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Abstract: In many applications, real phenomena are modeled by differential problems having a
time fractional derivative that depends on the history of the unknown function. For the numerical
solution of time fractional differential equations, we propose a new method that combines spline
quasi-interpolatory operators and collocation methods. We show that the method is convergent
and reproduces polynomials of suitable degree. The numerical tests demonstrate the validity and
applicability of the proposed method when used to solve linear time fractional differential equations.
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1. Introduction

Fractional calculus refers to the calculus of integrals and derivatives of any real positive
order [1–3]. During the last few years, it became very popular due to its applications in
various fields of science and engineering. In fact, in many applications, real phenomena can
be modeled by differential equations having a fractional derivative both in time and space.
This allows one to take into account in a clear way the history and nonlocal behavior of the
physical quantities under study. Through fractional calculus, we can study, for example,
the viscoelasticity properties of special materials, anomalous diffusion in human tissues,
water flow in deep ground, the prediction of earthquakes, and fractal problems [4–7].

There are several definitions of the fractional derivative that become equivalent under
particular assumptions [1,3]. The first definition of a fractional derivative suitable for
general functions appeared in the first half of the 19th Century and is now known as the
Riemann–Liouville derivative:

RLDγ
t y(t) :=

1
Γ(m− γ)

dm

dtm

∫ t

0

y(τ)
(t− τ)γ−m+1 dτ, m− 1 < γ < m, m ∈ N+, t > 0, (1)

where:
Γ(α) :=

∫ ∞

0
τα−1 e−τ dτ

is the Euler gamma function and N+ denotes the set of positive natural numbers.
Using the Riemann–Liouville definition, the usual differentiation operator in the

Fourier domain can be easily extended to the fractional case, i.e.,

F
(

RLDγ
t y(t)

)
= (iω)γF (y(t)) , γ ∈ R+ , (2)
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where F (·) denotes the Fourier transform operator. Moreover, the Riemann–Liouville
derivative coincides with the Grunwald–Letnikov derivative

GLDγ
t y(t) = lim

δ→0

1
δn

t
δ

∑
k=0

(−1)k
(

γ

k

)
y(t− δ k) , (3)

where: (
γ

k

)
:=

Γ(γ + 1)
k! Γ(γ− k + 1)

, k ∈ N , γ ≥ 0 , (4)

are the generalized binomial coefficients [1]. It is worth noticing that the sequence {(γ
k)}

is compactly supported when γ ∈ N, while for γ /∈ N, the sequence {(γ
k)} is no longer

compactly supported, but its coefficients decay toward infinity as:(
γ

k

)
→ k−γ−1 for k→ ∞ .

The Grunwald–Letnikov definition (3) is easier to use when addressing the numerical
solution of fractional differential equations by finite difference methods [8].

The Riemann–Liouville derivative is not suitable to be used in real-world models
for two main reasons: the Riemann–Liouville derivative of constant functions is not zero,
and the initial conditions for initial value fractional differential problems are not easy to
enforce. To overcome these problems, in 1967, Caputo [9] introduced a new definition of
the fractional derivative, now named the Caputo derivative:

CDγ
t y(t) :=

1
Γ(m− γ)

∫ t

0

y(m)(τ)

(t− τ)γ−m+1 dτ, m− 1 < γ < m, m ∈ N+, t > 0. (5)

The Riemann–Liouville derivative and the Caputo derivative are related to each
other by:

CDγ
t y(t) = RLDγ

(
y(t)−

m−1

∑
`=0

t`

`!
y(`)
(
0+
))

(6)

so that they coincide when the function y(t) satisfies homogeneous initial conditions [1].
Even if the Caputo derivative requires higher smoothness of the function y(t), it is

more suitable to describe real phenomena since it shares some of the main properties with
the ordinary derivative. In particular, the Caputo derivative of constant functions is zero,
and the initial and boundary conditions are easy to implement. For this reason, in this
paper, we consider an initial value differential problem having the Caputo derivative in
time. For a discussion on other types of fractional derivatives, see [10].

In the literature, several numerical methods have been proposed to solve fractional
differential equations [8,11,12]. Finite difference methods are very popular since they
are easy to implement, but they require high order difference formulas to achieve high
accuracy at the price of a high computational cost [13,14]. Spectral methods are more
efficient since the solution to the differential problem is approximated by an expansion in a
global polynomial basis, whose fractional derivative can be evaluated explicitly. However,
the coefficients of the expansion are obtained by solving a dense linear system so that
its numerical solution could have a high computational cost [11,14]. For this reason,
expansions in local bases with small support are preferable. For instance, polynomial
B-splines [15] are piecewise polynomials with small support that can be used to construct
a basis for the spline space. In fact, spline functions are piecewise polynomials of a
given degree and prescribed smoothness that can be constructed as linear combinations
of B-splines. The freedom to choose the degree of the polynomial pieces and the overall
smoothness of the spline give a great flexibility that can be used to adapt the spline to the
function to be approximated.

As in the case of spectral methods, the expansion coefficients of the B-spline represen-
tation can be obtained using collocation methods with the advantage that the collocation



Fractal Fract. 2021, 5, 5 3 of 16

matrix is triangular and the off-diagonal entries decay fast. In the case of cardinal B-splines,
i.e., B-splines with uniform knots, their fractional derivative can be evaluated explicitly
by the backward finite difference operator [16]. This approach was introduced by two of
the authors in [17] (see also [18]), where a spline collocation method based on B-spline
bases was used to solve a time fractional diffusion equation. The method proved to be
particularly effective also in the case of nonlinear fractional differential equations [19]. A
different approach was considered in [20,21], where the fractional differential equation
under study was reformulated as an integral equation and solved by approximating its
solution by a spline function represented by a Lagrange polynomial basis. More recently,
a similar approach was used in [22] to solve multi-term fractional differential equations.
For a comprehensive treatment of this topic, see [23].

In this paper, we propose a new method based on refinable spline quasi-interpolatory
operators. Quasi-interpolatory operators have greater flexibility with respect to interpola-
tion, since they are only required to reproduce polynomials up to a given degree rather
than interpolate a function at given points. For this reason, they can be constructed to
satisfy some special properties, such as shape preserving properties or prescribed approxi-
mation order. In more detail, we consider an initial value problem having the fractional
derivative in time and approximate its solution by a family of discrete quasi-interpolatory
operators [24–26]. Then, the unknown coefficients of the approximating function are de-
termined by the collocation method introduced in [18]. The method presented here is a
generalization of the collocation method introduced in [18,27]. The main novelty is the use
of spline quasi-interpolatory operators as approximating functions so that the unknown
coefficients are suitable functionals of the solution to the differential problem. Different
choices of the functionals allow us to increase the polynomial reproducibility of the ap-
proximating function with the advantage of achieving higher accuracy. To our knowledge,
this is the first time that quasi-interpolatory operators have been used to numerically solve
differential equations having a fractional derivative.

Since the quasi-interpolatory operators we consider are spline functions, i.e.,
piecewise polynomials of integer degree, their fractional derivatives are fractional splines,
i.e., piecewise polynomials of non-integer degree [16]. Thus, the fractional derivatives
needed to evaluate the numerical solution by the collocation method can be computed
efficiently by an explicit differentiation rule [28]. The numerical results show that the
method is easy to implement and efficient so that it can be used to solve other kinds of
fractional differential problems, such as boundary value problems and nonlinear problems.

The paper is organized as follows. Some preliminaries, needed to develop the numeri-
cal method, are given in Section 2. In particular, in Section 2.1, the fractional differential
equation we are interested in is introduced, as well as its analytical solution expressed in
terms of the Mittag–Leffler function. In Section 2.2, the spline space we use as the approxi-
mating space is described. In Section 2.3, the family of discrete spline quasi-interpolatory
operators we use as approximating functions is defined, and its main properties are ana-
lyzed. The new method we propose is introduced in Section 3 where the explicit expression
of the fractional derivative of the B-spline basis is also given (cf. Section 3.1). Finally, in
Section 4, some numerical tests are performed. Section 5 is devoted to the discussion of our
results, while in Section 6, some conclusions are offered.

2. Materials and Methods
2.1. Linear Fractional Differential Problems

Let us consider the following initial value problem:
CDγ

t y(t) + b y(t) = f (t), t > 0, 0 < γ < 1,

y(0) = y0,

(7)
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where b ∈ R is a given parameter and f (t) ∈ C[0,+∞) is the inhomogeneous term. The
well-posedness, existence, and uniqueness of the solution to the fractional differential
problem (7) were analyzed in [3] (§6). In particular, the continuity of f guarantees that
there exists a unique solution y ∈ C[0,+∞) that depends on a continuous way from the
given data.

Using the Mittag–Leffler function [29]:

Eγ,β(z) =
∞

∑
k=0

zk

Γ(γ k + β)
, γ, β ≥ 0 , z ∈ C ,

the solution can be expressed in closed form as [3]:

y(t) = y0 Eγ,1(−b tγ) +
∫ t

0
f (t− τ) τγ−1 Eγ,γ(−b τγ) dτ . (8)

Our main purpose is to solve the differential problem (7) by a collocation method based
on spline quasi-interpolatory operators. Even if the fractional differential problem here
considered can be solved analytically, nevertheless its solution is a good test for analyzing
the approximation properties of the proposed method and studying its convergence.

2.2. B-Spline Spaces

The cardinal B-spline Bn(t) is a piecewise polynomial of degree n having breakpoints
on the integers. It can be defined through the backward finite difference operator, de-
fined as:

∇n f (t) :=
n

∑
k=0

(
n
k

)
(−1)k f (t− k),

where f is a continuous function, applied to the truncated power function:

Tn(t) :=
(
max(0, t)

)n, n ∈ N,

i.e.,

Bn(t) :=
1
n!
∇n+1Tn(t), n ∈ N. (9)

The B-spline Bn(t) is compactly supported on In := [0, n + 1], positive in (0, n + 1),
and belongs to Cn−1(R). For further details on spline functions, see [15,30].

The system of the integer translates Sn = {Bn(t− k), k ∈ Z}, forming a basis for the
space of spline functions of degree n. It reproduces polynomials up to degree n, i.e.,

tr−1 = ∑
k∈Z

ξ
(r)
k Bn(t− k), t ∈ R, 1 ≤ r ≤ n + 1, (10)

with:

ξ
(r)
k =

symmr−1(k + 1, . . . , k + n)
( n

r−1)
, k ∈ Z, (11)

where symmr(t1, . . . , tp) denotes the symmetric function defined as:

symmr(t1, . . . , tp) = ∑
1≤k1<k2<···<kr≤p

tk1 tk2 · · · tkr .

(cf. [15]). In particular, for r = 1, it holds:

1 = ∑
k∈Z

Bn(t− k), t ∈ R, n ∈ N, (12)
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i.e., the function system Sn forms a partition of unity, while for r = 2, we get:

t = ∑
k∈Z

(
k +

n + 1
2

)
Bn(t− k), t ∈ R, n ∈ N+.

The cardinal B-spline Bn(t) can be adapted to any set of equidistant breakpoints by
dilation. In particular, choosing the dyadic nodes {2−jk, k ∈ Z} as breakpoints, we can
define the refined basis:

Snj = {Bnjk(t), k ∈ Z}, j ∈ Z, (13)

where the basis functions:

Bnjk(t) = Bn(2jt− k), k ∈ Z, j ∈ Z, (14)

are the dilates and translates of Bn(t) having support on [2−jk, 2−j(k + n + 1)].
Analogous to (10), for any j ∈ N, one has:

tr−1 = ∑
k∈Z

ξ
(r)
jk Bnjk(t), t ∈ R, 1 ≤ r ≤ n + 1, (15)

where the coefficients {ξ(r)jk } are given by:

ξ
(r)
jk =

symmr−1(2−j(k + 1), . . . , 2−j(k + n))
( n

r−1)
, k ∈ Z, j ∈ N. (16)

2.3. Refinable Spline Quasi-Interpolatory Operators

Our interest is in the numerical solution of the fractional differential problem (7) using
as the approximating function a quasi-interpolatory refinable operator constructed using
the refinable basis Snj.

Let F be a linear space of real-valued functions, and let
{

λji
}

be a set of linear
functionals λji : F → R. We assume that F contains the class Pr of polynomials of degree
at most r− 1 with 1 ≤ r ≤ n + 1. Given a function f ∈ F , a refinable quasi-interpolatory
operator Qnj f is an approximation to f of the form:

Qnj f (t) = ∑
k∈Z

(λjk f )Bnjk(t), t ∈ R, j ∈ Z , (17)

such that Qnj f is exact on polynomials up to degree r − 1, 1 ≤ r ≤ n + 1. We notice
that, since any Bnjk(t) has compact support, for any t ∈ R, the sum in (17) is actually a
finite sum.

It is easy to show that Qnj f reproduces polynomials up to degree r− 1 if and only if:

λjkt`−1 = ξ
(`)
jk , 1 ≤ ` ≤ r, k ∈ Z, (18)

where ξ
(`)
jk are the coefficients defined in (16) (cf. [25]). Since we will use the operator (17)

to approximate the solution to the differential problem (7) in a finite discretization interval
I = [0, T], T ∈ N+, in the following, we will consider the operator Qnj f restricted to the
interval I, i.e.,

Qnj f (t) =
Nj

∑
k=−n

(λjk f )Bnjk(t), t ∈ I, j ≥ j0 , (19)

where Nj = 2jT − 1 and j0 ≥ dlog2((n + 1)/T)e is the starting refinement level.
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To enforce (18), we express the functionals λjk f as:

λjk f =
r

∑
i=1

αjki (λjki f ), 1 ≤ r ≤ n + 1, −n ≤ k ≤ Nj, (20)

where αjki are real coefficients to be determined and λjki f : F → R are linear functionals
such that:

det
(
λjkit`−1)

1≤`,i≤r 6= 0. (21)

There are several kinds of spline quasi-interpolatory operators [15,24,26,31–34].
A possible choice is to express the linear functionals {λjik} through divided difference
operators. Let {τji1, . . . , τjik} be a set of k distinct points in I ∩ supp(Bnjk). Then, we set:

λjki f = [τjk1, . . . , τjki] f , 1 ≤ i ≤ r, 1 ≤ r ≤ n + 1, (22)

i.e., the difference operator of order i− 1. Therefore, we get the discrete quasi-interpolatory
operator [24,26]:

dQnj f (t) =
Nj

∑
k=−n

r

∑
i=1

αjki
(
[τjk1, . . . , τjki] f

)
Bnjk(t). (23)

Proposition 1. The discrete quasi-interpolatory operator dQnj f reproduces polynomials up to
degree r− 1 with 1 ≤ r ≤ n + 1 if and only if:

r

∑
i=1

αjki
(
[τjk1, . . . , τjki]t`−1) = ξ

(`)
jk , 1 ≤ ` ≤ r, −n ≤ k ≤ Nj, (24)

where ξ
(`)
jk , 1 ≤ ` ≤ n + 1 are given in (16).

Proof. The proof is similar to that in [35] (Corollary 1). For any k held fixed, (24) represents
a linear system of r equations in the r unknowns {αjki}. Given the particular choice of the
functionals {λjki} in (22), one has det(λjkitr−1) 6= 0, 1 ≤ r ≤ n + 1, −n ≤ k ≤ Nj, so that
the linear system has a unique solution.

Without loss of generality, we set r = n + 1 in (24). Then, inserting (24) into (23), we
get:

dQnjt`−1 =

Nj

∑
k=−n

n+1

∑
i=1

αjki[τjk1 . . . τjki]t`−1 Bnjk(t) =
Nj

∑
i=−n

ξ
(l)
jk Bnjk(t) = t`−1, 1 ≤ ` ≤ r + 1,

i.e., the operator dQnj reproduces polynomials up to degree r− 1. Oppositely, using (24) in
(15), we get dQnj applied to monomials, and the claim follows.

The coefficient matrix of the linear system (24) is lower triangular so that its solution
can be obtained by the forward technique [24], i.e.,

αjki =
i−1

∑
s=0

(−1)sξ
(i−s)
jk symms(τjk1, . . . , τjki−1), 1 ≤ i ≤ r, −n ≤ k ≤ Nj. (25)

In particular, from (25), it follows:

αjk1 = 1, αjk2 = ξ
(2)
jk − τjk1,

so that for r = 1, we get:

dQnj f (t) =
Nj

∑
k=−n

f (τjk1) Bnjk(t), (26)
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which is the operator reproducing just the constant function considered in [28], while for
r = 2, we get:

dQnj f (t) =
Nj

∑
k=−n

f (τjk2)(ξ
(2)
jk − τjk1)− f (τjk1)(ξ

(2)
jk − τjk2)

τjk2 − τjk1
Bnjk(t). (27)

3. Numerical Method

For any fixed j ≥ j0, we approximate the solution to the fractional differential problem
(7) by the discrete quasi-interpolatory operator (23), i.e.,

y(t) ≈ ynj(t) =
Nj

∑
k=−n

r

∑
i=1

αjki
(
[τjk1, . . . , τjki]y

)
Bnjk(t), (28)

where {αjki} are the coefficients defined in (25) and:

yjki = [τjk1 . . . τjki]y, 1 ≤ i ≤ r, −n ≤ k ≤ Nj, j ≥ j0,

are the unknown coefficients whose expression depends on the polynomial reproducibility
order r. In particular, for r = 1:

yjki = y(τjk1)

while for r = 2:

yjki =
y(τjk2)(ξ

(2)
jk − τjk1)− y(τjk1)(ξ

(2)
jk − τjk2)

τjk2 − τjk1
,

where τjki, −n ≤ k ≤ Nj, i = 1, 2 are given distinct points in the interval
[2−jk, 2−j(k + n + 1)] ∩ I.

We determine the unknown coefficients by collocation. To this end, we choose a set of
collocation points {tp, 0 ≤ p ≤ NP} that belong to the discretization interval I and enforce
the approximating function ynj(t) to solve the differential problem on these points, i.e.,

CDγ
t ynj(tp) + b ynj(tp) = f (tp) , 1 ≤ p ≤ Ns ,

ynj(0) = y0.

(29)

Substituting (28) in the previous equations and rearranging the sums, we get:

Nj

∑
k=−n

CDγ
t Bnjk

(
tp
) r

∑
i=1

αjki(yjki) + b
Nj

∑
k=−n

Bnjk
(
tp
) r

∑
i=1

αjki(yjki) = f (tp) , 1 ≤ p ≤ Ns ,

Nj

∑
k=−n

Bnjk(0)
r

∑
i=1

αjki(yjki) = y0.

(30)

Equations (30) form a linear system that can be written in matrix form as:
(

Dnjs + b Bnjs
)

AjrCjr = Fs,

Vnjs AjrCjr = y0.

(31)

where Cjr = [yjki, 1 ≤ i ≤ r,−n ≤ k ≤ Nj]
T is the unknown column vector,

Ajr = [diag(aj`), 1 ≤ ` ≤ r] ∈ R(Nj+n+1)×(Nj+n+1)r, aj` = [αjk`,−n ≤ k ≤ Nj],
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is the matrix collecting the coefficients {αjki}, Vnjs = [Bnjk(0),−n ≤ k ≤ Nj] is the row
vector whose entries are the basis functions evaluated at the initial point t = 0,

Dnjs =
[

CDγ
t Bnjk(tp), 1 ≤ p ≤ Ns,−n ≤ k ≤ Nj

]
∈ RNs×(Nj+n+1),

Bnjs =
[
Bnjk(tp), 1 ≤ p ≤ Ns,−n ≤ k ≤ Nj

]
∈ RNs×(Nj+n+1),

are the collocation matrices of the refinable basis, and:

Fs = [ f (tp), 1 ≤ p ≤ Ns]
T ,

is the known term.
The linear system (31) has Ns + 1 equations and (Nj + n+ 1)r unknowns. To guarantee

the existence of a unique solution, for any fixed n and r, the number of collocation points
Ns + 1 and the refinement level j have to be chosen so that number of unknowns is no
greater than the number of equations (cf. [27,36]). In the case when Ns + 1 > (Nj + n + 1)r,
(31) results in an overdetermined linear system that can be solved by the least squares
method. In this case, particular attention should be paid to fulfill the initial condition.

We notice that from the partition of unity property (12) and [18] (Th. 3.1), it follows
that the collocation solution ynj(t) is stable, i.e.,

‖ynj(t)‖∞ ≤ κ ‖ f ‖∞,

where κ is a constant independent of j.
Finally, the collocation method can be proven to be convergent (cf. [27,28]).

Theorem 1. The collocation method is convergent, i.e.:

lim
j→∞
‖y(t)− ynj(t)‖∞ = 0 ,

with convergence order ν provided that y ∈ Cν[0, T], i.e.,

‖y(t)− ynj(t)‖∞ = O(2−jν).

Proof. Using Definition (5), it is easy to show that the fractional differential equation (7) is
equivalent to the integral equation:

z(t) +
b

Γ(γ)

∫ t

0

z(τ)
(t− τ)1−γ

dτ = f (t) ,

where z(t) = CDγ
t y(t). The collocation method can be used also to approximate the

solution to this integral equation, i.e.,

znj(tp) +
b

Γ(γ)

∫ tp

0

znj(τ)

(tp − τ)1−γ
dτ = f (tp) , 1 ≤ p ≤ Ns ,

where znj(t) is the quasi-interpolatory operator (23). Thus, the equivalence implies
that the approximation error ‖y(t) − ynj(t)‖∞ is the same as the approximation error
‖z(t)− znj(t)‖∞ (cf. [36]). Since znj is a spline operator, the convergence is guaranteed
with approximation order ν when y ∈ Cν[0, T] [30].
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3.1. The Fractional Derivative of the Refinable B-Spline Basis

To numerically solve the linear system (31), we need to evaluate the Caputo derivative
of the basis functions Bnjk, −n ≤ k ≤ Nj. For 0 ≤ k ≤ Nj, the Caputo derivative of Bnjk(t)
can be explicitly evaluated by [18,27]:

CDγ
t Bnjk(t) = 2γj ∆n+1Tn−γ(2jt− k)

Γ(n− γ + 1)
, 0 < γ ≤ n . (32)

For −n ≤ k ≤ −1, the functions Bnjk are left edge functions having support on
[0, 2−j(n + k + 1)]. When 0 < γ < 1, their fractional derivative can be explicitly evaluated
by [27]:

CDγ
t Bnjk(t) = 2γj ∆n+1Tn−γ(2jt− k)− Lnjk(2jt)

Γ(n + 1− γ)
, n ≥ 1, (33)

where:

Lnjk(t) =
−k−1

∑
i=0

(−1)i
(

n + 1
i

)(
(t− k− i)n−γ+

t1−γ
n−1

∑
p=0

(−1)n−p(−k− i)n−1−p(t− k− i)p

(n− 1− p)!

n−1−p

∏
s=1

(γ− s)
)

, −n ≤ k ≤ −1 .

(34)

We assume ∏
p
s=1(γ− s) = 1 when p < 1.

In Figure 1, the cubic basis S3j and its fractional derivatives at the refinement level
j = 3 are shown for some values of the fractional derivative γ.
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Figure 1. (a) The cubic basis S3j in the interval [0, 1] at the refinement level j = 3. The left edge
functions are plotted with dashed lines. (b–d) The fractional derivative of the cubic basis for γ = 0.25
(Panel (b)), γ = 0.5 (Panel (c)), and γ = 0.75 (Panel (d)).
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4. Numerical Results

In this section, we show the numerical solutions we obtain by the collocation method
introduced in the previous section.

For the sake of simplicity, in the tests, we chose as collocation points the dyadic points
of the interval I, i.e., {

tp =
p
2s , 0 ≤ p ≤ Ns

}
, (35)

where Ns = 2sT and s ≥ 0 is the collocation level. Moreover, we used as approximating
spaces the refinable spaces generated by the cubic B-spline basis S3j, and we set s = j + 1
so that the time step is ∆t = 2−j−1. We used as approximating functions the two discrete
quasi-interpolatory operators dQ3jy obtained by setting n = 3, r = 1, and r = 2 in (23), i.e.,
the operators given in (26) and (27), respectively. The points τjk1 and τjk2 are the endpoints
of supp B3jk, i.e.,

τjk1 = min(0, 2−jk), τjk2 = max(2−j(k + 4), T), −3 ≤ k ≤ Nj, j ≥ j0.

To analyze the performance of the collocation method, we evaluate the infinity norm
of the approximation error e3j(t) = y(t)− y3j(t), i.e.,

‖e3j‖∞ = max
0≤p≤3Ns

|e3j(tp)|,
{

tp =
p

3 · 2s , 0 ≤ p ≤ 3Ns

}
,

and the numerical convergence order defined as:

ρ3j = log2

(
‖e3,j−1‖∞

‖e3j‖∞

)
.

For the ease of notation, in the following, we will drop the subscript 3.

4.1. Example 1

In the first example, we set b = 0, f (t) = Γ(µ+1)
Γ(µ+1−γ)

tµ−γ and y(0) = 0 so that the initial
value problem (7) becomes:

CDγ
t y(t) = Γ(µ+1)

Γ(µ+1−γ)
tµ−γ, 0 < t ≤ 1, 0 < γ < 1,

y(0) = 0.

In this case, the exact solution is y(t) = tµ. The discretization interval is I = [0, 1].
Since the proposed method reproduces polynomials up to degree three when using

the cubic B-spline basis, to check the polynomial reproducibility, in the first test, we set
µ = 3. Thus, the approximation is exact, and we expect the approximation error to be zero.
Actually, the results listed in Table 1 show that the infinity norm of the error is in the order
of machine precision for both quasi-interpolatory operators dQ3jy with r = 1 and r = 2.

To check the convergence order, in the second test, we set µ = 2.8 so that the theoretical
convergence order is precisely µ. The numerical convergence order for different values
of γ is displayed in Figure 2 as a function of the refinement level j. For comparison, a
line having the same slope as the theoretical convergence order is also displayed. The
infinity norm of the approximation error and the numerical convergence order are listed in
Tables 2 and 3. Table 2 refers to the quasi-interpolatory operators dQ3jy with r = 1, while
Table 3 refers to the case r = 2.
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Table 1. Example 1: The infinity norm of the error ‖ej‖∞ for µ = 3 and different values of the fractional derivative γ and
the refinement level j when using dQ3jy with r = 1 and r = 2 (cf. (26) and (27)). The number of collocation points is
Ns + 1 = 2j + 1.

γ = 0.25 γ = 0.5 γ = 0.75

j Ns + 1 r = 1 r = 2 r = 1 r = 2 r = 1 r = 2

3 17 3.33×10−16 4.44×10−16 4.44×10−16 2.10×10−16 7.77×10−16 1.26×10−15

4 33 1.33×10−15 1.89×10−15 6.88×10−15 2.00×10−15 2.22×10−15 1.78×10−15

5 65 7.80×10−14 3.84×10−14 4.71×10−14 1.78×10−14 1.95×10−14 1.84×10−14

6 129 7.17×10−13 1.06×10−12 1.71×10−13 3.04×10−13 1.14×10−13 2.95×10−13

Table 2. Example 1: The infinity norm of the error and the numerical convergence order for different values of the fractional
derivative γ and the refinement level j when using dQ3jy with r = 1 (cf. (26)). The number of collocation points is
Ns + 1 = 2j + 1.

γ = 0.25 γ = 0.5 γ = 0.75

j Ns + 1 ‖ej‖∞ ρj ‖ej‖∞ ρj ‖ej‖∞ ρj

3 17 1.13×10−5 1.65×10−5 2.35×10−5

4 33 1.63×10−6 2.800 2.38×10−6 2.800 3.37×10−6 2.800

5 65 2.34×10−7 2.800 3.41×10−7 2.800 4.84×10−7 2.800

6 129 3.35×10−8 2.800 4.90×10−8 2.800 6.96×10−8 2.800

Table 3. Example 1: The infinity norm of the error and the numerical convergence order for different values of the fractional
derivative γ and the refinement level j when using dQ3jy with r = 2 (cf. (27)). The number of collocation points is
Ns + 1 = 2j + 1.

γ = 0.25 γ = 0.5 γ = 0.75

j Ns + 1 ‖ej‖∞ ρj ‖ej‖∞ ρj ‖ej‖∞ ρj

3 17 7.77×10−6 9.07×10−6 1.20×10−5

4 33 1.12×10−6 2.800 1.30×10−6 2.800 1.72×10−6 2.800

5 65 1.60×10−7 2.800 1.87×10−7 2.800 2.47×10−7 2.800

6 129 2.30×10−8 2.800 2.69×10−8 2.800 3.55×10−8 2.800
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Figure 2. Example 1: The numerical convergence order ρj for the quasi-interpolatory operator with r = 1 (red solid line)
and r = 2 (blue solid line) for γ = 0.25 (Panel (a)), γ = 0.5 (Panel (b)), and γ = 0.75 (Panel (c)) is displayed as a function of j.
The black dashed line has the same slope as the theoretical convergence order.
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4.2. Example 2

To check the accuracy of the method in the case of large intervals, in the second
example, we set the discretization interval to I = [0, 6]. For this test, we chose f (t) ≡ 0,
b = 1, and y(0) = 1, so that the initial value problem (7) becomes:

CDγ
t y(t) + y(t) = 0, 0 < t ≤ 6, 0 < γ < 1,

y(0) = 1.

One can easily see that in this case, Equation (8) reduces to:

y(t) = Eγ,1(− tγ) . (36)

To evaluate the Mittag–Leffler function appearing in the exact solution, we used the
algorithm given in [37]. The numerical solution and the absolute value of the error for
different values of j and γ are displayed in Figure 3. The numerical convergence order
is shown in Figure 4. For comparison, a line having the same slope as the theoretical
convergence order is also displayed. The infinity norm of the error and the numerical
convergence order as a function of the refinement level j are listed in Tables 4 and 5.
Table 4 refers to the quasi-interpolatory operators dQ3jy with r = 1, while Table 5 refers to
the case r = 2.
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Figure 3. Example 2. (a) The numerical solution y3(t) (blue solid line) and exact solution (red dashed
line). (b–d) The semilog plot of the error |ej(t)| for different values of j for γ = 0.25 (Panel (b)),
γ = 0.5 (Panel (c)), and γ = 0.75 (Panel (d)).
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Table 4. Example 2: The infinity norm of the error and the numerical convergence order for different values of the fractional
derivative γ and the refinement level j when using dQ3jy with r = 1 (cf. (26)). The number of collocation points is
Ns + 1 = 2j 6 + 1.

γ = 0.25 γ = 0.5 γ = 0.75

j Ns + 1 ‖ej‖∞ ρj ‖ej‖∞ ρj ‖ej‖∞ ρj

3 97 1.61×10−1 5.97×10−2 1.40×10−2

4 193 1.41×10−1 0.191 4.29×10−2 0.475 8.33×10−3 0.744

5 385 1.23×10−1 0.199 3.07×10−2 0.482 4.97×10−3 0.746

6 769 1.07×10−1 0.206 2.19×10−2 0.488 2.96×10−3 0.747

Table 5. Example 2: The infinity norm of the error and the numerical convergence order for different values of the fractional
derivative γ and the refinement level j when using dQ3jy with r = 2 (cf. (27)). The number of collocation points is
Ns + 1 = 2j 6 + 1.

γ = 0.25 γ = 0.5 γ = 0.75

j Ns + 1 ‖ej‖∞ ρj ‖ej‖∞ ρj ‖ej‖∞ ρj

3 97 1.12×10−1 4.28×10−2 1.03×10−2

4 193 9.52×10−1 0.236 2.93×10−2 0.546 5.88×10−3 0.808

5 385 7.98×10−2 0.253 1.95×10−2 0.588 3.27×10−3 0.847

6 769 6.61×10−2 0.272 1.24×10−2 0.651 1.72×10−3 0.926
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Figure 4. Example 2: The numerical convergence order ρj for the quasi-interpolatory operator with r = 1 (red solid line)
and r = 2 (blue solid line) for γ = 0.25 (Panel (a)), γ = 0.5 (Panel (b)), and γ = 0.75 (Panel (c)) is displayed as a function of j.
The black dashed line has the same slope as the theoretical convergence order.

5. Discussion

The numerical results in Section 4 show that the collocation method we proposed is
accurate and efficient. As shown in the first example of Section 4.1, the method is exact for
polynomials up to degree n = 3, the degree of the spline approximating function, so that
the error is in the order of the machine precision (cf. Table 1). In the second example of
Section 4.1, the error decreases according to the theoretical convergence rate for both quasi-
interpolatory operators. In fact, the numerical convergence rate is O(2−jν), where ν = 2.8
is the smoothness of the solution y(t) = t2.8 (cf. Tables 2 and 3). Nevertheless, the quasi-
interpolatory operator with r = 2 gives a smaller error showing that higher accuracy
can be achieved by operators with a higher degree of polynomial reproduction. It is
worth noting that the error is rather small even at the low refinement level j = 3, i.e.,
using only 11 basis functions and 16 collocation points. A similar behavior is shown in
the examples of Section 4.2 (cf. Tables 4 and 5). Here, we used a large discretization
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interval, i.e., [0, 6]. We point out that other numerical methods, such as spectral methods
or finite difference methods, require high computational cost to approximate accurately
the solution of fractional differential equations in large intervals. Instead, our method
gives a good accuracy with a low computational cost. In this example, the numerical
convergence rate is slightly different from the theoretical one, which is O(2−jν) with ν = γ.
In particular, the approximation with the quasi-interpolatory operator with r = 1 shows a
lower convergence rate while the quasi-interpolatory operator with r = 2 shows a higher
convergence rate. This behavior is worth investigating in more detail. Finally, we notice
that the error is higher near the left boundary (cf. Figure 3). This can be due to the use of
truncated B-splines as left-edge functions for which initial conditions are more difficult to
fulfil. This problem can be overcome using optimal B-spline bases [38].

The proposed method can be easily applied to more general fractional differential
equations. As an example, we consider the Bagley–Torvik equation:

y′′(t) + CD1.5
t y(t) + y(t) =

15
4

√
t +

15
8
√

π t + t2
√

t , t ∈ [0, 1],

y(0) = y′(0) = 0 ,

(37)

which is a second order multi-term fractional differential equation used to describe the vis-
coelastic properties of real materials [39]. Its exact solution is y(t) = t2

√
t. We numerically

solved Equation (37) using the quasi-interpolatory operator dQnjy with r = 1 and r = 2.
The infinity norm of the error and the numerical convergence order as a function of the
refinement level j are listed in Table 6. We notice that in the case of differential problems
having a second order derivative, the theoretical convergence order is smaller than O(2−jν),
as the numerical results show. The error is comparable with the error obtained by other
spline methods in the literature (cf. [20,22]) and shows that the method is effective also
for this kind of problem. More general problems, such as boundary value problems and
nonlinear problems, will be the subject of a forthcoming paper.

Table 6. Bagley–Torvik equation: the infinity norm of the error and the numerical convergence order
when using dQnjy with r = 1 (left) and r = 2 (right).

r = 1 r = 2

j ‖ej‖∞ ρj j ‖ej‖∞ ρj

3 5.65×10−2 3 3.39×10−3

4 2.89×10−2 0.965 4 1.15×10−3 1.564

5 1.48×10−2 0.971 5 3.87×10−4 1.566

6 7.50×10−3 0.977 6 1.30×10−4 1.577

6. Conclusions

The numerical method presented in this paper combines collocation methods and
spline quasi-interpolatory operators involving divided differences to approximate the
solution to a linear time fractional differential equation. The method is convergent and
reproduces polynomials of suitable degree. The numerical tests confirm the theoretical
results and show that the accuracy of the method can be improved using quasi-interpolatory
operators reproducing polynomials of higher degree.

The use of the proposed method to solve nonlinear fractional differential equations is
at present under study. Moreover, we aim to improve the accuracy of the method by using
optimal spline bases and different kinds of quasi-interpolatory operators.
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