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Abstract: The current study is of interest when performing a useful extension of a crucial physical
problem through a non-local singular fractional operator. We provide solutions that include three
arbitrary parameters α, ρ, and γ for the Resistance-Capacitance (RC), Inductance-Capacitance (LC),
and Resistance-Inductance-Capacitance (RLC) electric circuits utilizing a generalized type fractional
operator in the sense of Caputo, called non-local M-derivative. Additionally, to keep the dimension-
ality of the physical parameter in the proposed model, we use an auxiliary parameter. Owing to
the fact that all solutions depend on three parameters unlike the other solutions containing one or
two parameters in the literature, the solutions obtained in this study have more general results. On
the other hand, in order to observe the advantages of the non-local M-derivative, a comprehensive
comparison is carried out in the light of experimental data. We make this comparison for the RC
circuit between the non-local M-derivative and Caputo derivative. It is clearly shown on graphs that
the fractional M-derivative behaves closer to the experimental data thanks to the added parameters
α, ρ, and γ.

Keywords: physical problems; fractional derivatives; fractional modeling; real-world problems;
electrical circuits

1. Introduction

Fractional derivatives and integrals including non-integer order are the natural gen-
eralizations of the traditional counterparts. Studies of fractional calculus in recent years
have attracted considerable attention due to its advantages for modeling in various areas
of science and engineering. As a result of defining non-integer order derivatives by means
of integral, the non-locality property is one of its major advantages. Hence, the fractional
derivatives involve data about the state variable at earlier points, and so they have a
memory effect, which is useful to describe and comprehend the behavior of the complex
and dynamic system. Moreover, there exist various fractional derivative and integral
definitions in the literature. Accordingly, one of the main difficulties encountered in the
fractional calculus is choosing an appropriate definition of the fractional operator for the
problem under investigation. The Riemann–Liouville (RL) and Caputo fractional operators
possess an important place in understanding the essence of fractional calculus. In particu-
lar, the Caputo fractional derivative is preferred as it is a powerful mathematical tool in
application. The capabilities of the non-integer order derivatives and integrals have been
shown in several rigorous studies such as the tautochrone problem, diffusion equation,
control theory, models in physics, economy, biology, etc. On the other hand, some authors
have proposed modified or generalized type RL and Caputo operators. It should also be
mentioned that many fractional operator definitions are derived from the approach in [1]:
Fractional derivative of a function with respect to (wrt) another function. Katugampola
in [2] introduced a generalized-type fractional operator based on the fractional derivative
of a function wrt another function. Furthermore, the authors in [3] introduced a non-local
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singular fractional derivative and integral by utilizing the same approach. This generalized-
type fractional derivative called non-local M-derivative in the sense of Caputo is defined
by:

MDα,ρ,γ ϕ(t) =
Γ(γ + 1)n−α

Γ(n− α)ρn−α−1

∫ t

a
((t− a)ρ − (ξ − a)ρ)n−α−1

MDn,ρ,γ ϕ(ξ)
dξ

(ξ − a)1−ρ
, (1)

where α ∈ C, n = [Re(α)] + 1, γ > 0, and MDn,ρ,γ(.) is the local derivative as can be seen
in [4]. In [3], the Laplace transform of the Caputo type fractional M-derivative we utilize to
solve the proposed model is as follows:

Lρ,γ{MDnα,ρ,γ ϕ(t)}(s) = sαLρ,γ{ϕ(t)} − sα−1 ϕ(a)− sα−2
MDρ,γ ϕ(a) (2)

− . . .− sα−n+1
MD(n−2)ρ,γ ϕ(a)− sα−n

MD(n−1)ρ,γ ϕ(a).

In a similar way, in [5], the authors presented a proportional-type non-local singular
fractional operator under the local proportional derivative, which is formed by using
control theory. With the help of this local derivative, novel fractional operators called
proportional Caputo and constant proportional Caputo was defined in [6].

The existence of several fractional derivative and integral definitions allow us to
employ the most appropriate definition for the problem addressed in order to obtain more
precise results. Although many of these various definitions are quite similar, their physical
interpretations may differ. It is widely known that some crucial physical properties may not
be observed in classical models. In other words, such dissipative impacts on the electrical
components like resistance, capacitance, and inductance as ohmic friction, non-linearity,
thermal memory, etc. are not taken into account by means of the traditional approach.
Consequently, there exist various physical problems handled by non-local fractional op-
erators to capture the advantages of new generation non-integer order operators. One
of the most important of the above-mentioned problems is the electrical circuits model.
In [7], Gomez et al. implemented the electrical circuits with respect to the non-integer
order operators to reach the analytical and numerical solutions of the proposed model,
including the arbitrary parameters. In addition, the fractional Resistance-Capacitance (RC)
and Resistance-Inductance-Capacitance (RLC) circuits were studied by employing some
kinds of fractional operators with singular or non-singular kernels in [8]. In [9], the authors
introduced the circuit elements like RC, RL, and LC via a new type non-local non-singular
fractional operator under experimental data obtained from an electronic laboratory at
CENIDET. The same model is investigated in [10] with a detailed comparative analysis
between RL and RC circuits by means of non-singular fractional derivatives. The authors
in [11] analyzed the model mentioned with the help of the generalized fractional derivative
introduced by Katugampola. Moreover, the authors in [12] presented the RC, LC, and RLC
circuits by employing a local-based derivative, and they obtained the analytical and nu-
merical results. Hence, motivated by all these studies, we introduce more general solutions
with the help of a generalized-type non-local singular fractional operator involving three
arbitrary parameters introduced by Acay et al. in [3]. For some applications and beneficial
information on fractional calculus, we refer the reader to [13–25].

The structure of the present paper is constituted as follows: In Section 2, the solutions
of fractional RC, LC, and RLC electrical circuits are presented with various visual results
and comprehensive interpretation. Then, in Section 3, we show a comparison between two
efficient operators under an experimental data with some graphs and mention the crucial
conclusions of our study.

2. Fractional Electrical Circuits

In this section, we present the RC and RLC electrical circuit including constant, ex-
ponential, and periodic sources. The fractional solutions are obtained by means of the
non-local singular M-derivative containing three parameters α, ρ, and γ. Hence, we get
the generalized version of the solutions obtained in the literature. The main purpose is to
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perform an extension of the ordinary differential equations to the fractional version via
a non-local singular generalized derivative. On the other hand, preserving the physical
dimensionality of the non-integer order operator is crucial in the application. In pure
mathematics, generally, the integer-order derivative is replaced with non-integer order
ones but this is not enough for physical problems and some applications in engineering.
Therefore, dimensional modification is required for the fractional case. For this purpose,
we employ the auxiliary parameter σ for the non-local fractional M-derivative in the sense
of Caputo as follows:

d
dt
→ σαρ−1

MDα,ρ,γ, (3)

and
d2

dt2 → σ2(αρ−1)
MDα,ρ,γ, (4)

where α, ρ, and γ are arbitrary parameters, and the dimensionality of σ is the second (s).
Hence, we employ this approach in order to get the solutions of the fractional electrical
circuits with the help of the Caputo-type M-derivative [9,19,26].

2.1. Fractional RC Electrical Circuits under Non-Local M-Derivative in the Sense of Caputo

The RC series circuit differential equation under Kirchhoff’s law can be expressed by the
non-local M-derivative in the sense of Caputo considering the relations Equations (3) and (4)
as below:

σαρ−1
MDα,ρ,γVc(t) +

1
ω

Vc(t) =
1
ω

e(t), (5)

where ω = RC is the time constant, R represents the resistance, C symbolizes the capac-
itance, the voltage on the capacitor is expressed by the function Vc(t), and e(t) is the
source voltage. On the other hand, while σ1−αρ/RC is fractional time constant, 1/RC is
a traditional time constant. It should be noted that normally the dimension of the non-
local M-derivative operator is (time)−αρ (the parameter γ does not affect the dimension),
but under favor of the term σαρ−1, we eliminate the dimension mismatch physically.

Now, let us solve the Equation (5) with the help of the Laplace transform of the
non-local fractional M-derivative under three main case with different types of sources
as follows:

Case 1. (Constant source). If we consider e(t) = e0, Vc(0) = V0 (V0 > 0), we can
rearrange Equation (5) as:

MDα,ρ,γVc(t) +
σ1−αρ

ω
Vc(t) =

σ1−αρ

ω
e0. (6)

Applying LT of the non-local M-derivative in the Caputo sense, we have:

Lρ,γ{MDα,ρ,γVc(t)}+
σ1−αρ

ω
Lρ,γ{Vc(t)} = Lρ,γ

{
σ1−αρ

ω
e0

}
, (7)

sαLρ,γ{Vc(t)} − sα−1Vc(0) +
σ1−αρ

ω
Lρ,γ{Vc(t)} =

e0σ1−αρ

sω
, (8)

after some arrangements, one can get:

Lρ,γ{Vc(t)} = V0
sα−1

sα + σ1−αρ

ω

+
e0σ1−αρ

ω

1

s
(

sα + σ1−αρ

ω

) , (9)

hence if we take the inverse LT of Equation (9), we reach the following solution:

Vc(t) = V0Eα

(
−σ1−αρ

ω

(
Γ(γ + 1)

tρ

ρ

)α)
+ e0

[
1− Eα

(
−σ1−αρ

ω

(
Γ(γ + 1)

tρ

ρ

)α)]
, (10)
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where Eα(.) is the Mittag–Leffler function.
It can be seen that the fractional solution follows exponential dynamics if α, ρ, and γ

are closer to 1. In Figures 1 and 2 we show the plot for Case 1 (constant source) when R = 1
Ω, C = 10 F, e0 = 5 V, and Vc(0) = 10 V, and in Figures 3 and 4, we use the values R = 1
Ω, C = 10 F, e0 = 5 V, and Vc(0) = 0 V. We observe the behavior of voltage across the
capacitor in the RC circuit for e(t) = e0 in Figures 1–4 when α changes; α = 1, 0.9, 0.8, 0.7,
ρ = 0.9, and γ = 0.9, when ρ changes; ρ = 1, 0.9, 0.8, 0.7, α = 0.9, and γ = 1.5, and when γ
changes; γ = 1, 1, 6, 1.8, 2, α = 0.9, and ρ = 0.9. In this way, the impact of the parameters
α, ρ, and γ can clearly by observed on the solutions curves separately. On the other hand,
in Figure 1, we observe that for the small values of α, the solution curve tends to stabilize
in less time with exponential behavior. However for a classical case (when α = 1, ρ = 1,
and γ = 1) it stabilizes in longer time. In Figure 2a, we see similar behavior in the solutions
curves when ρ changes. However, the effect of the parameter γ is different from the effect
of the parameters α and ρ as can be seen in Figures 2b and 4b. It can be observed that for
smaller values of γ, the solution curve approaches to stabilize in a longer time. Moreover,
in Figures 1 and 2, one can see that the solution curves are exponentially decreasing, and in
Figures 3 and 4, the exponentially increasing overdamped system.

Case 2. (Exponential source). Let e(t) = e0e−λΓ(γ+1) tρ
ρ , Vc(0) = V0 (V0 > 0). Then

we can rewrite the Equation (5) as follows:

MDα,ρ,γVc(t) +
σ1−αρ

ω
Vc(t) =

σ1−αρ

ω
e0e−λΓ(γ+1) tρ

ρ . (11)

If we take the LT of the Equation (11), we have:

Lρ,γ{MDα,ρ,γVc(t)}+
σ1−αρ

ω
Lρ,γ{Vc(t)} =

e0σ1−αρ

ω
Lρ,γ

{
e−λΓ(γ+1) tρ

ρ

}
, (12)

sαLρ,γ{Vc(t)} − sα−1Vc(0) +
σ1−αρ

ω
Lρ,γ{Vc(t)} =

e0σ1−αρ

ω(s + λ)
, (13)

Lρ,γ{Vc(t)} =
e0σ1−αρ

ω

1

(s + λ)
(

sα + σ1−αρ

ω

) + V0
sα

s
(

sα + σ1−αρ

ω

) , (14)

applying the inverse LT and the convolution theorem, we can obtain the solution as:

Vc(t) = V0Eα

(
−σ1−αρ

ω

(
Γ(γ + 1)

tρ

ρ

)α)
+

e0σ1−αρ

ω
Γ(γ + 1)

∫ t

0

(
Γ(γ + 1)

tρ

ρ
− Γ(γ + 1)

τρ

ρ

)α−1
(15)

× Eα,α

(
−σ1−αρ

ω

(
Γ(γ + 1)

tρ

ρ
− Γ(γ + 1)

τρ

ρ

)α)
× exp

(
−λΓ(γ + 1)

τρ

ρ

)
τρ−1dτ.

Case 3. (Oscillatory source). If we suppose that e(t) = e0 cos
(

θΓ(γ + 1) tρ

ρ

)
, Vc(0) = V0

(V0 > 0), then we can write:

MDα,ρ,γVc(t) +
σ1−αρ

ω
Vc(t) =

σ1−αρ

ω
e0 cos

(
θΓ(γ + 1)

tρ

ρ

)
. (16)

Taking LT of the Equation (16), we readily have:

Lρ,γ{MDα,ρ,γVc(t)}+
σ1−αρ

ω
Lρ,γ{Vc(t)} =

e0σ1−αρ

ω
Lρ,γ

{
cos
(

θΓ(γ + 1)
tρ

ρ

)}
, (17)
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sαLρ,γ{Vc(t)} − sα−1Vc(0) +
σ1−αρ

ω
Lρ,γ{Vc(t)} =

e0σ1−αρs
ω(θ2 + s2)

, (18)

Lρ,γ{Vc(t)} =
e0σ1−αρ

ω

s

(θ2 + s2)
(

sα + σ1−αρ

ω

) + V0
sα

s
(

sα + σ1−αρ

ω

) , (19)

after applying inverse LT transform and convolution theorem, one can reach the solution below:

Vc(t) = V0Eα

(
−σ1−αρ

ω

(
Γ(γ + 1)

tρ

ρ

)α)
+

e0σ1−αρ

ω
Γ(γ + 1)

∫ t

0

(
Γ(γ + 1)

tρ

ρ
− Γ(γ + 1)

τρ

ρ

)α−1
(20)

× Eα,α

(
−σ1−αρ

ω

(
Γ(γ + 1)

tρ

ρ
− Γ(γ + 1)

τρ

ρ

)α)
× cos

(
θΓ(γ + 1)

tρ

ρ

)
τρ−1dτ.

For oscillatory source case involving the angular frequency θ (e(t) = e0 cos(θt)), we
present Figures 5–8 for various values of the α, γ, and ρ when R = 1 Ω, C = 10 F, e0 = 10 V,
θ = 60 Hz, and Vc(0) = 10 V. We should note that in the case of standard approach α = 1,
ρ = 1, and γ = 1, some losses which are based on the ohmic friction, temperature, and so
on are not considered. However, the non-integer order approach enables us to examine the
proposed physical problem more precisely. It is also seen that the solutions curves with
different values of α, ρ, and γ are below or under the traditional solution curve for a time.
This situation varies for different arbitrary parameter values. On the other hand, we can see
the behavior of voltage across the capacitor in the RC circuit for e(t) = e0 cos

(
Γ(γ + 1) tρ

ρ

)
in Figures 5–8 when α changes; α = 1, 0.995, 0.99, 0.985, ρ = 0.9, and γ = 1.5, when ρ
changes; ρ = 1, 0.9, 0.8, 0.7, α = 0.9, and γ = 0.9, and when γ changes; γ = 1, 1, 15, 1.2, 1.25,
α = 0.9, and ρ = 0.9. Furthermore, in Figures 5 and 6, we can also observe that the
period may change under the fractional-order derivative, the apparent motion of the
solution curves obtained by employing the arbitrary order may appear more complicated,
and the extremes of the solution function can change for different values of fractional
order. In addition, for different values R and C, the wave height and length change in
Figures 7 and 8, respectively.

0 1 2 3 4 5 6 7 8 9 10

time

6.5

7

7.5

8

8.5

9

9.5

10

V
c
(t

)

Classical =0.9 =0.8 =0.7

=0.9, =0.9

Figure 1. This figure corresponds to the function Vc(t) with constant source for different values of α,
ρ, and γ in order to show the effect of α on solution curves when R = 1 Ω, C = 10 F, e0 = 5 V, and
Vc(0) = 10.
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0 1 2 3 4 5 6 7 8 9 10

time

6.5

7

7.5

8

8.5

9

9.5

10

V
c
(t

)

Classical =0.9 =0.8 =0.7

=0.9, =1.5

(a)

0 1 2 3 4 5 6 7 8 9 10

time

6

6.5

7

7.5

8

8.5

9

9.5

10

V
c
(t

)

Classical =1.6 =1.8 =2

=0.9, =0.9

(b)

Figure 2. The figure (a) corresponds to the function Vc(t) with constant source for different values of α, ρ, and γ in order to
show the effect of α and γ, and also the figure (b) is plotted to show the effect of α and ρ when R = 1 Ω, C = 10 F, e0 = 5 V,
and Vc(0) = 10.

0 1 2 3 4 5 6 7 8 9 10

time

0

0.5

1

1.5

2

2.5

3

3.5

V
c
(t

)

Classical =0.9 =0.8 =0.7

=0.9, =0.9

Figure 3. This figure corresponds to the function Vc(t) with a constant source for different values of
α, ρ, and γ in order to show the effect of α on solution curves when R = 1 Ω, C = 10 F, e0 = 5 V, and
Vc(0) = 0.
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(a)
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V
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Classical =1.6 =1.8 =2
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(b)

Figure 4. The figure (a) corresponds to the function Vc(t) with constant source for different values of α, ρ, and γ in order to
show the effect of α and γ, and also the figure (b) is plotted to show the effect of α and ρ when R = 1 Ω, C = 10 F, e0 = 5 V,
and Vc(0) = 0.
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0 1 2 3 4 5 6 7 8 9 10

time

-4
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0

1

2

3

V
c
(t

)

10-4

Classical =0.995 =0.99 =0.985

=0.9,

=1.5

Figure 5. This figure corresponds to the function Vc(t) with an oscillatory source for different values
of α, ρ, and γ in order to show the effect of α on solution curves when R = 1 Ω, C = 10 F, e0 = 10 V,
and θ = 60 Hz, Vc(0) = 10.

0 1 2 3 4 5 6 7 8 9 10

time

-4

-3

-2

-1

0

1

2

3

V
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Classical =0.9 =0.8 =0.7

=0.9, =0.9

(a)

0 1 2 3 4 5 6 7 8 9 10
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0

1

2

3

V
c
(t

)
10-4

Classical =1.15 =1.2 =1.25

=0.9, =0.9

(b)

Figure 6. The figure (a) corresponds to the function Vc(t) with an oscillatory source for different values of α, ρ, and γ in order to show
the effect of α and γ, and also the figure (b) is plotted to show the effect of α and ρ on solution curves when R = 1 Ω, C = 10 F, e0 = 10
V, and θ = 60 Hz, Vc(0) = 10.
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10-4

R=1 R=2 R=3 R=4

Figure 7. This figure corresponds to the function Vc(t) with an oscillatory source for some values
of α, ρ, and γ in order to show the effect of resistance on solution curves when α = 1, ρ = 1, γ = 1,
C = 10 F, e0 = 10 V, and θ = 60 Hz, Vc(0) = 10.
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0 1 2 3 4 5 6 7 8 9 10

time

-4
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0

1

2

3

V
c
(t

)

10-4

C=10 C=15 C=20 C=25

=0.95, =0,95, =0.95

Figure 8. This figure corresponds to the function Vc(t) with an oscillatory source for some values
of α, ρ, and γ in order to show the effect of capacitance on solution curves when α = 0.95, ρ = 0.95,
γ = 1.5, C = 10 F, e0 = 10 V, and θ = 60 Hz, Vc(0) = 10.

2.2. Fractional Inductance-Capacitance (LC) Electrical Circuits under Non-Local M-Derivative in
the Sense of Caputo

If the law of Kirchhoff is applied, then the LC series circuit differential equation under
the relations Equations (3) and (4) can be presented by:

σ2(αρ−1)
MD2α,ρ,γI(t) +

1
η

I(t) =
C
η

e(t), (21)

where η = LC, L represents the inductance, the capacitance is denoted by C, and e(t)
stands for source voltage. Now, we solve the above-stated equation by employing LT of
the non-local fractional M-derivative with three case including different sources as below:

Case 1. (Constant source). Supposing e(t) = e0, I(0) = I0 (I0 > 0), MDæ,flI(0) = 0,
we can express the Equation (21) as:

MD2α,ρ,γI(t) +
σ2(1−αρ)

η
I(t) =

Cσ2(1−αρ)

η
e0, (22)

where η = LC and C is the capacitance. If we apply the LT to Equation (22), we have:

Lρ,γ{MD2α,ρ,γI(t)}+ σ2(1−αρ)

η
Lρ,γ{I(t)} = Lρ,γ

{
Cσ2(1−αρ)e0

η

}
, (23)

sαLρ,γ{I(t)} − sα−1I(0)− sα−2
MDæ,flI(0) +

σ2(1−αρ)

η
Lρ,γ{I(t)} =

Cσ2(1−αρ)e0

sη
, (24)

Lρ,γ{I(t)} = I0
sα−1

sα + σ2(1−αρ)

η

+
Cσ2(1−αρ)e0

η

1

s
(

sα + σ2(1−αρ)

η

) , (25)
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and if we apply the inverse LT to the Equation (25), we reach the following solution:

I(t) = I0Eα

(
−σ2(1−αρ)

η

(
Γ(γ + 1)

tρ

ρ

)α
)
+ Ce0

[
1− Eα

(
−σ2(1−αρ)

η

(
Γ(γ + 1)

tρ

ρ

)α
)]

. (26)

1
η = 1

LC in Equation (21) represents the natural angular frequency, and the initial charge
of the capacitor is denoted by I0. In Figure 9, A and B correspond to Equation (26) with
constant source when I(0) = 0 and I(0) = 10, respectively. These plots are obtained when
α = 1, 0.9, 0.8, 0.7, ρ = 1, 0.9, 0.8, 0.7, and γ = 0.7. The system is exponentially increasing
in A and exponentially decreasing in B. We see that the solution curve tends faster to the
steady state for small values of α and ρ.

Case 2. (Exponential source). Let e(t) = e0e−λΓ(γ+1) tρ
ρ , I(0) = I0 (I0 > 0),

MDρ,γI(0) = 0, then Equation (21) can be written as follows:

MD2α,ρ,γI(t) +
σ2(1−αρ)

η
I(t) =

Cσ2(1−αρ)

η
e0e−λΓ(γ+1) tρ

ρ , (27)

applying the LT to Equation (27), we have:

Lρ,γ{MD2α,ρ,γI(t)}+ σ2(1−αρ)

η
Lρ,γ{I(t)} =

Cσ2(1−αρ)e0

η
Lρ,γ{e−λΓ(γ+1) tρ

ρ }, (28)

sαLρ,γ{I(t)} − sα−1I(0)− sα−2
MDæ,flI(0) +

σ2(1−αρ)

η
Lρ,γ{I(t)} =

Cσ2(1−αρ)e0

η(s + λ)
, (29)

Lρ,γ{I(t)} = I0
sα−1

sα + σ2(1−αρ)

η

+
Cσ2(1−αρ)e0

η

1

(s + λ)
(

sα + σ2(1−αρ)

η

) , (30)

after taking inverse LT, one can attain the following solution:

I(t) = I0Eα

(
−σ2(1−αρ)

η

(
Γ(γ + 1)

tρ

ρ

)α
)

(31)

+
Cσ2(1−αρ)e0

η
Γ(γ + 1)

∫ t

0

(
Γ(γ + 1)

tρ

ρ
− Γ(γ + 1)

τρ

ρ

)α−1

× Eα,α

(
−σ2(1−αρ)

η

(
Γ(γ + 1)

tρ

ρ
− Γ(γ + 1)

τρ

ρ

)α
)

× exp
(
−λΓ(γ + 1)

τρ

ρ

)
τρ−1dτ.

Figure 10 corresponds to solution Equation (31) including exponential source when
α = 1, 0.9, 0.8, 0.7, ρ = 1, 0.9, 0.8, 0.7, γ = 0.9, C = 0.5 F, L = 2.4 H, λ = 0.05, e0 = 5 V, and
I(0) = 0. From Figures 10 and 11, we observe an oscillatory behavior and the effect of the
parameters α, ρ, and γ on the function I(t). Furthermore, in Figure 11 corresponding to I(t)
with exponential source, the impact of arbitrary parameters when α = 0.9, ρ = 0.9, γ = 0.9
in A, and α = 0.5, ρ = 0.5, γ = 0.5 in B for L = 2.4, 3.4, 4.4, 5.4 can clearly be seen. It is
worth mentioning that in Figures 9 and 10, having exponential behavior, while the classical
solution function tends to stabilize slower, the fractional solution function with smaller
values of α and ρ approach to stabilize in less time. On the other hand, one can see the
oscillatory behavior underdamped system in Figures 10 and 11. In Figure 12, the different
values of the parameter L change the wave height critically.
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Case 3. (Oscillatory source). Assuming that e(t) = e0 cos
(

θΓ(γ + 1) tρ

ρ

)
, I(0) = I0

(I0 > 0), and MDæ,flI(0) = 0, we present the Equation (21) in the following form:

MD2α,ρ,γI(t) +
σ2(1−αρ)

η
I(t) =

Cσ2(1−αρ)

η
e0 cos

(
θΓ(γ + 1)

tρ

ρ

)
, (32)

by applying the LT, we get:

Lρ,γ{MD2α,ρ,γI(t)}+ σ2(1−αρ)

η
Lρ,γ{I(t)} =

Cσ2(1−αρ)e0

η
Lρ,γ

{
cos
(

θΓ(γ + 1)
tρ

ρ

)}
, (33)

sαLρ,γ{I(t)} − sα−1I(0)− sα−2
MDæ,flI(0) +

σ2(1−αρ)

η
Lρ,γ{I(t)} =

Csσ2(1−αρ)e0

η(θ2 + s2)
, (34)

Lρ,γ{I(t)} = I0
sα−1

sα + σ2(1−αρ)

η

+
Cσ2(1−αρ)e0

η

s

(θ2 + s2)(sα + σ2(1−αρ)

η )
, (35)

and if we apply the inverse LT, then we get the solution below:

I(t) = I0Eα

(
−σ2(1−αρ)

η

(
Γ(γ + 1)

tρ

ρ

)α
)

(36)

+
Cσ2(1−αρ)e0

η
Γ(γ + 1)

∫ t

0

(
Γ(γ + 1)

tρ

ρ
− Γ(γ + 1)

τρ

ρ

)α−1

× Eα,α

(
−σ2(1−αρ)

η

(
Γ(γ + 1)

tρ

ρ
− Γ(γ + 1)

τρ

ρ

)α
)

× cos
(

θΓ(γ + 1)
tρ

ρ

)
τρ−1dτ.

Figure 12 is plotted for the solution Equation (36) when L = 2, 3, 4, 5 and γ = 0.95.
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(a)
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Figure 9. The figure (a) corresponds to the function I(t) with constant source for various values of α, ρ, and γ in order to show the
effect of arbitrary parameter γ when γ = 0.7, C = 0.5 F, L = 2.4, e0 = 5 V, I(0) = 0, and similarly the figure (b) is plotted to show the
effect of γ on solution curves when γ = 0.7, C = 0.5 F, L = 2.4, e0 = 5 V, and I(0) = 10.
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Figure 10. This graph corresponds to the solution Equation (31) containing exponential source for
various values of α and ρ when γ = 0.9, C = 0.5 F, L = 2.4 H, λ = 0.05, e0 = 5 V, and I(0) = 0.
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Figure 11. The figure (a) corresponds to the solution Equation (31) containing exponential source for various values of α, ρ,
and γ in order to see the effect of parameter L when C = 0.5 F, λ = 0.05, e0 = 5 V, and I(0) = 0, and similarly the figure (b)
is plotted to show the effect of L on solution curves when C = 0.5 F, λ = 0.05, e0 = 5 V, and I(0) = 0.
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Figure 12. This graph corresponds to solution Equation (36) including oscillatory source for various
values of α and ρ and γ in order to see the effect of L when C = 47 F, e0 = 50 V, θ = 60 Hz, and
I(0) = 0.
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2.3. Fractional RLC Electrical Circuits under Non-Local M-Derivative in the Sense of Caputo

The fractional RLC series circuit differential equation can be presented according to
the non-local M-derivative as below:

σ2(αρ−1)
MD2α,ρ,γq(t) +

CR
δ

σαρ−1
MDα,ρ,γq(t) +

1
δ

q(t) =
C
δ

e(t), (37)

where δ = LC, L denotes the inductance, the capacitance is represented by C, R stands for
the resistance, and e(t)is the source voltage. Let us solve Equation (37) under the fractional
non-local M-derivative with the help of the LT. We present three cases including different
types of sources as follows:

Case 1. (Constant source). Assuming that e(t) = e0, q(0) = q0, and MDρ,γq(0) = 0,
we give Equation (37) the following form:

MD2α,ρ,γq(t) +
CR
δ

σ1−αρ
MDα,ρ,γq(t) +

σ2(1−αρ)

δ
q(t) =

Cσ2(1−αρ)e0

δ
, (38)

by applying the LT of the Equation (38), then we attain:

Lρ,γ{MD2α,ρ,γq(t)}+ CRσ1−αρ

δ
Lρ,γ{MDα,ρ,γq(t)}+ σ2(1−αρ)

δ
Lρ,γ{q(t)} = Lρ,γ

{
Cσ2(1−αρ)e0

δ

}
, (39)

sα Lρ,γ{q(t)} − sα−1q(0)− sα−2
MDρ,γq(0)

+
CRσ1−αρ

δ

[
sαLρ,γ{q(t)} − sα−1q0

]
+

σ2(1−αρ)

δ
Lρ,γ{q(t)} (40)

=
Cσ2(1−αρ)e0

sδ
,

Lρ,γ{q(t)} = q0
sα−1

sα
(

1 + CRσ1−αρ

δ

)
+ σ2(1−αρ)

δ

+ q0
CRσ1−αρ

δ

sα−1

sα
(

1 + CRσ1−αρ

δ

)
+ σ2(1−αρ)

δ

(41)

+
Cσ2(1−αρ)e0

δ

1

s
[
sα
(

1 + CRσ1−αρ

δ

)
+ σ2(1−αρ)

δ

] ,

Lρ,γ{q(t)} = q0
δ

δ + CRσ1−αρ

sα−1

sα + σ2(1−αρ)

δ+CRσ1−αρ

+ q0
CRσ1−αρ

δ + CRσ1−αρ

sα−1

sα + σ2(1−αρ)

δ+CRσ1−αρ

(42)

+
Cσ2(1−αρ)e0

δ + CRσ1−αρ

1

s
(

sα + σ2(1−αρ)

δ+CRσ1−αρ

) ,

and by taking the inverse LT, we reach the solution as follows:

q(t) = q0
δ

δ + CRσ1−αρ
Eα

(
− σ2(1−αρ)

δ + CRσ1−αρ

(
Γ(γ + 1)

tρ

ρ

)α
)

+ q0
CRσ1−αρ

δ + CRσ1−αρ
Eα

(
− σ2(1−αρ)

δ + CRσ1−αρ

(
Γ(γ + 1)

tρ

ρ

)α
)

(43)

+
Cσ2(1−αρ)e0

δ + CRσ1−αρ

[
1− Eα

(
− σ2(1−αρ)

δ + CRσ1−αρ

(
Γ(γ + 1)

tρ

ρ

)α
)]

.

The plots for the solution Equation (43) is presented in Figures 13 and 14. We show the
behavior of the function q(t) with constant source when α = 1, 0.9, 0.8, 0.7, ρ = 1, 0.9, 0.8, 0.7,
γ = 1.2 according to R = 2 Ω, L = 10 H, C = 0.1 F, e0 = 5 V, q(0) = 10, and
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MDα,ρ,γq(0) = 0. On the other hand, in Figure 14, one can see the solutions curves
for some values of R and L when α = 0.7, ρ = 0.8, and γ = 0.9. Moreover, Figures 13 and 14
show exponential behavior when R and L change for different values of fractional-orders. It is clear
that fractional-orders have the power to increase or decrease wavelength and height as can be seen
in Figures 15 and 16 showing oscillatory behavior under the damping system.

Case 2. (Exponential source). Let us assume that e(t) = e0e−λΓ(γ+1) tρ
ρ , q(0) = q0,

and MDρ,γq(0) = 0, we present Equation (37) as:

MD2α,ρ,γq(t) +
CR
δ

σ1−αρ
MDα,ρ,γq(t) +

σ2(1−αρ)

δ
q(t) =

Cσ2(1−αρ)

δ
e0e−λΓ(γ+1) tρ

ρ , (44)

and taking the LT of the Equation (44), we can get:

Lρ,γ{MD2α,ρ,γq(t)}+ CRσ1−αρ

δ
Lρ,γ{MDα,ρ,γq(t)}+ σ2(1−αρ)

δ
Lρ,γ{q(t)} =

Cσ2(1−αρ)e0

δ
Lρ,γ{e−λΓ(γ+1) tρ

ρ }, (45)

sαLρ,γ{q(t)} − sα−1q(0)− sα−2
MDρ,γq(0) (46)

+
CRσ1−αρ

δ

[
sαLρ,γ{q(t)} − sα−1q0

]
+

σ2(1−αρ)

δ
Lρ,γ{q(t)}

=
Cσ2(1−αρ)e0

δ(s + λ)
,

Lρ,γ{q(t)} = q0
δ

δ + CRσ1−αρ

sα−1

sα + σ2(1−αρ)

δ+CRσ1−αρ

+ q0
CRσ1−αρ

δ + CRσ1−αρ

sα−1

sα + σ2(1−αρ)

δ+CRσ1−αρ

(47)

+
Cσ2(1−αρ)e0

δ + CRσ1−αρ

1
s + λ

1

sα + σ2(1−αρ)

δ+CRσ1−αρ

,

q(t) = q0
δ

δ + CRσ1−αρ
Eα

(
− σ2(1−αρ)

δ + CRσ1−αρ

(
Γ(γ + 1)

tρ

ρ

)α
)

+ q0
CRσ1−αρ

δ + CRσ1−αρ
Eα

(
− σ2(1−αρ)

δ + CRσ1−αρ

(
Γ(γ + 1)

tρ

ρ

)α
)

+
Cσ2(1−αρ)e0

δ + CRσ1−αρ
Γ(γ + 1)

∫ t

0

(
Γ(γ + 1)

tρ

ρ
− Γ(γ + 1)

τρ

ρ

)α−1
(48)

× Eα,α

(
− σ2(1−αρ)

δ + CRσ1−αρ

(
Γ(γ + 1)

tρ

ρ
− Γ(γ + 1)

τρ

ρ

)α
)

× exp
(
−λΓ(γ + 1)

τρ

ρ

)
τρ−1dτ.

Figures 15 and 16 show the behavior of the solution Equation (48) under the ex-
ponential source for some values of α and ρ when γ = 0.8 and γ = 1.5, respectively.
By deliberately choosing the α and ρ values the same on these two figures, we change the
value of γ and clearly observe its effect on the system.

Case 3. (Oscillatory source). Supposing that e(t) = e0 cos
(

θΓ(γ + 1) tρ

ρ

)
, q(0) = q0,

and MDρ,γq(0) = 0, we present Equation (37) as:

MD2α,ρ,γq(t) +
CR
δ

σ1−αρ
MDα,ρ,γq(t) +

σ2(1−αρ)

δ
q(t) =

Cσ2(1−αρ)

δ
e0 cos

(
θΓ(γ + 1)

tρ

ρ

)
, (49)



Fractal Fract. 2021, 5, 9 14 of 18

by taking the LT of Equation (49), we attain the following relation:

Lρ,γ{MD2α,ρ,γq(t)}+ CRσ1−αρ

δ
Lρ,γ{MDα,ρ,γq(t)}+ σ2(1−αρ)

δ
Lρ,γ{q(t)} (50)

=
Cσ2(1−αρ)e0

δ
Lρ,γ

{
cos
(

θΓ(γ + 1)
tρ

ρ

)}
,

sαLρ,γ{q(t)} − sα−1q(0)− sα−2
MDρ,γq(0)

+
CRσ1−αρ

δ

[
sαLρ,γ{q(t)} − sα−1q0

]
+

σ2(1−αρ)

δ
Lρ,γ{q(t)} (51)

=
Cσ2(1−αρ)e0

δ

s
θ2 + s2 ,

Lρ,γ{q(t)} = q0
δ

δ + CRσ1−αρ

sα−1

sα + σ2(1−αρ)

δ+CRσ1−αρ

+ q0
CRσ1−αρ

δ + CRσ1−αρ

sα−1

sα + σ2(1−αρ)

δ+CRσ1−αρ

(52)

+
Cσ2(1−αρ)e0

δ + CRσ1−αρ

s
θ2 + s2

1

sα + σ2(1−αρ)

δ+CRσ1−αρ

,

q(t) = q0
δ

δ + CRσ1−αρ
Eα

(
− σ2(1−αρ)

δ + CRσ1−αρ

(
Γ(γ + 1)

tρ

ρ

)α
)

+ q0
CRσ1−αρ

δ + CRσ1−αρ
Eα

(
− σ2(1−αρ)

δ + CRσ1−αρ

(
Γ(γ + 1)

tρ

ρ

)α
)

+
Cσ2(1−αρ)e0

δ + CRσ1−αρ
Γ(γ + 1)

∫ t

0

(
Γ(γ + 1)

tρ

ρ
− Γ(γ + 1)

τρ

ρ

)α−1
(53)

× Eα,α

(
− σ2(1−αρ)

δ + CRσ1−αρ

(
Γ(γ + 1)

tρ

ρ
− Γ(γ + 1)

τρ

ρ

)α
)

× cos
(

θΓ(γ + 1)
tρ

ρ

)
τρ−1dτ.
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Figure 13. This plot is for the function q(t) with respect to the constant source for some values of α

and ρ when γ = 1.2, R = 2 Ω, L = 10 H, C = 0.1 F, e0 = 5 V, q(0) = 10, and MDα,ρ,γq(0) = 0.
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Figure 14. The figure (a) is for the function q(t) with respect to the constant source for some values of α, ρ, and γ in order
to see the impact of R, and the figure (b) is plotted to see the effect of L when R = 2 Ω, L = 10 H, C = 0.1 F, e0 = 5 V,
q(0) = 10, and MDα,ρ,γq(0) = 0.
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Figure 15. This plot is for the function q(t) with respect to the exponential source for some values of
α and ρ when γ = 0.8, e0 = 5 V, L = 10 H, C = 0.1 F, R = 2 Ω, q(0) = 10, and MDα,ρ,γq(0) = 0.
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Figure 16. This plot is for the function q(t) with respect to the exponential source for some values of
α and ρ when γ = 1.5, e0 = 5 V, L = 10 H, C = 0.1 F, R = 2 Ω, q(0) = 10, and MDα,ρ,γq(0) = 0.
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3. Comparative Analysis and Concluding Remarks

Here, we have performed a comparative analysis to observe the impact of the ad-
ditional parameters inside the non-local fractional M-derivative. For this purpose, we
have compared our results with the solution obtained via the Caputo operator in [8]. This
comparison has been carried out for the RC circuit with constant source by employing
the experimental data obtained from the electronic laboratory in CENIDET. The used
experimental data is R = 10 Ω, C = 1000 F, e0 = 7.58, and Vc(0) = 0 and for the second
case, R = 10 Ω, C = 1000 F, e0 = 0, and Vc(0) = 7.58 as seen in [8]. The values for
Figures 17 and 18 are as follows: R = 10 Ω, C = 1000 F, e0 = 7.58, Vc(0) = 0, and R = 10
Ω, C = 1000 F, e0 = 0, and Vc(0) = 7.58 for Figures 19 and 20. We observe that the
non-local fractional M-derivative behaves closer to the experimental data than the Caputo
derivative thanks to the convenient values of ρ and γ. Figures 17 and 19 have been plotted
for α = 0.9, ρ = 1.8, and γ = 1.8 while Figures 18 and 20 have shown when α = 0.7, ρ = 1.5,
and γ = 2. It should be noted that the non-local M-derivative perform the same behavior
with the Caputo fractional derivative when α = 1, ρ = 1, and γ = 1. On the other hand,
the Caputo derivative tends faster to the steady-state than the non-local M-derivative and
traditional counterpart in Figures 17–20 having exponentially dynamics.

Moreover, some general conclusions on our main results can be listed as below:

• We have carried out an efficient extension of a physical problem through a non-
local singular fractional operator by providing the solutions including three arbitrary
parameters α, ρ, and γ;

• A detailed analysis has been introduced for the Resistance-Capacitance (RC),
Inductance-Capacitance (LC), and Resistance-Inductance-Capacitance (RLC) electric
circuits utilizing a generalized type fractional operator in the sense of Caputo called
non-local M-derivative;

• Due to the fact that all solutions obtained in this study depend on three parameters
unlike the other studies in the literature, the solutions we have obtained are more
general results;

• In order to show the benefits of the non-local M-derivative for the proposed physical
problem, a comprehensive comparison has been addressed for the RC circuit with
constant source in the light of experimental data;

• As a result of our observations on Figures 1–16, we see that the amplitudes get smaller
or grow for some increasing or decreasing values of α, ρ, and γ. The waves also
displace as α, ρ, and γ change;

• Importantly, the arbitrary parameters α, ρ, and γ allow us to get some crucial informa-
tion about the intrinsic properties of the problem under investigation.
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Figure 17. Comparison of the non-local M-derivative and Caputo derivative with experimental data
for different values of α, ρ, and γ under the Resistance-Capacitance (RC) circuit including constant
source when α = 0.9, ρ = 1.8, γ = 1.8, R = 10 Ω, C = 1000 F, e0 = 7.58, and Vc(0) = 0.
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Figure 18. Comparison of the non-local M-derivative and Caputo derivative with experimental data
for different values of α, ρ, and γ under the RC circuit including constant source when α = 0.7,
ρ = 1.5, γ = 2, R = 10 Ω, C = 1000 F, e0 = 7.58, and Vc(0) = 0.
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Figure 19. Comparison of the non-local M-derivative and Caputo derivative with experimental data
for different values of α, ρ, and γ under the RC circuit including constant source when α = 0.9,
ρ = 1.8, γ = 1.8, R = 10 Ω, C = 1000 F, e0 = 0, and Vc(0) = 7.58.
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Figure 20. Comparison of the non-local M-derivative and Caputo derivative with experimental data
for different values of α, ρ, and γ under the RC circuit including constant source when α = 0.7,
ρ = 1.5, γ = 2, R = 10 Ω, C = 1000 F, e0 = 0, and Vc(0) = 7.58.
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