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Abstract: The purpose of this work is to give a first approach to the dynamical behavior of Schröder’s
method, a well-known iterative process for solving nonlinear equations. In this context, we consider
equations defined in the complex plane. By using topological conjugations, we characterize the basins
of attraction of Schröder’s method applied to polynomials with two roots and different multiplicities.
Actually, we show that these basins are half-planes or circles, depending on the multiplicities of
the roots. We conclude our study with a graphical gallery that allow us to compare the basins of
attraction of Newton’s and Schröder’s method applied to some given polynomials.
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1. Introduction

In his seminal paper, published in 1870, about the solution of a nonlinear equation in
a single unknown,

f (z) = 0, (1)

Schröder deals with the problem of characterizing general iterative algorithms to
solve (1) with a prefixed order of convergence ω ≥ 2 (see the original paper [1] or the
commented English translation [2]). The main core of Schröder’s work studies two families
of iterative processes, the well-known families of first and second kind [3,4]. The ω-th
member of these families is an iterative method that converges with order ω to a solution
of (1). In this way, the second method of both families is Newton’s method. The third
method of the first family is Chebyshev’s method. The third method of the second family
is Halley’s method. The rest of the methods in both families (with order of convergence
ω ≥ 4) are not so well known.

Note that Newton’s, Chebyshev’s, and Halley’s methods are also members of another
famous family of iterative methods, the known as Chebyshev–Halley family of methods
(introduced by Werner [5] and reported by many other authors [6,7]):

zk+1 = zk −
(

1 +
1
2

L f (zk)

1− αL f (zk)

f (zk)

f ′(zk)

)
, α ∈ R, k ≥ 0, z0 ∈ C, (2)

where we have used the notation

L f (z) =
f (z) f ′′(z)

f ′(z)2 . (3)

In fact, Chebyshev’s method is obtained for α = 0, Halley’s method appears for
α = 1/2, and Newton’s method can be obtained as a limit case when |α| → ∞. Ex-
cept for the limit case of Newton’s method, all the methods in the family have third order
of convergence.
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In this general context of families of iterative methods for solving nonlinear equations,
we would like to highlight a detail that appears in the aforementioned paper by Schröder [1].
Actually, in the third section of this article, Schröder constructs an algorithm by applying
Newton’s method to the equation

f (z)
f ′(z)

= 0.

The resulting iterative scheme can be written as

zk+1 = zk −
f (zk) f ′(zk)

f ′(zk)2 − f (zk) f ′′(zk)
, k ≥ 0, z0 ∈ C,

as it is known as Schröder’s method by many authors (see, for instance, in [8,9]). Sometimes,
this method is also called Newton’s method for multiple roots.

For our convenience, we denote by S f (z) the iteration function of Schröder’s method.
Note that it can be written in terms of the function L f (z) introduced in (3) in the follow-
ing way:

zk+1 = S f (zk) = zk −
1

1− L f (zk)

f (zk)

f ′(zk)
k ≥ 0, z0 ∈ C. (4)

The same Schröder’s paper [1] compares the resulting algorithm (4) with Newton’s
method and says:

“It is an equally worthy algorithm which to my knowledge has not been previ-
ously considered. Besides, being almost as simple, this latter algorithm has the
advantage that it converges quadratically even for multiple roots.”

Curiously, Schröder’s method (4) does not belong either to the Schröder’s families of
first and second kind or the Chebyshev–Halley family (2). It has very interesting numerical
properties, such as the quadratic convergence even for multiple roots, but the fact of having
a high computational cost (equivalent to the the third order methods in (2)) could be an
important handicap for practical purposes.

In this paper, we present a first approach to the dynamical behavior of Schröder’s
method. Therefore, we show that for polynomials with two different roots and different
multiplicities, it is possible to characterize the basins of attraction and the corresponding
Julia set. We can appreciate the influence of the multiplicities in such sets.

2. Preliminaries

In the 14th section of Schröder’s work [1], that has the title The Principal Algorithms
Applied to very Simple Examples, we can find the first dynamical study of a couple of
rootfinding methods. Actually, Schröder considers those who, in his opinion, are the two
most useful methods: Newton’s method, defined by the iterative scheme

zk+1 = N f (zk) = zk −
f (zk)

f ′(zk)
k ≥ 0, z0 ∈ C, (5)

and the method zk+1 = S f (zk) given in (4).
In the simplest case, namely, equations with only one root, we can assume without

loss of generality that f (z) = zn. It is easy to see that

N f (z) =
n− 1

n
z, S f (z) = 0.

So Schröder’s method gives the correct root (z = 0) of the equation in just one step,
whereas Newton’s method converges to this root with lineal convergence:

zk =

(
n− 1

n

)k
z0.
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Consequently, for equations with a single root Schröder concludes that the conver-
gence regions of these two methods is the entire complex plane.

The next simple case considered by Schröder is the quadratic equation. Again, with-
out loss of generality he assumes f (z) = (z − 1)(z + 1). After a series of cumbersome
calculus, he states that in this case and for both methods, the entire complex plane decom-
poses into two regions separated by the imaginary axis. A few years later, Cayley [10]
addresses the same problem, only for Newton’s method. In a very elegant way, it can be
proved (see in [11] (Theorem 3.2.2) for details) that for polynomials

f (z) = (z− a)(z− b), a, b ∈ C, a 6= b, (6)

Newton’s iterate converge to the root a if |z0 − a| < |z0 − b| and to the root b if
|z0 − b| < |z0 − a|.

The behavior of the method in the equidistant line between the two roots is more
complicated and gives rise to the idea of Julia set, one of the main concepts in complex
dynamics (see in [12], for instance). In this reference, we can find the formal definition of
the Julia set related to a rational map R : Ĉ→ Ĉ, where Ĉ is the Riemann sphere. Actually,
R is said to be normal for a point z ∈ Ĉ, if there exists a neighborhood U of z such that the
sequence {Rn|U}n≥0 of mappings from U to Ĉ is equicontinuous. The Julia set of R is the
set J of points in Ĉ for which R is not normal. In [12], we can find a list of properties and
characterizations of the Julia set as, for instance, J is the frontier of the basin of attraction of
the attractive fixed points of R.

The key to prove this result is to consider these methods as rational functions defined
in the Riemann sphere Ĉ. Therefore, we can prove that Newton iteration function (5)
applied to polynomials (6) is conjugate via the Möbius map

M(z) =
z− a
z− b

(7)

with the function R(z) = z2, that is, R(z) = M ◦ N f ◦M−1(z). The unit circle S1 = {z ∈ C;
|z| = 1} is invariant by R. Its anti-image by R is the bisector between the roots a and b.

Two functions f , g : Ĉ→ Ĉ are said topologically conjugate if there exists a homeo-
morphism ϕ such that

ϕ ◦ g = f ◦ ϕ.

Topological conjugation is a very useful tool in dynamical systems (see in [13] for more
details) because two conjugate functions share the same dynamical properties, from the
topological viewpoint. For instance, the fixed points of one function are mapped into the
fixed points of the other, the periodic points of one function are mapped into the periodic
points of the other function, and so on. Speaking informally, we can say that the two
functions are the same from a dynamical point of view. As we have just seen, in some cases
one of the functions in a conjugation could be much simpler than the other. In the case of
Cayley’s problem, R(z) = z2 is topologically conjugate (and much simpler) to

N f (z) =
ab− z2

a + b− 2z
.

In the same way, we have that Schröder’s method (4) applied to polynomials (6)

S f (z) =
z2(a + b)− 4abz + ab(a + b)

a2 − 2z(a + b) + b2 + 2z2

is conjugated to the function −R(z) via the Möbius map defined in (7), that is, M ◦ S f ◦
M−1(z) = −z2. Consequently, the dynamical behavior of Schröder’s method for quadratic
polynomials mimics the behavior of Newton’s method: the Julia set is the perpendicular bi-
sector between the two roots and the basins of attraction are the corresponding half-planes.



Fractal Fract. 2021, 5, 25 4 of 10

3. Main Results

Now, we consider the case of polynomials with two roots, but with different multiplic-
ities, m ≥ n ≥ 1:

f (z) = (z− a)m(z− b)n, a, b ∈ C, a 6= b. (8)

For our simplicity, and to better appreciate symmetries, we move the roots a and b to
1 and −1. To do this, we conjugate with the affine map

A(z) = 1 + 2
z− a
a− b

(9)

to obtain a simpler function that does not depend on the roots a and b. Let Tm,n(z) be the
corresponding conjugate map:

Tm,n(z) = A ◦ S f ◦ A−1(z) =
(m− n)z2 + 2(m + n)z + m− n
(m + n)z2 + 2(m− n)z + m + n

. (10)

A new conjugation of Tm,n(z) with the Möbius map (7), when a = 1 and b = −1
provides a new rational function whose dynamical are extremely simple. Actually,

Rm,n(z) = M ◦ Tm,n ◦M−1(z) = −nz2

m
. (11)

Note that the circle Cm,n = {z ∈ C; |z| = m/n} is invariant by Rm,n(z). After iteration
by Rm,n(z), the orbits of the points z0 with |z0| < m/n go to 0, whereas the orbits of the
points z0 with |z0| > m/n go to ∞. Consequently, Cm,n is the Julia set of the map Rm,n(z).

Theorem 1. Let Tm,n(z) be the rational map defined by (10) and let us denote by Jm,n its Julia set.
Then, we have

1. If m = n, then Jm,m is the imaginary axis.
2. If m > n ≥ 1, then Jm,n is the circle

Jm,n =

{
z ∈ C;

∣∣∣∣z + m2 + n2

m2 − n2

∣∣∣∣ = 2mn
m2 − n2

}
.

Proof. The proof follows immediately, just by taking into account that Jm,n is the pre-image
by M(z) = (z − 1)/(z + 1) of the circle Cm,n and by distinguishing the two situations
indicated in the statement of the theorem.

Theorem 2. Let S f (z) be the rational map defined by applying Schröder’s method to polynomials (8)
and let us denote by Jm,n,a,b its Julia set. Then, we have

1. If m = n, Jm,m,a,b is the locus of points equidistant from a and b.
2. If m > n ≥ 1, then Jm,n,a,b is the circle

Jm,n,a,b =

{
z ∈ C;

∣∣∣∣z− bm2 − an2

m2 − n2

∣∣∣∣ = mn|a− b|
m2 − n2

}
.

Proof. Now, we deduce this result by calculating the pre-images of Jm,n by the affine map
A(z) defined in (9) in the two situations indicated in the previous theorem.

4. Conclusions and Further Work

We have studied the behavior of Schröder’s method for polynomials with two different
complex roots and with different multiplicities (8). Actually, we have proved that the Julia set
of the corresponding rational functions obtained in this case is a circle given in Theorem 2.

In addition, Theorem 1 gives us a universal result that characterizes the behavior
of Schröder’s method in a very simplified form, depending only of the values of the
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multiplicities m and n. The influence of the roots a and b is revealed in Theorem 2, and it is
just an affine transformation of the situation given in Theorem 1.

Let us consider the points (x, y) ∈ R2 given by the centers and radius of the circles
defined in Theorem 1, that is

(x, y) =
(
−m2 + n2

m2 − n2 ,
2mn

m2 − n2

)
.

These points belong to the hyperbola x2 − y2 = 1 in the real plane R2.
In addition, we appreciate that are polynomials for which Schröder’s method has the

same dynamical behavior. Actually, if we introduce the new parameter

p =
m
n

,

we have that the circles Jm,n defined in Theorem 1 can be expressed as

Jp =

{
z ∈ C;

∣∣∣∣z + p2 + 1
p2 − 1

∣∣∣∣ = 2p
p2 − 1

}
.

Therefore, Schröder’s method applied to polynomials with multiplicities (m, n) and
quotient p gives the same Julia set Jp.

We can analyze the dynamics of Schröder’s method applied to polynomials
(z− 1)m(z + 1)n, m > n in the following way:

• When p = m/n → ∞, the Julia sets Jp are circles that tend to collapse in the point
z = −1.

• When p = m/n→ 1+, the Julia sets Jp are circles with centers in the negative real line.
Note that centers

− p2 + 1
p2 − 1

→ −∞ when p→ 1+

and radius
2p

p2 − 1
→ ∞ when p→ 1+.

Therefore, when p→ 1+ the Julia set are circles getting bigger and tending to “explode”
into the limit case, given by the imaginary axis when p = 1.

If we consider the presence of the roots a and b, the dynamics of Schröder’s method
applied to polynomials (z− a)m(z− b)n, m > n, can be summarized in a “travel” from a
circle concentrated in the root with the smallest multiplicity, b, to circles with the center in
the line connecting the roots a and b and radius tending to infinity until the “explosion”
into the limit case, given by the bisector of the two roots, when p = 1.

In Figures 1–3, we show some graphics of different Julia sets obtained when Schröder’s
method is applied to polynomials (z − a)m(z − b)n, m ≥ n ≥ 1. We compare these
dynamical planes with the ones obtained for Newton’s. For instance, in Figure 1 we show
the behavior when p = m/n is increasing. We appreciate how the Julia set for Schröder’s
method (a circle) tends to collapse in the point z = −1 that in this case is the simple root.
In the case of Newton’s method, the Julia set is a kind of “deformed parabola”, whose “axis
of symmetry” is the real line, it is open to the left, the “vertex” tends to the simple root
z = −1, and the “latus rectum” tends to zero. We see how the basin of attraction of the
multiple root z = 1 invades more and more the basin of the simple root z = −1, as it was
pointed out by Gutiérrez et al. [14].

In Figure 2 we see what happens when p = m/n ≈ 1. The Julia set for Schröder’s
method is circles getting bigger as p approaches the value 1 and exploding into a half-plane
limited by the imaginary axis when p = 1. In the case of Newton’s method, the Julia set is
again a “deformed parabola” with the real line as “axis of symmetry” and open to the left.
However as p goes to 1, the “vertex” tends to z = 0 and the “latus rectum” tends to infinity.
As a limit case, when p = 1 this “deformed parabola” becomes a straight line, actually the
imaginary axis.
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Schröder m = 2, n = 1. Newton m = 2, n = 1.

Schröder m = 5, n = 1. Newton m = 5, n = 1.

Schröder m = 8, n = 1. Newton m = 8, n = 1.

Figure 1. Basins of attraction of Schröder’s and Newton’s methods applied to polynomials (z− 1)m(z + 1)n for m = 2, 5, 8, n = 1.



Fractal Fract. 2021, 5, 25 7 of 10

Schröder m = 6, n = 6. Newton m = 6, n = 6.

Schröder m = 7, n = 6. Newton m = 7, n = 6.

Schröder m = 8, n = 6. Newton m = 8, n = 6.

Figure 2. Basins of attraction of Schröder’s and Newton’s methods applied to polynomials (z− 1)m(z + 1)n for m = 6, 7, 8, n = 6.



Fractal Fract. 2021, 5, 25 8 of 10

Figure 3 shows the circle corresponding to the Julia set of Schröder’s method applied
to polynomials (z − 1)m(z + 1)n with p = m/n = 2. We can also see the Julia set of
Newton’s method applied to such polynomials. In the case of Newton’s method, we
observe that the behavior is not the same for values of m and n such that p = m/n = 2.
The corresponding “deformed parabola” tends to be smoother when the values of m and
n increase.

Finally, in Figure 4 we show the Julia set Jm,n,a,b defined in Theorem 2 in the case
m = 2, n = 1, a = 1, b = −i together with the corresponding Julia set for Newton’s method.
In these figures, we appreciate the loss of symmetry respect to the imaginary axis. This role
is now played by the equidistant line between the roots a and b.

As a further work, we would like to explore the influence of the multiplicity in the
Julia set of Newton’s method applied to polynomials (z− a)m(z− b)n, m ≥ n ≥ 1, and
its possible relationship between the study of Schröder’s method. In particular, we are
interested in characterize the main properties of the “deformed parabolas” that appear in
the case of Newton’s method.

Schröder p = m/n = 2. Newton m = 4, n = 2.

Newton m = 6, n = 3. Newton m = 8, n = 4.

Figure 3. The first graphic shows the basin of attraction of Schröder’s method applied to polynomials (z− 1)m(z + 1)n with
p = m/n = 2. The other graphics show the basins of attraction of Newton’s method applied to the same polynomials for
different values of m and n with p = m/n = 2.
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Figure 4. Basins of attraction of Schröder’s and Newton’s methods, respectively, applied to the polynomial (z− 1)2(z + i).
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