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Abstract: Robust stability is a major concern for real-world control applications. Realization of
optimal robust stability requires a stabilization scheme, which ensures that the control system is
stable and presents robust performance for a predefined range of system perturbations. This study
presented an optimal robust stabilization approach for closed-loop fractional order proportional
integral derivative (FOPID) control systems with interval parametric uncertainty and uncertain
time delay. This stabilization approach, which is carried out in a v-plane, relies on the placement
of the minimum angle system pole to a predefined target angle within the stability region of the
first Riemann sheet. For this purpose, tuning of FOPID controller coefficients was performed to
minimize a root angle error that is defined as the squared difference of minimum angle root of
interval characteristic polynomials and the desired target angle within the stability region of the
v-plane. To solve this optimization problem, a particle swarm optimization (PSO) algorithm was
implemented. Findings of the study reveal that tuning of the target angle can also be used to improve
the robust control performance of interval uncertain FOPID control systems. Illustrative examples
demonstrated the effectiveness of the proposed v-domain, optimal, robust stabilization of FOPID
control systems.

Keywords: stability of linear systems; uncertain systems; robust control; optimization; computer-
aided control design

1. Introduction

Since fractional order system modeling provides more realistic mathematical modeling
of real systems, fields of control theory have been extended toward fractional order system
modeling and fractional order controller design. Particularly, fractional order systems
have paved the way for improved frequency-domain modeling and controller designs.
Numerous works have illustrated enhancement of control performance, which is possible
by the use of fractional calculus: these research studies have reported robust performance
improvements of fractional order controllers in case of parametric perturbations [1-6].
Several works have also revealed that fractional order control can enhance the disturbance
rejection performance of closed-loop control systems [7-10]. One of the underlying basic
reasons for such performance improvements is the fact that fractional orders of controller
functions provide more tuning options that enable one to achieve more restricted frequency-
domain design objectives.

System stability is the main concern in control system design, and it is a fundamental
stage of control system design efforts. For this reason, stabilization of fractional order
control systems has been addressed in several perspectives: stabilization of the systems
according to system pole placements [11-17], closed-loop system stabilization based on
stability boundary locus (SBL) analyses [18,19], stabilization based on value set analysis
and zero exclusion principle [20,21]. The linear matrix inequalities (LMIs) method has
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been widely used for the stability checking of fractional order systems [22-24]. Graphical
stabilization methods have been proposed for robust stabilization of interval plant func-
tions [25] and time-delay system models [26]. Tuning of FOPID controllers for fractional
order uncertain systems was shown by using a robust D-stability method [27].

Due to parametric uncertainty of real systems and limitations of mathematical model-
ing to represent real-world systems, the robust stabilization problem of interval systems
becomes one of the essential topics of practical control system design. Ensuring system
stability for the interval uncertainty ranges of mathematical models improves the real-
world performance of the designed control systems and is an important outcome of robust
controller design methodologies. As is well-known, the stability region for integer order
systems is the left half-side of the complex s-plane, hence stability analysis based on the
checking of system pole placements in the complex s-plane was referred to as the left
half-plane (LHP) stability analysis. Previously, stabilization based on the placement of
system poles was carried out by residing all roots of interval characteristic polynomials
into the stability region of the first Riemann sheet [12-14,16,17]. In these works, stabil-
ity checking for fractional order characteristic polynomials was facilitated by applying a
polynomial order expansion approach that is employed by s = v conformal mapping.
Thus, fractional order characteristic polynomials are transformed to the expanded order
integer order polynomials in the v-plane. However, this transformation maps the LHP
stability region in the s-plane into the region with an angle range of (7r/2m, 7t /m] within
the first Riemann sheet of the v-plane [11,12,15,28-30]. This conformal mapping preserves
the argument and magnitude relations of system poles, and thus it allows the implications
of the edge theorem for the robust stability analysis of interval uncertain fractional order
systems and consideration of edge and vertex polynomials in stability checking within the
complex v-plane [15]. An application of the edge theorem was shown for the robust stability
analysis of fractional order interval systems [14,15]. Later, the edge theorem was discussed
for the general interval uncertainty cases, and the necessary and sufficient conditions to
check system stability were proposed in [31]. Kharitonov-theorem-based approaches were
also utilized for the robust stability checking of fractional order systems [32,33]. Princi-
pal characteristic equations and stability relation between the s-plane and v-plane were
discussed in [30].

Even though simulation results indicate a satisfactory control performance, the real-
world control systems should be designed robust against a certain level of system per-
turbations and parameter fluctuations. Therefore, robust stability analysis and robust
system design have a major significance in the practical fractional order control system
design process.

The so-called “fractal robustness” has become a central motivation for studies that
have addressed fractional order control system design [34—41]. Fractional order dynamics
has been widely harnessed to utilize iso-damping property in robust controller design
processes [36—41]. The optimal fractional order systems have been designed [42-44]. A
group of works has proposed graphical approaches for the robust stabilization of interval
fractional order systems [25-27]. Stabilization of fractional order controllers based on
minimum angle characteristic root placement within the first Riemann sheet of the v-plane
has been shown [16,17,45]. Optimal FOPID controller design has been demonstrated in the
v-plane [46,47]. Effects of pole placements on a fractional order proportional integral (FOPI)
controller performance were discussed in [48]. The main advantage of this approach is
that the placement of the minimum argument root of an interval characteristic polynomial
set can be easily carried out to guarantee the robust stability of interval control systems
for a predefined uncertainty range of system parameters, and the uncertainty ranges can
be given as a design specification to be achieved. Utilization of these advantages for
robust FOPID control system design was our main motivation in the current study. Due to
complications in analytically deriving a general rule to govern the placement of system
poles, we implemented a meta-heuristic optimization method and developed a computer-
aided design scheme, which can perform the placement of the minimum angle system
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pole of a given interval uncertain FOPID control system model to a target angle within the
stability region. In addition to the robust stabilization of the interval uncertain system by
optimally tuning FOPID controller coefficients, the target angle specification allows the
adjustment of the control performance of resulting robust stable FOPID control systems.
This property can be useful to improve the control performance besides the robustness of
the designed FOPID control system.

In the literature, several heuristic optimization methods, for example, evolutionary
methods [42] and particle swarm methods [43,44], have been applied for the tuning of frac-
tional order controllers. The main advantage of heuristic optimization methods comes from
the fact that their implications on real-world problems are relatively straightforward, and
they can provide satisfactory solutions in the case of complicated optimization problems.
For the stabilization of fractional order systems in the v-domain, Alagoz demonstrated
that the brute force search could deal with the stabilization of nominal closed-loop control
systems according to a minimum angle target root specification in the Riemann sheet [17].
Afterward, Tufenkci et al. implemented a genetic algorithm to stabilize fractional order PID
control systems for one-pole fractional order nominal plant models and demonstrated the
effectiveness of the v-domain design approach for FOPID controller stabilization [45]. These
results became a motivation for extending this approach to the optimal robust stabilization
of interval uncertain control systems in the v-domain by using a metaheuristic optimization
method. Accordingly, the present study illustrated a design framework that employs com-
putational intelligence for optimal robust stabilization of FOPID control system design in
the v-domain. Authors referred to this approach as v-domain design because design efforts
were conducted in the v-plane after applying the conformal mapping s = v to fractional
order transfer functions. It can be an alternative to well-known design domains (e.g., time
domain, frequency domain and s-domain) when designing fractional order systems.

Essentially, the current study presented a methodology for the optimal robust stabi-
lization of interval uncertain closed-loop FOPID control systems according to the minimum
angle system pole placement strategy in the v-plane. For this purpose, the problem of
robust stabilization of an interval uncertain fractional order plant function was considered.
For a solution to this problem, the purposed approach aimed to stabilize a set of sampled
characteristic polynomials of parametric uncertain FOPID control systems that are defined
by an interval uncertainty box of the plant parameters. The five design coefficients of
the FOPID controller were tuned by the particle swarm optimization (PSO) algorithm in
order to ensure robust stability of the system by considering the minimum angle root of
all characteristic polynomials that were uniformly sampled from the interval uncertainty
box. To guarantee robust stability of the uncertain system, the PSO algorithm places the
minimum angle characteristic root of whole interval systems on a target angle line within
the stability region. Furthermore, we observed that the robust control performance of the
designed FOPID control systems for a given parameter uncertainty range specification can
be improved by changing the target angle line specification. This promises an advantage of
tuning the control performance of the FOPID control systems by tuning a single design
parameter, namely the target angle, and provides optimal robust stabilization of the interval
uncertain control systems.

2. Theoretical Background and Preliminaries
2.1. Stability Analysis of Fractional Order Systems According to Minimum Angle Root Placement

Nominal fractional order transfer functions are written in the form of

g bis?i
T(s) = 218) _ i0 M)

n ’
(S> Z uislxi
i=0

-

where the denominator polynomial coefficients 4; and numerator polynomial coefficients
b; are real numbers [28,29]. The fractional orders are denoted by #; € R, a; > a;_1 > 0



Fractal Fract. 2021, 5, 3

40f21

(i=0,123...,n)and ¢; € R, ¢p; > ¢;—1 > 0( =0,1,2,3...,m) [21]. The characteristic
polynomial of this function class is expressed as

A(s) = Zn:ais"‘i ()
i=0

In order to calculate roots of fractional order characteristic polynomials, s = v"

mapping is commonly used [12,13,29]. Thus, stability analysis of fractional order models
is carried out by examining the root locus of expanded degree integer order character-
istic polynomials within the first Riemann sheet [11-14,16,29]. By applying the s = v
transformation to Equation (2), one obtains expanded degree integer order characteristic
polynomials in the v-plane as follows:

n
Aw(v) = Y azplme) €)
i=0

Roots of the expanded degree integer order characteristic polynomials are calcu-
lated, and only the roots that lie in the first Riemann sheet are evaluated for stability
analysis [11-14,16,29]. The rest of the roots, which are not in the first Riemann sheet, are
assumed not to be meaningful for system stability. The first Riemann sheet is a portion
of the complex plane that is confined within an argument range of (—m/m, 7r/m) [11,29].
The first Riemann sheet splits into two sections that are stable and unstable root regions
by the stability line with the angle of 77 /2m. Since the first Riemann sheet is symmetrical
with respect to the real axis in the complex plane, one can perform stability analysis in the
positive angle side of the first Riemann sheet that is in the angle range of [0, t/m]. As a
consequence, a fractional order system model is said to be stable when all characteristic
roots lie in the range of [7r/2m, 7t/m]|. Figure 1 depicts the stability region in the v-plane.

A

Im

Stability
Region

v-domain

Figure 1. The stability regions under s = v™ mapping [11,14,17].

To perform stability analysis, the root set of expanded degree integer order character-
istic polynomials is written as [14,16]

7T
R= {v, : Do) = OA Jarg(v))]| < =, r=1,2,3,... } )

The expanded degree integer order characteristic polynomials A, (v) are said to be ro-
bust stable polynomials if the minimum argument condition given by min{ Arg(R)} > 7/2m
is satisfied [13,17,29]. This analysis can be extended to interval uncertain fractional or-
der system models. Interval uncertainty of the characteristic polynomials is expressed
by [14-16]

n —
An(v) =Y [am]s%, ®)
i=0
where the interval uncertainty of gain coefficients and interval uncertainty of fractional
orders are defined by the parameter ranges of a; € [4;,4;] and «; € [w;, %], respectively.
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These uncertainty ranges of parameters define an n-dimensional interval uncertainty box
within the parameter space of the system model, and it is represented by a hyperrectangle
A that is expressed by the Cartesian product of intervals [14,15],

A = [ag, @] x [ay, a1] X [ag, @3] X ... X [an, @n] X [wo, @o] X [a1, @1 X [ag, @2] X ... X [, W] (6)

A point of hyperrectangle A is expressed by a design parameter vector, which is
defined in the parameter space as

p=lagayay ... anagaq ay ... ayl. (7)

Each vector p represents a possible characteristic polynomial of an interval uncertain
system and if all polynomials from hyperrectangle A are stable, the interval system is said
to be robustly stable. In other words, when min{ Arg(R;)} > 71/2m is satisfied for all roots
of the polynomials of hyperrectangle A that are written by

7T
R; = {v, : Bulp,or) = 0A larg(vr)] < =, Vp € A, r:1,2,3,...} ®)

the interval uncertain system is robustly stable [13,15,17].

2.2. Brief Introduction of PSO Algorithms

Meta-heuristic optimization methods have an important milestone in computational
intelligence practice because of their three prominent advantages: (i) they can be easily
implemented to solve complicated optimization problems, (ii) the random search nature of
these methods presents a potential of a new solution at each run of algorithms, and (iii)
they can be easily applied for the optimization of simulation models or even real systems in
offline or online manners. For these reasons, meta-heuristic methods have become popular
optimization tools for computer-aided solutions to complex engineering problems.

Due to difficulties in obtaining an analytical solution of fractional calculus, meta-heuristic
optimization methods have been widely preferred for optimization problems of fractional
order system design [17,42—44]. The PSO algorithm could find satisfactory solutions for the
parameter tuning problems of fractional order systems [42—44]. The effectiveness of the PSO
algorithm in the tuning of control systems mainly originates from the fact that the search
space of control systems generally has smoothly changing characteristics that are suitable for
the traveling of particles for the search of an optimal point.

The PSO algorithm is an essential swarm-based search algorithm, which can imitate
the collective intelligence in animal swarms. The algorithm of PSO benefits from the
collective behavior of search agents, namely particles. The particles can move under the
effects of interactions with other particles and form a global coherence for the search of a
particle swarm [49,50]. Interactions and coherence at particle motions result in a swarm
intelligence that can be similar to collective motions of animal swarms in their natural
environments. To resemble natural swarm intelligence in the search of an optimal solution,
the PSO algorithm presumes that particles move collectively in a multidimensional search
space of an optimization problem. Coherence and interactions among the particles of PSO
form dynamics in swarm motion, which tends to gather particles to minima of search
spaces. Thus, the positions of particles in the search space represent a candidate solution
for the PSO algorithm.

The motion of a particle is expressed by particle positions x,(t) and the particle
velocity v, (t) parameters. The PSO models coherent particle motions by the following
formulation [49-51].

vnlt + 1] = w[tou[t] + c1r1(xpn[t] — xn[t]) + car2(xg ult] — xult]) )

Xult +1] = x4[t] + v [t + 1] (10)

where x1 ,(t) is the personal best position, and x¢ ,(t) is the global best position. Parame-
ters ¢1 and c; are personal learning coefficients of x ,(t) and global learning coefficient of
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xGn(t), respectively. These parameters are used to adjust the strength of local and global
interactions among particles. Parameters r; and r; are pseudo-random numbers. These
random parameters enable particles to have a stochastic nature in their motions and allow
finding new solutions in the case of subsequent running of the algorithm [49-51]. The
parameter w is the weight coefficient for particle inertias. It is used to decrease the inertia
of particles during the optimization process, and a damping rate ¢ is used to update the
weight coefficient at each iteration as w[t + 1] = w|t].¢ [29]. While particles are moving
in the search space, the local best position and the global best position are updated at
each iteration according to particle scores. These scores are provided by a predefined
objective function. The objective function of the optimization evaluates particle positions
and decides whether or not to be a valuable point for the solution for an optimization
problem [49-51].

3. Methodology for Robust Stabilization of FOPID Control System

Adjusting places of minimum argument roots within the stability region was demon-
strated in [17,45]. Optimal FOPI and FOPID controller tuning in the v-domain was illus-
trated in [46—48]. The current study extended this approach to solve the optimal robust
stabilization problem of FOPID control systems. Especially, it extended the works in [17]
and [45] to stabilization of interval uncertain FOPID control systems, and it demonstrates
the effectiveness of the v-domain stabilization approach for optimal stabilization of uncer-
tain FOPID control systems with interval coefficients and interval time-delay uncertainty.
Figure 2 illustrates a general block diagram of closed-loop FOPID control systems. The
FOPID controller is commonly expressed in the form of

k.
C(s) =kp+ j + kyst, (11)

where C(s) denotes the transfer function of the FOPID controller. The nominal plant
function is assumed to be a time-delay, one-pole fractional order plant, which is commonly
written in a general form as

_ a0 —Ls
G(S) - b]SlX +b()e ’ (12)

where the parameter L stands for the time delay parameter of the plant, and the parameter
« is the fractional order of plant function. The parametric interval uncertainty model of
this plant function can be expressed in the form of

[ao, 0]
b1, b1]s* + [bo, bo]

G(s) = e [LLls, (13)

where interval uncertainty of the system is defined with parameter alteration ranges of
ag € [ag, ag),bo € [bo, bol,b1 € [b1,b1] and L € [L,L]. These interval ranges define a four-
dimensional interval uncertainty box, that is, a hyperrectangle A in the parameter space of
the plant model. Here, each point of hyperrectangle A is expressed by a parameter vector
p = [ag by by L] that stands for an uncertain model of the interval plant function.

]
R @ Co)ls@—G(s) >

Figure 2. Block diagram of the closed-loop FOPID control system.



Fractal Fract. 2021, 5, 3 7 of 21
The transfer function of this interval system can be written as
T(s) = 2 _ [ag, @olkge™ (L5 1) + [ag, aglkpe™ LM + [ag, dolkie I 1
R(s) [@,%]kdg*[Lf]ss(A+y) + [by, by )sA+9) + ([bo, bo) + [@,%]kpe*[Lf]s)sA + [ﬂio,ﬂio]kief[gﬂs
To obtain a constant coefficient polynomial, the term e~* is substituted with the first
order Padé approximation, which is written by
e*[LI]S ~ (1 — [Qfé} S) (15)
(1+1[0.6]s)’
where the relation between coefficients and time delay parameter is [0, 0] = [L/2 L/2]. The
characteristic polynomial of the closed-loop control system is the denominator polynomial
of the transfer function T(s), and it can be expressed for this interval system model as
A(s) = [by, B0, 8) 801+ [oy, Brls ) — fag ] 8, Bks s+ o, g s 16
([ bo] — kplao, @o))[8, 8] s**1) + ([bo, bo] + kplag, @o))s* — [ag, To [0, Bk; s + [0, Tolk;
One applies s = v™ mapping and obtains the expanded degree integer order charac-
teristic polynomials as
Am(v) = [71 ] ] (Atat1)m 4 [bl E]U(A+a) [ﬂof @)[0, ]kd pA+put)m [aOI%]kd pA+u)m 1)
+([bo, bo] — kp[ao, @] )6, 8] 1™ + ([bo, bo] + kplag, @] )0 ™ — a0, @) (8, B)k; 0™ + [ag, Folk;
Based on Equation (8), the characteristic root set of the interval system can be written
by considering FOPID controller coefficients
R, = {v, : An(p,or Ky, ki kg A i) = 0 A 0 < arg(o,) < % pEA r=123,... } (18)

To achieve placement of the minimum angle root of all polynomials in A near to a
target minimum angle root position, the angle error is defined as

¢ = (min|arg(vy)| — ¢r1), vr € R, (19)

where ¢ is the target angle for minimum angle root placement inside the stability region
of the first Riemann sheet [17,45]. The term min|arg(v,)| refers to the minimum angle of
roots in the set R;. The squared angle error (SAE) is expressed as

E =¢%. (20)

The optimization problem that minimizes the SAE is written by

minE = €2,

st.: ag € [ag, @), bo € by, Bol, by € [y, Br], L € [LT]. -

Specifying the minimum target angle in the range of 71/2m < ¢ < 71/m ensures the
placement of the minimum angle root within the stability region of the v-plane, and thus
stabilizes the resulting FOPID control system according to a target angle ¢ 1. The ¢ can be
configured to obtain improved robust control performance. This optimization problem is
solved by using the PSO method according to the flow chart in Figure 3, and the results are
discussed in the following section.
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Uniformly sample the hy- Form expanded de-

k,k k,Ap _| perrectangle 4 and ob- | gree characteristic

“| tain p design vectors 7| polynomials A, (v)

PSO (Eq.7) forall p vectors

Algorithm
\ 4
N
E Calculate the mini- Find all roots of all
mum angle roots of |<€ A, (v) and form R,
R, and SAE (Eq.20) root set (Eq.18)

Figure 3. The block diagram describes the implication of the particle swarm optimization (PSO) algorithm for optimal
robust stabilization. SAE: squared angle error.

4. Ilustrative Design Examples

This section presents illustrative examples to demonstrate the robust stabilization
of FOPID control system models. For the initial PSO configuration, the search ranges of
FOPID controller coefficients were set to k, € [0,7], k; € [0,7], k; € [0,7], A € [0,2] and
u € [0,2]. The population size of particles was configured to 30 particles. The personal
learning coefficient (c1) was set to 2.0, and the global learning coefficient (c;) was set to
2.0. The inertia weight (w) and damping rate (¢) were 1 and 0.99, respectively [50,51]. The
iteration number of PSO is limited to 200. To perform time-domain simulations of control
systems, step() function of the FOTF toolbox was used in MATLAB [52]. Figure 4 depicts a
design process that includes optimization, simulation and validation stages.

Optimization j Simulation (FOTF :}\y I:}\}/Successful
(PSO) Toolbox) Designs

Repeat Design

Figure 4. Relations between optimization, simulation and validation processes.

Example 1. Suppose that one tries to figure out a stabilizing FOPID controller for an interval
uncertain plant function with an interval delay,

= [0.6,0.9] —[0.3,0.8]s
) = fig 2196 + [13,17)° : (22)

We used s = v'? mapping, and the target angle for the stabilization was set to i—g

within the first Riemann sheet.
The characteristic polynomial of the interval system was expressed as

A(s) = [1.6,2.1][0.15,0.4] sA+16) 4 [1.6,2.1]s(A+06) —[0.6,0.9][0.15,0.4]k; s T#+1) 4-[0.6,0.9]k, s(A 1)

)
+([1.3,1.7) — k,[0.6,0.9])[0.15,0.4] s(*+1) + ([1.3,1.7] + k,[0.6,0.9])s* — [0.6,0.9][0.15,0.4]k; s + [0.6,0.9]k; ° @3)

In the case of s = v'? mapping, the expanded degree integer order characteristic

polynomial with interval uncertainty is written by
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Aqo(s) = [1.6,2.1][0.15,0.4] vA+10)10 1 [1,6,21]0(A+06)10 _ [0.6,0.9][0.15, 0.4]k; oA T#+D10 4 [0.6,0.9]k, 01110
+([1.3,1.7] — k,[0.6,0.9])[0.15,0.4] oA *+110 4 ([1.3,1.7] + k,[0.6,0.9])o*® — [0.6,0.9][0.15, 0.4]k;0'° + [0.6,0.9]k;

(24)

For 200 iterations of the optimization process, a decrease of the minimum angle error is
shown in Figure 5. The figure clearly demonstrates that the PSO algorithm can significantly
decrease SAE during the optimization process. This result confirms that the problem can
be solved by the PSO algorithm.

100 T T T
10710
w 1020}
10730 ¢
10740 : ' '
0 50 100 150 200
Iteration

Figure 5. Change of minimum angle error during 200 iterations.

After completion of optimization, the PSO algorithm yielded the design parameters
ky = 4.4739, k; = 2.6179, k; = 1.3096, A = 0.8629 and p = 0.0 for the stabilizing FOPID
controller. The SAE is almost zero (at the level of 1073!). Figure 6 shows placements of
all roots of sampled characteristic polynomials from the interval uncertainty box, where
the characteristic roots are indicated by red asterisks and dots. The figure confirms that
the minimum argument root of the interval system was placed on the target angle that is
indicated by the green line within the stability region. To illustrate the stabilization of a
conventional controller, a PI controller was also optimally stabilized by using the proposed
method. The PSO algorithm yielded the design parameters k, = 1.0372 and k; = 5.4914
for the stabilizing PI controller. It is useful to demonstrate step responses of the stabilized
control systems to validate robust system stability in transient analysis. Figure 7 shows
step responses of the stabilizing FOPID and PI controllers for the nominal plant function
that was formed by the parameter values from the mid-points of uncertainty intervals.

(0.6+0.9)

Gm(s) = 2 e
(146-;2.1)50.6 i (1.34{1.7)

_ospe8) g 075 o555
1.85596 4 1.5

(25)

To evaluate unit step performances of systems at boundaries of interval parameters,
Figure 8 shows step responses of the FOPID and the PI controllers for the stabilization
of 16 plant functions that were sampled from vertices of the uncertainty box. These
plant functions are listed in Table 1 by considering all possible combinations of interval
boundaries. These functions express vertices of the interval uncertainty box, which are the
most probable to cause instability of the system. The figure shows that responses of both
FOPID and PI control systems for all vertex plant functions are stable, and this indicates
that the controllers can control the interval uncertain plants even if plant parameters
change to the boundaries of uncertainty intervals. The high overshoot responses in the
figure are mainly related to higher magnitude minimum angle roots of the interval system.
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The settling of FOPDI control systems is faster than the settling of PI control systems for
the control of 16 plant functions because most responses of the PI control system have
prolonging ripples. This is an indication of improved robust stabilization of the FOPID
controller compared to the PI controller.
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Figure 6. Minimum angle root placement in the Riemann sheet for the FOPID control system.
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Figure 7. Step response of the stabilized FOPID control system for nominal plant function G, (s); (a)
FOPID controller and (b) PI controller.
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Figure 8. Step responses of 16 vertex plant functions; (a) FOPID controller and (b) PI controller.

Table 1. 16 plant functions that form vertices of the interval uncertainty box.

Vertex Plant Forms Vertex Plant Functions

Ga(s) = ﬁe—n Gals) = 108 ye 08

Ga(s) = Es[;%owoe_b Ga(s) = ydEpze 0%
reRt Gy(s) = yrmeqge 0%
bls[’%owo o Gs(s) = %670'35
bls[)%owo o Ge(s) = rgegme %

i - —

blsoﬁ—&-bo 72 27(5) i %3_22
Brs0o+by 8(s) = 2106 717
ERC Gols) = 138 r5e 0%
%E—B Gio(s) = tegze &
Eso@+boe*LS Gi(s) = %8—0.35
Es@rhgeis Ga(s) = ziogze %
blso@ﬂ,je—b Gia(s) = patdyre 0%
b1s0@+%6_zs Gu(s) = tegze &
Rt Gis(s) = 0o re 0%
Esﬂ?HToeiLs Gio(s) = zrogze %
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Table 2 lists the mean squared error (MSE) performance of these plants for step

T
response (MSE performance for step response is calculated by Es = 1 [ (1 — Q(t))%d).
0

Table 2. Mean squared error (MSE) values of step responses for the FOPID control of 16 plant
functions and the nominal plant function Gy,.

Plants Gm G1 Gz G3 G4 G5 G6 G7 Gg
MSEs 0.0062 0.0044 0.0093 0.0049 0.0085 0.0052 0.0090 0.0057 0.0087
Plants Gy G1o Gn G2 Gi3 Gy G1s Gie

MSEs  0.0036 0.0741 0.0037 0.0136 0.0039 0.0219 0.0040 0.0111

Example 2. Suppose that one tries to figure out stabilizing FOPID control coefficients for an
interval uncertain plant function with an interval delay,

[0.4,1.5] ~[01,03]s

G(s) = 2
)= A92a52 1 1618 ’ (26)
for several target angle specifications {¢11 = %,q)n = %,(pm = é—g }.
The characteristic polynomial of the system was expressed as
A(s) = [1.9,2.4][0.05,0.15] s(A*+22) 1 [1.9,2.4]s(A+12) — [0.4,1.5][0.05,0.15)k; s(A 1+ 4 [0.4,1.5]k, s(AH1) @)

+([1.6,1.8] — kp[0.4,1.5])[0.05,0.15] s(*+1) + ([1.6,1.8] + k, [0.4,1.5])s* — [0.4,1.5](0.05,0.15k; s + [0.4, 1.5)k;

Aqo(s) = [1.9,2.4][0.05,0.15] oA +22)10 4 [1.9,2 4]p(A+1-2)10 _ [0 .4,1.5][0.05,0.15]k; oA +#+1)10 1 [0.4,1.5]k, oA +#)10
+([1.6,1.8] — kp[0.4,1.5])[0.05,0.15] oA+1)10 1 ([1.6,1.8] + kp[0.4, 1.5])0*'? — [0.4,1.5][0.05,0.15]k; 0'° + [0.4, 1.5]k;

In the case of s = v'? mapping, the expanded degree integer order characteristic

polynomials can be written by
(28)

To observe the effect of target angle configuration, PSO optimization was performed
for three different target angle specifications within the stability region of the v-plane.
These are ¢11 = ‘é—g (for a placement close to the stability boundary by taking d = 1/3),
o2 = %T (for a placement in the middle of the stability region by taking d = 1/2)
and ¢73 = g—g (for a placement close to the upper bound of the first Riemann sheet by
taking d = 3/4). Specification of the target angle can be performed by using the formula
o1 = %, where d € [0,1] is a partitioning factor of the stability region by a target angle
line. For 200 iterations of the optimization process, decreases in SAEs for each target angle
specifications are shown in Figure 9. The figures clearly show that the PSO algorithm can
significantly decrease SAE during the optimization process. Table 3 shows the stabilizing
FOPD controller designs that were obtained after the completion of the PSO algorithm.

Table 3. Stabilizing FOPID controller designs that are obtained for ¢T1, ¢2 and ¢r3.

Target

Angles SAE ky k; kg A u
11 0.0043 3.3221 3.3578 0.7437 1.1502 0.7586
o2 0.0039 2.8017 2.3015 59713 0.7805 0.4722

$13 0.0033 6.1112 1.6694 3.7153 0.9317 0.7608
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Figure 9. Changes of SAEs (a) for ¢ = ‘é—g, (b) for ¢ = % and (c) for ¢13 = g—g.

Figure 10a—c show the placements of all roots of characteristic polynomials from the
interval uncertainty box (characteristic roots are indicated by red asterisks and dots). The
figures reveal that the minimum argument root of the interval system was placed on the
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specified target angles and all FOPID designs can optimally stabilize the system by placing

the minimum angle root on the target angles.
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Figure 10. Minimum angle root placement in the first Riemann sheet (a) for ¢11 = %—”, (b) for

¢r2 = 3F and (o) for pr3 = 7.
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Figure 11 shows step responses of the stabilizing FOPID controller designs for a
nominal plant function from the uncertainty box. This function is formed by the mid-points
of the uncertainty intervals as

095 o

Gu(s) = 215502 117

(29)

(@
1 A

0.8

0.6

0.4

0.2

0 20 40 60 80 100
t (sec)

0 20 40 60 80 100
t (sec)

0.6 |

0.4

0.2

0 20 40 60 80 100
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Figure 11. Step responses of stabilized FOPID control systems for target angle specifications (a) for
o1 = £, (b) for ¢prp = 3T and (c) for pr3 = ZZ.
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Figure 12 shows the step responses of 16 vertex functions of the uncertainty box. For
the target angle specification ¢r;, step performances of the control system for the vertex
functions are more similar than the results of other target angle specifications. This indicates
that the FOPID controller for ¢7; is more robust than other FOPID designs due to less

variability among step responses that were obtained for the vertex plant functions. Therefore,
we observed in this example that the control performance of ¢1 can be more robust than

other target angle specifications against parametric perturbation of the plant function. The
FOPID controller design for ¢r1 can be more suitable for real control applications.

10 15 20 25 0 2 4 6 8 10

t (sec) t (sec)

Figure 12. Step responses of 16 vertex plant functions for target angle specifications (a) for ¢1; = ‘é—g, (b) for ¢ = i—g and

(c) for ¢35 = é—g.

In Figure 12b,c, the variability of control performance is higher between vertices of
the interval box, and it indicates more deterioration of the control performance while
parameters are changing inside the interval box. The step response MSE performances in
Tables 4 and 5 validate these effects.

In order to evaluate disturbance rejection performances of the robust stabilized FOPID
control system designs for the target angle specifications ¢11,¢12 and ¢73, step disturbance
responses of the systems are shown in Figure 13. In these control systems, a set-point
prefilter function was used to overcome overshoots, and it improves settling to the step
input before applying the additive step disturbance to the input of the plant function. The
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figure indicates satisfactory disturbance rejection performances of the optimally stabilized
robust FOPID controllers in this example.

Table 4. MSE values of step responses for nominal plant functions G;; and 7 plant functions (G; to
G7).

Target
Angles

é11 0.0043 0.0066 0.0078 0.0078 0.0092 0.0068 0.0078 0.0078
¢12 0.0039 0.0086 0.0103 0.0090 0.0106 0.0100 0.0117 0.0103
$13 0.0033 0.0070 0.0084 0.0074 0.0088 0.0081 0.0095 0.0084

G Gy Gy G3 Gy Gs Ge Gy

Table 5. MSE values of step responses for the other 8 plant functions (Gg to Gyg ).

Target
Angles

$11 0.0090 0.0023 0.0041 0.0028 0.0047 0.0023 0.0040 0.0027  0.0046
$12 0.0120 0.0018 0.0215 0.0019 0.0061  0.0019  0.0199 0.0020  0.0062
¢13 0.0098  0.0015 0.0124 0.0016 0.0049 0.0016 0.0122 0.0017  0.0050

Gg Gy Gy Gy G2 G3 Gy Gis G

1.2 T T T
(a)
1F \ -
0.8 f - - 1
g 06 - "
D
04 1
(I)T1
02 F | (I)TZ 4
<I>T3
0 Il 1
0 20 40 60 80
t (sec)
1-15 - T T T T T =
(b) R
D
141 , , o
(I>T2
1.05 | - i &3 4
C
= \/
0.95 - i - i 1
40 45 50 55 60
t (sec)

Figure 13. Step disturbance responses of FOPID controller designs for the target angle specifications
¢T11,912 and ¢r3; (a) a full view from simulation and (b) a close view of disturbance responses.
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In these example designs, convergence rates of the PSO algorithm were measured by
considering the decrease in error (E) per iteration until the convergence of the algorithm
and the convergence rates were calculated at levels of 108 error/iteration. However, the
computation time can take four to five hours for a standard PC (hardware configuration
is 15-3230M 2.60 GHz, 4GB RAM) because it requires the computation of minimum angle
roots for all sampled systems (p vectors) from the uncertainty box of the interval plant
functions (ag € [ag, @), bo € [bo, bol, b1 € [by, b1],L € [L, L)) for each particle of PSO as
shown in the pseudo code in Appendix A. Searching the minimum angle root for each
sample model of the uncertainty box significantly increases the computational load in the
optimization task. Since classical PSO is a low-complexity search algorithm, it is preferable
to reduce the overall computational load of the optimization task.

5. Conclusions

This study demonstrated an optimal robust stabilization scheme for FOPID control
systems. This method is based on the placement of the minimum angle system pole over
a stabilization line in the v-domain. To this end, the robust stabilization problem was
introduced as an optimization problem that aims to place the minimum angle root of
interval characteristic polynomials on a target angle line that was specified within the
stability region of the first Riemann sheet. This study extended stabilization efforts to the
optimal robust stabilization of interval uncertain closed-loop FOPID control systems with
an interval time delay. It implemented PSO for computational intelligence. Some remarks
of the study can be summarized as follows:

e  This study demonstrated a v-domain design scheme that is straightforward for opti-
mal robust stabilization of fractional order control systems and the development of
computer-aided-design tools.

e  The PSO algorithm can find optimal FOPID controller coefficients that lead to min-
imum angle roots of interval systems placed on the desired angle line within the
stability region of the first Riemann sheet. Thus, the proposed approach can ensure
the stability of FOPID control systems in uncertainty ranges of plant parameters. The
angle of this line is configured by a target angle specification.

o  Target angle specifications can improve the robust control performance of FOPID
control systems. We observed that the target angle specifications could be utilized
to reduce the sensitivity of the time response performances of control systems to the
variation of plant parameters within the uncertainty ranges. Thus, the method can
achieve optimal stabilization of FOPID control system designs.

e The proposed stabilization scheme may have implications for variable time-delay
systems such as the control and robust stabilization problems of the networked control
systems.

In summary, this research work addressed optimal robustly stabilizing FOPID con-
troller design for variable time-delay, interval uncertain fractional order plant functions. A
straightforward computer-aided design solution for this type of control problems is not
frequent in the literature. In future works, the presented v-domain design methodology can
be applied to other fractional order model types, and the associated optimization problems
can be solved by other search algorithms.
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Appendix A

Pseudo code for the employment of the PSO algorithm in this optimization problem:
Receive controller parameters (kd kp,ki,Au) as a candidate particle from the PSO algorithm.
% This part uniformly samples the hyperrectangle A and calculates minimum angle roots of p
sample designs and stores them.
For a0 = ao_min:a0_step:a0_max
For b0 = b0_min:b0_step:b0_max
For b1=b1_min:b1_step:b1_max
For L = L_min:L_step:L_max
Form p design vectors (Equation (7)) that sample the hyperrectangle
A.
Form expanded degree integer order characteristic polynomials by
using Equation (17).
Calculate roots of the expanded degree integer order characteristic
polynomial.
Find minimum argument roots among the roots with positive angle

values and store them.
End

End
End
End
% This part selects the minimum argument root of the whole hyperrectangle A and calculates
SAE error accordingly.
Find the minimum angle value among the stored minimum angle roots.
Calculate squared angle error (SAE) of the minimum angle value according to Equation (20).
Return SAE to the PSO algorithm for the next evaluation.
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