±λt1−qE1, 2−q(±λt)

(5)
General case of (3)

for any q ∈ R+ with
nα < q < (n + 1)α,

n ∈ N

sq

sα∓λ α < q ∈ R+
=

n

∑
j=1

(±λ)j−1 1
Γ(−q+jα)

1
tq−jα+1 +(±λ)nt(n+1)α−q−1Eα, (n+1)α−q(±λtα)

=
n

∑
j=1

(±λ)j−1 dq−jα

dtq−jα δ(t− 0) + (±λ)nt(n+1)α−q−1Eα, (n+1)α−q(±λtα), nα < q < (n + 1)α

=
dq

dtq εα−1(±λ, t)

(6)
Special case of (5)

for α = 1 with
n < q < n + 1,

n ∈ N

sq

s∓λ 1 < q ∈ R+
=

n

∑
j=1

(±λ)j−1 1
Γ(−q+j)

1
tq−j+1 +(±λ)ntn−qE1, n+1−q(±λt)

=
n

∑
j=1

(±λ)j−1 dq−j

dtq−j δ(t− 0) + (±λ)ntn−qE1, n+1−q(±λt), n < q < n + 1

=
dq

dtq e±λt
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5. The Inverse Laplace Transform of sq

sα∓λ
sq

sα∓λ
sq

sα∓λ with α, q ∈ R+α, q ∈ R+α, q ∈ R+

We start with the known result for the inverse Laplace transform of the function

Q(s) = sα−β

sα∓λ with α, β ∈ R+ [25,27]

L−1
{

sα−β

sα ∓ λ

}
= tβ−1Eα, β(±λtα), λ, α, β ∈ R+ (32)

where Eα, β(z) is the two-parameter Mittag–Leffler function [31–33]

Eα, β(z) =
∞

∑
j=0

zj

Γ(jα + β)
, α, β > 0 (33)

When β = 1, Equation (32) reduces to the result of the Laplace transform of the
one-parameter Mittag–Leffler function, originally derived by Mittag–Leffler [33]

L−1
{

sα−1

sα ∓ λ

}
= Eα, 1(±λtα) = Eα(±λtα), λ, α ∈ R+ (34)

When α = β, the right-hand side of Equation (32) is known as the Rabotnov function,
εα−1(±λ, t) = tα−1Eα, α(±λtα) [11,28,30,34,35]; and Equation (32) yields

L−1
{

1
sα ∓ λ

}
= tα−1Eα, α(±λtα) = εα−1(±λ, t), λ, α ∈ R+ (35)

Figure 2 plots the function Eα(−λtα) (left) and the function εα−1
(−λ, t) = tα−1Eα, α(−λtα) (right) for various values of the parameter α ∈ R+. For α = 1
both functions contract to e−λt. When α− β = −1 Equation (32) gives

L−1
{

1
s(sα ∓ λ)

}
= tαEα, α+1(±λtα), λ, α ∈ R+ (36)

Figure 2. The one-parameter Mittag–Leffler function Eα(−λtα) (left) and the Rabotnov function
εα−1(−λ, t) = tα−1Eα, α(−λtα) (right) for various values of the parameter α ∈ R+.

The inverse Laplace transform of F (s) = sq

sα∓λ with α, q ∈ R+ is evaluated with the
convolution theorem expressed by Equation (27) where h(t) = L−1{H(s)} = L−1{sq}
given by Equation (24) and g(t) = εα−1(±λ, t) is given by Equation (35). Accordingly,
Equation (27) gives

L−1
{

sq

sα ∓ λ

}
=

1
Γ(−q)

∫ t

0

1
(t− ξ)q+1 ξα−1Eα, α(±λξα)dξ (37)
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With reference to Equation (11), Equation (37) indicates that L−1
{

sq

sα∓λ

}
is the frac-

tional derivative of order q of the Rabotnov function εα−1(±λ, t)

L−1
{

sq

sα ∓ λ

}
=

dq

dtq

[
tα−1Eα, α(±λtα)

]
= tα−q−1Eα, α−q(±λtα) (38)

For the case where q < α ∈ R+, the exponent q can be expressed as q = α− β with
0 < β ≤ α ∈ R+, and Equation (38) returns the known result given by Equation (32).
For the case where q > α ∈ R+, the numerator of the fraction sq

sα∓λ is more powerful
than the denominator, and the inverse Laplace transform expressed by Equation (38) is
expected to yield a singularity that is manifested with the second parameter of the Mittag–
Leffler function Eα, α−q(±λtα), being negative (α − q < 0). This embedded singularity
in the right-hand side of Equation (38) when q > α is extracted by using the recurrence
relation [31–33]

Eα, β(z) =
1

Γ(β)
+ zEα, α+β(z) (39)

By employing the recurrence relation (39) to the right-hand side of Equation (38), then
Equation (38) for q > α ∈ R+ assumes the expression

L−1
{

sq

sα ∓ λ

}
=

1
Γ(−q + α)

1
tq−α+1 ± λt2α−q−1Eα, 2α−q(±λtα) (40)

Recognizing that according to Equation (18), the first term in the right-hand side of

Equation (39) is dq−αδ(t−0)
dtq−α , the inverse Laplace transform of sq

sα∓λ with q > α ∈ R+ can
be expressed in the alternative form

L−1
{

sq

sα ∓ λ

}
=

dq−α

dtq−α δ(t− 0)± λt2α−q−1Eα, 2α−q(±λtα), α < q < 2α (41)

in which the singularity dq−αδ(t−0)
dtq−α has been extracted from the right-hand side of

Equation (38), and now the second index of the Mittag–Leffler function appearing in
Equation (40) or (41) has been increased to 2α− q. In the event that 2α− q remains negative
(q > 2α), the Mittag–Leffler function appearing on the right-hand side of Equation (40) or
(41) is replaced again by virtue of the recurrence relation (39) and results in

L−1
{

sq

sα ∓ λ

}
=

dq−α

dtq−α δ(t− 0) (42)

± λ
dq−2α

dtq−2α
δ(t− 0) + (±λ)2t3α−q−1Eα, 3α−q(±λtα), 2α < q < 3α

More generally, for any q ∈ R+ with nα < q < (n + 1)α with n ∈ N = {1, 2, ...} and
α ∈ R+

L−1
{

sq

sα ∓ λ

}
=

dq

dtq εα−1(±λ, t) = (43)

n

∑
j=1

(±λ)j−1 dq−jα

dtq−jα δ(t− 0) + (±λ)nt(n+1)α−q−1Eα, (n+1)α−q(±λtα)

and all singularities from the Mittag–Leffler function have been extracted. For the special
case where α = 1 Equation (43) gives for n < q < n + 1 with n ∈ N = {1, 2, ...}

L−1
{

sq

s∓ λ

}
=

dq

dtq e±λt =
n

∑
j=1

(±λ)j−1 dq−j

dtq−j δ(t− 0) + (±λ)ntn−qE1, n+1−q(±λt) (44)
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which is the extension of entry (4) of Table 1 for any q ∈ R+. As an example, for 1 < q < 2
Equation (44) is expressed in its dimensionless form

1
λqL

−1
{

sq

s + λ

}
=

1
Γ(−q + 1)

1
(λt)q −

1
(λt)q−1 E1, 2−q(−λt), 1 < q < 2 (45)

whereas for 2 < q < 3, Equation (44) yields

1
λqL

−1
{

sq

s + λ

}
=

1
Γ(−q + 1)

1
(λt)q −

1
Γ(−q + 2)

1
(λt)q−1 (46)

+
1

(λt)q−2 E1, 3−q(−λt), 2 < q < 3

Figure 3 plots the results of Equation (45) for q = 1.3, 1.7, 1.9 and 1.99 together with
the results of Equation (46) for q = 2.01, 2.1, 2.3 and 2.7. When q tends to 2 from below,

the curves for 1
λqL−1

{
sq

s+λ

}
approach e−λt from below; whereas when q tends to 2 from

above, the curves of the inverse Laplace transform approach e−λt from above.

q=2.7
q=2.3

q=2.1q=2.01

q=1.99

q=1.9

q=1.3

q=1.7

q=2:

Figure 3. Plots . of L−1
{

sq

s+1

}
=

dq

dtq e−t by using Equation (45) for 1 < q < 2 and Equation (46)

for 2 < q < 3. When q tends to 2 from below, the curves for 1
λqL−1

{
sq

s+λ

}
approach e−λt from

below; whereas when q tends to 2 from above, the curves of the inverse Laplace transform approach
e−λt from above.

6. Summary

In this paper we first show that the memory function, M(t), of the fractional Scott–

Blair fluid, τ(t) = µq
dqγ(t)

dtq with q ∈ R+ (springpot when 0 ≤ q ≤ 1) is the fractional

derivative of the Dirac delta function dqδ(t−0)
dtq = 1

Γ(−q)
1

tq+1 with q ∈ R+. Given that

the memory function M(t) = 1
2π

∫ ∞

−∞
G(ω)ei ωtdt is the inverse Fourier transform of the

complex dynamic modulus, G(ω), in association with that M(t) is causal (M(t) = 0 for
t < 0), we showed that the inverse Laplace transform of sq for any q ∈ R+ is the fractional
derivative of order q of the Dirac delta function. This new finding in association with the
convolution theorem makes possible the calculation of the inverse Laplace transform of

sq

sα∓λ when α < q ∈ R+, which is the fractional derivative of order q of the Rabotnov
function εα−1(±λ, t) = tα−1Eα, α(±λtα). The fractional derivative of order q ∈ R+ of
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the Rabotnov function εα−1(±λ, t) produces singularities that are extracted with a finite
number of fractional derivatives of the Dirac delta function depending on the strength
of the order of differentiation q in association with the recurrence formula of the two-
parameter Mittag–Leffler function. The number of singularities, n ∈ N, that need to be
extracted when α < q ∈ R+ is the lowest integer so that nα < q < (n + 1)α.

Funding: This research received no external funding.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Erdélyi, A. (Ed.) Bateman Manuscript Project, Tables of Integral Transforms Vol I; McGraw-Hill: New York, NY, USA, 1954.
2. Lighthill, M.J. An Introduction to Fourier Analysis and Generalised Functions; Cambridge University Press: Cambridge, UK, 1958.
3. Gel’fand, I.M.; Shilov, G.E. Generalized Functions, Vol. 1 Properties and Operations; AMS Chelsea Publishing, An Imprint of the

American Mathematical Society: Providence, RI, USA, 1964.
4. Nutting, P.G. A study of elastic viscous deformation. Proc. Am. Soc. Test. Mater. 1921, 21, 1162–1171.
5. Gemant, A. A Method of Analyzing Experimental Results Obtained from ElastoViscous Bodies. Physics 1936, 7, 311–317.

[CrossRef]
6. Gemant, A. XLV. On fractional differentials. LOndon Edinb. Dublin Philos. Mag. J. Sci. 1938, 25, 540–549. [CrossRef]
7. Koeller, R.C. Applications of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. 1984, 51, 299–307. [CrossRef]
8. Friedrich, C.H.R. Relaxation and retardation functions of the Maxwell model with fractional derivatives. Rheol. Acta 1991,

30, 151–158. [CrossRef]
9. Schiessel, H.; Metzler, R.; Blumen, A.; Nonnenmacher, T.F. Generalized viscoelastic models: Their fractional equations with

solutions. J. Phys. A Math. Gen. 1995, 28, 6567. [CrossRef]
10. Lutz, E. Fractional Langevin equation. Phys. Rev. E 2001, 64, 051106. [CrossRef] [PubMed]
11. Makris, N. Viscous-viscoelastic correspondence principle for Brownian motion. Phys. Rev. E 2020, 101, 052139. [CrossRef]
12. Ozdemir, N.; Derya, A.V.C.I.; Iskender, B.B. The numerical solutions of a two-dimensional space-time Riesz-Caputo fractional

diffusion equation. Int. J. Optim. Control. Theor. Appl. IJOCTA 2011, 1, 17–26. [CrossRef]
13. Povstenko, Y. Solutions to diffusion-wave equation in a body with a spherical cavity under Dirichlet boundary condition. Int. J.

Optim. Control. Theor. Appl. IJOCTA 2011, 1, 3–16. [CrossRef]
14. Yavuz, M.; Özdemir, N. Numerical inverse Laplace homotopy technique for fractional heat equations. Therm. Sci. 2018,

22, 185–194. [CrossRef]
15. Yavuz, M.; Sene, N. Approximate solutions of the model describing fluid flow using generalized ρ-laplace transform method

and heat balance integral method. Axioms 2020, 9, 123. [CrossRef]
16. Bird, R.B.; Armstrong, R.C.; Hassager, O. Dynamics of Polymeric Liquids. Vol. 1: Fluid Mechanics, 2nd ed.; Wiley: New York, NY,

USA, 1987.
17. Dissado, L.; Hill, R. Memory functions for mechanical relaxation in viscoelastic materials. J. Mater. Sci. 1989, 24, 375–380.

[CrossRef]
18. Giesekus, H. An alternative approach to the linear theory of viscoelasticity and some characteristic effects being distinctive of

the type of material. Rheol. Acta 1995, 34, 2–11. [CrossRef]
19. Scott Blair, G.W. A Survey of General and Applied Rheology; Isaac Pitman & Sons: London, UK, 1944.
20. Scott Blair, G.W. The role of psychophysics in rheology. J. Colloid Sci. 1947, 2, 21–32. [CrossRef]
21. Scott Blair, G.W.; Caffyn, J.E. VI. An application of the theory of quasi-properties to the treatment of anomalous strain-stress

relations. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1949, 40, 80–94. [CrossRef]
22. Oldham, K.; Spanier, J. The Fractional Calculus. Mathematics in Science and Engineering; Academic Press Inc.: San Diego, CA, USA,

1974; Volume III.
23. Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives; Theory and Applications; Gordon and Breach Science

Publishers: Amsterdam, The Netherlands, 1974; Volume 1.
24. Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: New York, NY, USA,

1993.
25. Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of

Their Solution and Some of Their Applications; Elsevier: Amsterdam, The Netherlands, 1998.
26. Riesz, M. L’intégrale de Riemann-Liouville et le problème de Cauchy. Acta Math. 1949, 81, 1–222. [CrossRef]
27. Gorenflo, R.; Mainardi, F. Fractional calculus. In Fractals and Fractional Calculus in Continuum Mechanics; Springer:

Berlin/Heidelberg, Germany, 1997; pp. 223–276.
28. Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models; Imperial College

Press-World Scientific: London, UK, 2010.
29. Le Page, W.R. Complex Variables and the Laplace Transform for Engineers; McGraw-Hill: New York, NY, USA, 1961.

http://doi.org/10.1063/1.1745400
http://dx.doi.org/10.1080/14786443808562036
http://dx.doi.org/10.1115/1.3167616
http://dx.doi.org/10.1007/BF01134604
http://dx.doi.org/10.1088/0305-4470/28/23/012
http://dx.doi.org/10.1103/PhysRevE.64.051106
http://www.ncbi.nlm.nih.gov/pubmed/11735899
http://dx.doi.org/10.1103/PhysRevE.101.052139
http://dx.doi.org/10.11121/ijocta.01.2011.0028
http://dx.doi.org/10.11121/ijocta.01.2011.0035
http://dx.doi.org/10.2298/TSCI170804285Y
http://dx.doi.org/10.3390/axioms9040123
http://dx.doi.org/10.1007/BF00660984
http://dx.doi.org/10.1007/BF00396050
http://dx.doi.org/10.1016/0095-8522(47)90007-X
http://dx.doi.org/10.1080/14786444908561213
http://dx.doi.org/10.1007/BF02395016


Fractal Fract. 2021, 5, 18 14 of 14

30. Makris, N.; Efthymiou, E. Time-Response Functions of Fractional-Derivative Rheological Models. Rheol. Acta 2020, 59, 849–873.
[CrossRef]

31. Erdélyi, A., Ed. Bateman Manuscript Project, Higher Transcendental Functions Vol III; McGraw-Hill: New York, NY, USA, 1953.
32. Haubold, H.J.; Mathai, A.M.; Saxena, R.K. Mittag–Leffler functions and their applications. J. Appl. Math. 2011, 2011. [CrossRef]
33. Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag-Leffler Functions, Related Topics and Applications Vol. 2; Springer:

Berlin/Heidelberg, Germany, 2014.
34. Rogosin, S.; Mainardi, F. George William Scott Blair—the pioneer of factional calculus in rheology. arXiv 2014, arXiv:1404.3295.
35. Rabotnov, Y.N. Elements of Hereditary Solid Mechanics; MIR Publishers: Moscow, Russia, 1980.

http://dx.doi.org/10.1007/s00397-020-01241-5
http://dx.doi.org/10.1155/2011/298628

	Introduction
	The Fractional Derivative of the Dirac Delta Function
	The Inverse Laplace Transform of sq-.4 with q R+-.4
	The Inverse Laplace Transform of sq(s)-.4 with < qR+-.4
	The Inverse Laplace Transform of sqs-.4 with , qR+-.4
	Summary
	References

