i fractal and fractional

[

Article

Approximate Controllability of Fully Nonlocal Stochastic Delay
Control Problems Driven by Hybrid Noises

Lixu Yan ** and Yongqiang Fu *

check for

updates
Citation: Yan, L.X,; Fu, Y.
Approximate Controllability of Fully
Nonlocal Stochastic Delay Control
Problems Driven by Hybrid Noises.
Fractal Fract. 2021, 5, 30.
https:/ /doi.org/10.3390/
fractalfract5020030

Academic Editor: Mirko D’Ovidio

Received: 10 March 2021
Accepted: 8 April 2021
Published: 12 April 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

School of Mathematics, Harbin Institute of Technology, Harbin 150001, China; fuyongqiang@hit.edu.cn
* Correspondence: yanlxmath@163.com
1 These authors contributed equally to this work.

Abstract: In this paper, a class of time-space fractional stochastic delay control problems with
fractional noises and Poisson jumps in a bounded domain is considered. The proper function spaces
and assumptions are proposed to discuss the existence of mild solutions. In particular, approximate
strategy is used to obtain the existence of mild solutions for the problem with linear fractional noises;
fixed point theorem is used to achieve the existence of mild solutions for the problem with nonlinear
fractional noises. Finally, the approximate controllability of the problems with linear and nonlinear
fractional noises is proved by the property of mild solutions.
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1. Introduction

We study a class of fully nonlocal stochastic control problems with delay in a bounded
domain O C RN:

6Df y(t,x) + (=8)7y(t,x) = f(t,x,y=(t,x)) + [Bo(t)](x)
+ gty (b)) B [k, %,y (tx);u)B(du), t€ (0,T], x € O,
y(t,x) = ¢(t,x), as., t € [-7,0,, x € O,

y(t,x) =0, as, t€[-7,T], x e RN\ O,

)

where @ € (1/2,1), ¥ € (1/2,1), T € (0,), and N > 2. §D¥ is the time Caputo
fractional derivative and (—A)7 is the fractional Laplacian. Constant T > 0 is a fixed time
delay. Notation y- denotes the history of y with respect to time, i.e., y-(t,x) = y(t — 7, x)
fort € [0,T] and x € O. Function f(t,x,y) : [0, T] x O x Cz, — R denotes the drift term.
g € LY(W,L?(0)) and BH is a W-valued cylindrical fractional Brownian motion with
Hurst index H € (1/2,1), where W is a given separable Hilbert space. Let V be a Hilbert
space. Control v € L2([0,T],V) and operator B € .Z(V,L2(0)). Let (U, %#(U),e) be a
o-finite measurable space. Function h(t, x,y;u) : [0,T] x O x Cz, x U — R and 8 denotes
the compensated Poisson martingale measure. We illustrate each term of the problem (1)
in Section 2.

Time fractional derivatives are used to describe phenomenon of early arrival or
to tail in time. Spatial fractional derivatives are more suitable for describing nonlocal
and scale effects. There are many applications of fractional derivatives in anomalous
diffusion, random walk, nonlocal elasticity, and memory materials, see [1-7] and the
references therein. The fractional derivatives in problem (1) are constant-order fractional
derivatives. In recent years, there has been a series of papers studying variable-order
fractional derivatives and distributed-order fractional derivatives. These general fractional
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derivatives are applied to model the complex interaction and superposition systems of
nonlocal effects and memory effects on multi-scales, see [8-11].
Whena =1, € (0,1), H=1,and h = 0, Wang [12] discussed the following equation
in RN:
dy(t,x) + (=8)7y(t, x) = f(t, %,y (t, x)) + g(t, y= (£, x))dB(t),

where B is a Wiener process. He obtained the existence and uniqueness of solutions
and weak pullback mean random attractors. Mohammed [13] proved the existence of
approximate solutions on a bounded domain to the time-fractional case, i.e.,, « € (1/2,1),
v =1, H =1and I = 0. However, we consider the time-space fractional case, which is
called the fully nonlocal case.

In the last decade, fully nonlocal partial differential equations have attracted great atten-
tion. Several different approaches to simulate fully nonlocal PDE were presented in [14-18].
Fundamental solutions for fully nonlocal PDE problems were discussed in [19-21]. These
results encourage researchers to study the fractional stochastic partial differential equa-
tions (f-SPDE). For example, {-SPDE driven by fractional Brownian motions with delay
were considered in [22-24], and the existence of mild solutions was obtained under suit-
able assumptions. Caraballo, Garrido-Atienza and Taniguchi [25] considered the following
problem driven by linear fractional noise:
dy(t) = Ay(t)dt + f(t,y-(t))dt + g(t)dB" (), t € (0, T}, )

y(t) =yo(t) € X, t € [=7,0],

where A is a bounded abstract operator and X is a Hilbert space. They obtained the
existence and uniqueness of mild solutions. Li [23] discussed problem (2) with fractional
time derivative, i.e.,, §Df y(t) instead of dy(t) in (2) and established the existence and
uniqueness of mild solution by approximate method when indexes s € (1/2,1] and
H € (1/2,1). As for nonlinear fractional noises, Pei and Xu [24] considered the following
problem:

{dy(t) = A(t,y(t))dt + f(t,y<(t))dt + g(t,y(t))dB(t) + [, h(t,y-(t);u)0(du,dt), t € (0, T,
y(t) = ¢(t) € Cx([-7,0;X), t € [-7,0].

The existence and uniqueness of mild solution were obtained under Lipschitz-type condi-
tions. For more papers, we recommend [26,27].

We are interested in the controllability of problem (1). Controllability is a basic topic
in control theory. It has wild applications in the real world, see [28,29] and the references
therein. Recently, approximate controllability of f-SPDE was studied by many researchers.
In [30], Lakhel discussed a class of integro-differential equations with linear fractional
noises,

dly(t) + G(t,y(t —r(t))] =[Ay(t) + G(t,y(t —r(t))) + Ho(t)]dt
+/O B(t — 8)[y(s) + G(s, y(s — r(s)))|dsdt @3)
+ F(t,y(s — r(s)))dt + Q(t)dBH (t), t € [0, T].

By means of resolvent operators, controllability of (3) was obtained when Hurst index
H € (1/2,1). In [31], Ahmed considered the following equation driven by nonlinear
fractional noises and Poisson jumps,

6D [y(t) — G(t,y(1))] = Aly(t) — G(t,y(t))] + Bo(t) + /Ot Ar(t = s)[y(s) — G(s,y(s))]ds

H
(1) + 6y 4 [t yeeea), e 0,1,
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where « € (1,2) and H € (1/2,1). Ahmed proved the approximate controllability under a
uniform boundness condition

£t yO)lx + I8 (t y(0)ll £ + /u (IR (t,y(t); u) || xe(du) < M. 4)

For more papers, we recommend [32,33]. Note that (4) is a common condition to
discuss the approximate controllability of control problems, see, for examples, refs [34-36].
However, in this paper, we obtain the approximate controllability by the property of mild
solutions.

Problem (1) strongly depends on the ranges of «, v, H, and N. In this paper, we
suppose 1/2 < «, v, H < 1,and N > 2. Compared with the aforementioned papers,
there are two main contributions in this paper:

1. Utilize a reasonable framework of mild solutions and overcome the complex calcula-
tions caused by not only fractional differential operators but also fractional Brownian
motions and Poisson jumps. Establish the existence and uniqueness of the mild solu-
tion to fully nonlocal stochastic delay control problems with both linear and nonlinear
fractional noise by two different methods.

2. Establish sufficient conditions to the approximate controllability of fully nonlocal
stochastic delay control problems. The approximate controllability result is based on
the controllability theory of deterministic control problems.

The paper is organized as follows. In Section 2, we introduce basic concepts and results.
In Section 3, we prove the existence and uniqueness of mild solutions of problem (1) for
linear fractional noises and nonlinear fractional noises. In Section 4, we study approximate
controllability. In Section 5, we give conclusions.

2. Preliminaries

In this section, we introduce basic concepts and results.

2.1. Fractional Brownian Motions
Let (X, 7, P, .7;) be a complete probability space with a filtration {7} } (9 ) which

satisfies usual conditions. A one-dimensional fractional Brownian motion {8 (#) }te[O,T] is
a centered Gaussian process which has zero mean and its covariance is

Cov(s, 1) = E[Y (1) (x)] = 3 (P + 72H — |t — <H)
Fractional Brownian motions can be expressed by Wiener processes, see [37].
Let W be a real separable Hilbert space, {w;}*; be an orthonormal basis of W and
Z (W) be the space of all bounded linear operators on W. Let A € ¥ (W) be a symmetric,
nonnegative operator and Aw; = Ajw;, i =1,2,---, with trA = Y72, A; < co. The infinite
dimensional fractional Brownian motion {B% (#)} te(o,7] is defined by

[e0)

BR(t) = Y- A} Pwipl (1),

i=1
where {,Bﬁ }%°, is a sequence of independent one-dimensional fractional Brownian motions.
BY has zero mean and covariance Cov(Bf(t), u) (BH (1), v) = Cov(t,T)(Ap,v), for any
t,7 € [0,T] and p,v € W. In this paper, we consider the cylindrical fractional Brownian
motion B, ie,A\j=1,i=1,2,---. Let XZO(W, L%(0)) be the space of Hilbert-Schmidt
operators. An operator § € .Z3 (W, L2(0)) satisfies § € .£(W,L*(0)) and

[e9)

18P = Y- IgwillZ2 < oo
i=1
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Endowed the inner product (g, §) o0 = Yoy (3wi, §wi) 2, (L3 (W, L2(O)), (-, ) o) is

a separable Hilbert space. We recall the followmg inequality: ’

Lemma 1 ([38]). Let g : [0, T] — £2(W,L*(O)) and fOT ||g(s)|\?%0ds < oo, then stochastic
integral fo s)dBH (s) is a well defined L?(O)-valued random variable and satisfies

ot
E Hg < 2H—1/ 2 '
||/ )dBH(5)|[22 < 2HEH [ 1g(s) s, vt € [0,T]

2.2. Poisson Jumps

Let (U, #(U), e) be a o-finite measurable space and {77 } (g o) be a stationary Poisson
point process which is defined on (%, .#, P) and take values in U. The compensated Poisson
martingale measure 0 is defined by

0(du,t) = 0(du,t) — e(du)t, Vt € [0,00),

where 6 is a counting measure which is generated by {77 } (g c0)- 0 has zero mean and

variance E[0(du, t))*> = te(du).
Let Mf;([o, T] x U,L?(0O)) be the space of .7 x %(U) measurable processes with
finite second moments and be equipped with the norm

T
1Bz =E [ [ In(s,y;) Fze(du)ds

Ifh € M%([0,T] x U,L*(©)), then

/ / s, x,y;u)0(du,ds), Vt € [0, T]

isa L2(X; L?(0))-valued random process which has zero mean. Furthermore, recall Theo-
rem 6.1 in [39]:

Lemma 2 ([39]). Ifh € M?jﬁ([o, T] x U, L?(O)), then the isomorphic formula

t
IE||/ / s,y;u)0(du,ds) |7, = IE/O /u |h(s, y; u)||72e(du)ds, Wt € [0, T],

holds. Moreover, the following inequality holds
sup EH/ / s,y;u)0(du, ds) || < 4E/ / \h(t,y;u ||Lze(du)dt, VT > 0.
te[0,1]

2.3. Fractional Differential Operators

Consider the deterministic problem without time delay

{ ng‘ y(t,x) + (=A)y(t,x) = f(t,x), t € (0,00), x € RN,

y(0,x) = ¢(x), x € RN, 5)

The Riemann-Liouville kernel function is given by R, (t) = %, t, « > 0, where T
denotes the Gamma function. Denote Laplace transform by £, then

L[Ra(),A] = A%, & > 0.
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The ath Riemann-Liouville fractional integral is defined by I*f(t) = (Rx * f)(f),
where % denotes convolution. The ath Riemann-Liouville fractional derivative and Caputo
fractional derivative are defined by

8DEf(1) = Sres ), ot s = (1 Ly,

respectively. The connection between XDf and §D¥ is given by

DE(f — f(0)](t) = GDf £(8),

for sufficiently smooth function f. There are several approaches to define the fractional
Laplacian. We introduce the definition by means of Fourier transform F,

FU=8)"f] = g7 Ff, v € (0,2).

Let the space
HY(0) = {f € [ARV) : /RN(1 4P| FF(E))dE < coand u = 0, ace. in RN\ O}
be endowed the norm
If Il 0y = 2C(N, )~ /RN G177 FF(§)1Pdg,

where C(N, ) is a constant dependent on N and 7. Let H] (O) denote the closure of
Cy(0) in HY(O). We recall the embedding result in [40].

Lemma 3 ([40]). Let y € (0,1), the space Hy (O) is compactly embedded in L?(O), and
I£ll2 < €l

Fractional Laplacian can be extended to H] (0), i.e., (—A)7 : HJ (O) — L2(O). Let
{S,(t) }+>0 be the semigroup generated by (—A)?. Then {S,(t)}+>0 is a Cy-contraction
semigroup on L2(O). On the other hand, since the embedding from HJ (O) to L*(0) is
compact, we get that

Proposition 1. S, (t) : L>(O) — L?(O) is a compact operator, for any t > 0.

The Mittag-Leffler function &, x, and the Mainardi function M; are defined by

o 2N
g zZ) = D S ——
kl'k2( ) n;() T(nk1 + kz)

, forky, ko >0, z € C,

v (=2)"
My (z) = n);o ATk 1K) fork € (0,1), z€ C,

respectively. Then L[My, A] = & 1(—A). Let
YA (H) = /0 Ma(5)S, (st%)ds, TH(t) = a /O s Mo ()5, (st)ds
and Z5(t) = t”‘_lT,‘;‘(t), for all t > 0. By Laplace transform in time variable and Fourier

transform in spatial variable on both sides of the equation in (5), the formal solution of
problem (5) is given by

v = Y00+ [ 23— 5)f(5)as. ©



Fractal Fract. 2021, 5, 30

6 of 21

Furthermore, denote

Yy (y(x) = n(t-) xy(x), Z5(O)y(x) = &(t ) *y(x).

Then, equivalent to (6), the formal solution y satisfies

y(t, x) :/RNn(t,x—z)cp(z)dz—l—/ot/RN E(t—s,x—2z)f(s,z)dzds.

Recall the properties of Y, Zi"r, nand ¢. Let

N N
A = N-27/ N > 27, Ay = N—dy’ N > 47,
o, otherwise, 00, otherwise.

Lemma 4 ([20]). Assume a € (0,1), v € (1/2,1). Then
1. Letq € [1,A), thenn(t,-) € C((0,00),L9(O)) and

In(t, )l < ot 5 00,

2. Letq € [1,Ay), then &(t,-) € C((0,00), LI(O)) and
1G(t, )]l < cr B (-pa-1
Let

2N 2N
61 _ m, N > 4'}’/ 02 _ W/ N > 8')’,
00, otherwise, 0, otherwise.

Lemma 5 ([20]). Assume a € (0,1), v € (1/2,1). Then
1. Y} and Z% satisfy

1
o o < o o o < —— a—1 -
1Y (0)ylleo < [[ylleos [[Z5(B)ylleo < ' [l

2. Forpe[l,0)andqge[1,6,),

aN (1 _ 1

_aN¢1_ 1y o o . _aN/1_1 _
1Y)yl < B2yl 128Dyl < CE 5 G Ty .
3. Letx € [1,00)and y € L*(O), then the map t — Y% (t)y belongs to C([0, ), L*(O)).

2.4. Function Spaces
Let L?(Z; L%(0)) be the set of all .# measurable random variables { such that

12112, = E||g]|3 < oo.

Let Cx, = Cg([-7,0;L*(0)) be the space of initial states. =~ We say
¢ € Cr,([-7,0]; L?(0)) if ¢ is Fy-adapted and continuous from [—7, 0] to L?(O), a.s., with

lgllg,, = sup Elg(t )5 < co.
te[—1,0]

We use notation L, ([T, T]; H] (O)) to denote the space of all F;-adapted random
processes such that

T
IyllFs, ZE/THy(t,-)lI%Igdt < .
=B
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Let Cz, = Cg,([—7,T]; L>(O)) be the space of all continuous random processes from
[T, T] to L?(0), a.s., with essentially finite second moments and be endowed with the
following norm

ylIE 5, = sup Elly(t, )13+ [yl-rollE,
te[0,T]

Let Z(T) be the set of all stochastic processes with the following properties:
L yelZ (-7 T HJ(0)) N Ca ([T, T} L2(0));
. y(t,x) =¢(tx),as, forall (t,x) € [-7,0] x O;
3. y(t,x) =0,as, forall (t,x) € [-7,T] x RN\ O.

Then the definition of mild solutions is given by

Definition 1. We call y € 2(T) a mild solution of problem (1) if for any t € [0, T|, y satisfies the
following formula

t t
y:y;‘(t)q)(ow/o Zf‘r(t—s)f(s,yr)ds—k/o Z2(t — 5)Bo(s)ds

@)
+ /Ot Zo(t— s)g(s,yr)dBH (s) + /Ot /uzg(t — 8)h(s,yr;u)0(du, ds), as.
or equivalently,
y(t,x) = /01’](f,x —2)9(0,z)dz + /Ot/oqf(t —s,x —z)Bu(s)(z)dzds
t
+/0 /Og(t—s,x—z)f(s,z,yT(s,z))dzds ©

t
+/ /O G(t—s,x— Z)g(s,yT(s,z))ddeH(s)
0
t ~
+/o /u /o E(t—s,x —2)h(s,z,y.(s,z);u)dz0(du,ds), as.,
if each integral is well defined.

Remark 1. Similar to the proof in [41], we can prove that a classic solution is also a mild solution
defined in the sense of Definition 1.

3. Mild Solutions

In this section, we prove the existence and uniqueness of the mild solution of problem (1)
with linear fractional noise and nonlinear fractional noise by approximate method and the
Banach Fixed Point Theorem.

We propose the following hypotheses on nonlinear functions f and h:

Hypothesis 1 (H1). Foranyt € [0,T]and x € O, h € M?}z([O, T] x U, L?(O)) satisfies

/u [t 2,y (t x);u) Pe(du) < Mi(1+ |y(t,x) ),

/u [t 2, 9 (8, x);u) = Rt x, 9(8, x);u)Pe(du) < L|g(t,x) = 9(t,x) %,

where constants My, Ly > 0.

Hypothesis 2 (H2). For any t € [0, T] and x € O, there exist a positive function ® € L}(O)
and a constant My > 0 such that

/O £(s,x,0)[2ds < ®(x),
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[ 15 3(5,20) = (5,3 906,3)) s < My [ [3,2) — 9(s,2) s,

3.1. Linear Fractional Noises

In this subsection, we discuss the following problem:

dBH (1)
d

§DFy(t,x) + (=A)Ty(t, x) = f(t,x,y<(t,x)) + Bo(t)(x) + (1)
—|—fuh(t,x,yr(t,x);u)é(du), te (0,T], xe O,

y(t,x) = ¢(t,x), as., t€[-1,0, x€ O,

y(t,x)=0,as.,te[-1,T], x€ RN\ O.

©)

Assume that
Hypothesis 3 (H3). g: [0, T] — .20 (W, L*(O)) satisfies
I8(6)1 < Ms, v € 0,7),
where constant Mz > 0.
The main result of this subsection is as follows.

Theorem 1. Let 1/2 < «, v, H < 1, N > 2v, (H1), (H2), and (H3) hold. If
¢ € Cgq([-7,00;L%(0)) and v € L*([0,T}; V), then there exists a unique mild solution
y € 2(T) of the problem (9).

Proof. We use the approximate strategy to prove the result. The proof is divided into
four parts. First, we consider the regularity of stochastic integrals. Second, we construct
a sequence {y"}° ; to approximate the solution of problem (9). Third, we show that the
limit of {y"}°° ; in Z(T) is a mild solution of problem (9). At last, we prove the uniqueness
of mild solutions by the Gronwall inequality.

Step 1: The regularity of stochastic integrals. (i) We show that fot Jo&(t—s,x—
z)g(s)dzdBH (s) € C, ([0, T]; L>(O)). For arbitrary € > 0, consider

t+e
IE||/ /Oé(t—s—i-e,x—z)g s)dzdB (s // &(t —s,x —z)g(s)dzdBH (s)]|3
0
t+e
ngu/ /Og(t—s+e,x—z)g(s)ddeH(s)||2
t
b
+ 28| [ [ [e(t—s+ex—2) = &t =5, —2)lg(s)d=dB (5)[3
=N+
By Lemma 1, the Young inequality, (H3) and Lemma 4, we deduce that
J; <4HeH- 1/ ||/ E(t— s+ €% — 2)g(s)dz] s
<t [ et s+ ) R85 gt

t+e
<ACHE [ (8 =5+ e 2 g(s) [ pds

§4CHM3€2H+20(72
—0

(10)
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as € — 0, since « + H — 1 > 0. Given any constant A > 0 which is independent on €, we
consider

t—A
I §41\43HT2H*1/O |E(t—s+e,-) —&(t—s,-)|3ds

t
HAMHT Y [ et —s e, ) —&(t—s, ) fds.

Based on Lemma 4, { is continuous on (0, c0), then ¢ is uniformly continuous on [A, T].
Hence,

t—A
AMzHT2H / IE(t—s+e-)—&(t—s,-)|2ds — Oase — 0.
0]
On the other hand,
t
4M3HT2H*1/ IE(E—s+e-)—&(t—s,-)|2ds
t—A

t
§8CM3HT2H71/t )\(t — s+ 6)2“*2 + (t _ S)Z(X*st

§8CM3HT2H71[€20671 _ ()\ + 6)21){71 + AZIX*]]
—0,

as A — 0. Therefore, [, — 0ase — 0. We conclude that fot Jo&(t—s,x—2)g(s)dzdBH (s) €
C ([0, T;L*(0)).

(ii) We illustrate that fot Ju Jo €t —s,x —z)h(s,2z,y<(s,z); u)dz0(du, ds) is continuous
on [0, T]. First, for any € > 0, we consider

E|l /()t+€/LI/<9§(t—s+e,x—z)h(s,z,yT(s,z);u)dzé(du,ds)
—/Ot/u/otj(t—s,x—z)h(s,z,yT(s,z);u)dzé(du,ds)||%
< 2E|| /Ot/u/o[é‘(t—ere,x—z)—g(t—s,x—z)]h(s,z,yT(s,z);u)dzé(du,ds)||%

+2E|| /;He /u /(9 E(t—s+e,x—2)h(s,z,yc(s,z); u)dz0(du, ds)||3
= J3+/s.

By Lemma 2, the Young inequality, Lemma 4 and (H1) we get that
t+e 2 2
Jo<2E [ [ et =5+ eI, ye (s, );m) Be(dn)ds
t+e
§2C]E/ / (t—s+€)**2||h(s, -, y-(s,);u)|5e(du)ds
t u
t+e
§2CM1E/ (t—s+e)2 /0(1 + [ye (s, 2)[?)dzds
t

t+e t+e
<2CM; (O] / (t— s+ €)% 2ds + 2CME / (t—s+e)2 /0 (s, 2) Pdzds
t t

<2CM;|0|e¥ !+ 2CMy |ly |2, €.

Since 1/2 < a < 1, itis obvious that [, — 0ase — 0.
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By similar arguments to J; and |5, for any A > 0, we obtain

t
J<CMi(1+[lylE,,) [ et =s+e) =t —s, ) fds

<CM; (1+ |ly|2 Tl e t 24
<CMi(+ IR )L+ [ HEt=s+e) =gt —s,)Ids

—0ase — 0.

Thus, we summarize that

/Ot /U/O(;‘(t —s,x —2)h(s,z,y(s,2);u)dz0(du,ds) € Cz,([0, T); L*(0)).
Step 2: Approximate solutions. Let
y'(t,x) :/Oﬂ(t,x —2)9(0,z)dz,
Y x) =y (LX) + /Ot /Oé(f —s,x—2)f(s,z,y%(s,z))dzds
ot b,
+ /0 /0 E(t—s,x —z)Bo(s)(z)dzds + ./0 /O Z(t—s,x — 2)g(s)dzdB" (s)

t 3
+/O /u/off(t—s,x —2)h(s,z,y2(s,z); u)dz0(du, ds)
=yl (t,x) + Ky (t, x) + Ka(t,x) + K3(t, x) + Ky(t, %)
with y"(t,x) = ¢(t,x),as., forallt € [-7,0)and x € O, n =1,2,- - -. Next, we show that
{y"}>_, is a sequence in D(T). It is clear that y!(t,x) € D(T) by Lemma 5. Let y", n > 2,
belong to D(T). We show that ! belongs to D(T). Since we have already proved the
regularity of K3(f,x) and K4(t, x) in Step 1, then we remain to prove that Kj (¢, x) and
Ky(t,x) belong to D(T).
We show that K (t, x) € C ([0, T}; L?>(©)). For any € > 0, we consider

IEH/Ot+e/O§(t—s+e,x—z)f(s,z,yg(slz))dzds
_/Ot/oé(t—s,x—z)f(s,z,y?(s,z))dzds||%
SEH/O /O[é(t—s—l—e,x—z)—é(t—s,x—z)]f(s,z,yﬁ(s,z))dzds||%

t+e
Bl [ [ et —s+ex—2)f(s 205, 2)dzds]3
=J5+Je-

By the Minkowsky inequality, the Young inequality and the Holder inequality, we
obtain

Js SB[ ) [ J60— s+ 63— 2) == 5, ~ 25,2,y (5,2))dlads?
<E{ [ el = s+ = 8 =5, £ ks, ) ads)?
< [ et = s+ €)= (e =, RaSE [ w5, ).
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On the other hand, by the Fubini Lemma and (H2) we get

t
E [ £ vis, ) I3ds
T
<E /0 / £ (s, %, (s, %)) — F(5,%,0) + f(s, x,0)[2dsdx
0
t
<2 +2ME [ [y (s,-) s
-7
2
<CM(1+ [ly"lle,)-
Therefore,
t
J5 < CMp(1+ IIy”II%%)/0 [G(t—s+e-)—&(t—s,-)|jds — Oase — 0.
Further, similar to the proof of 4, we obtain
Jo < CMa(1+[ly" |2, )e** " — Oase — 0.
t

Thus, K1 (t,x) € C,([0,T]; L*(O)). By similar discussions to K (, x), we get that

E|| /0t+e /(9 E(t—s+e,x—2z)Bou(s)(z)dzds — /Ot /0 E(t—s,x — z) Bo(s) (z)dzds||3
< [Vt s e a5, fds [ 1Bo)lds + e [ ot s
<ClolBaomyy [ 16— +6,) ~ 2t =5, Rds-+ e}
—0ase — 0,
ie, Ky(t,x) € C([0,T}; L?(©)). To sum up, for arbitrarily € > 0,
Elly"(t+e,) —y"(t, )13
<16E|ly (t +¢,) _yl(t/')”%+16iEHK1‘(t+£/') —Ki(t, )3
—0ase — 0. -

Therefore, y"*! € D(T). We conclude that y"* € D(T) forn =1,2,- - -.
Step 3: Existence of solutions. First, we show that {1} , is a convergent sequence
in D(T). Similar discussions to J; and J5, by (H1) and (H2), we obtain

Elly"™ () " (1,3
<2T2“71E/t/ 1f(s,2,y2(s,2)) — f(s,2,y" 1 (s,2)) |*dzds
= 0 o r=~r Yt \°r r=~r Yt 7
t
28 [ [ (=) [ (s, 205,250 = (s, 2,7 6, 2);w) Pze(du)ds

t
AT N (My+1y) [ Elly () —y" (s, 0) s, n > 2
T

(11)

Let ¥, (t) = sup E|y"*1(s,-) —y"(s,-)||3, then we get
s€(0,t]

ot
¥,(t) < C(T, My, Ll,zx)/ ¥, 1(s)ds, 1 =2,3,--,
—T
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for any t € [0, T]. Moreover, ¥, satisfies

[C(Tr MZr Llr “)]n7

1
(n—1)! Y1(T), n=2,3,---,Vte[0,T],

Ya(t) <

by recurrence formula. Hence, {y"}5_; is a Cauchy sequence in C#, ([—7, T]; L?(O)). Thus,
there exists an element y € C.# ([—71, T]; L*(O)) such that

y" = yasn — coin Cg ([-7, T]; L*(0O)).

We assert that y is a mild solution of problem (9). Consider

By 4,2 — [ nttx =290, + [ [ (=53 - 2)f(s,2ye(s,2)dads
—/Ot/og(t—s,x—z)Bv(s)(z)dzds—l—/Ot/ogf(t—s,x—z)g(s)ddeH(s)
[ s x = hGs 2 e, 2wy, )

=] [ [ &= sx=2)[f(5.2y3(6,2) — 5 2yxs,2))dzds
[ s = 2) (s 2y 2)i) — (s 2y, 2)s )0 )

T
§4T2“_1(M2+L1)/ Ely"(s,-) — y(s,-)|3ds
P T

— 0,

as n — oo. The assertion is proved, i.e., y is a mild solution to the problem (9).

Step 4: Uniqueness of solutions. Assume that i, 7 € Z(T) are two different mild
solutions of problem (9) with same initial state ¢ and control v. By similar discussions
to (11), we get

t
E|lg(t,) - gt )3 < C(Tszlefa)/TEHﬂ(Sw) — (s, )lI3ds, ¥t € [0, T).

Therefore,

t
sup E|7(s,) = 95, )13 < C(T, My, Ly,a) [ sup E|lg(s,") — 5(s,) s, vt € [0,T].
s€[0,4] ~Tse0,4]

By the Gronwall inequality, we obtain

sup E|[7(s,-) — (s, )| = 0, ¥t € [0, ).
s€(0,t]

This implies that

17— 9lE, = sup Elg(s,-) = (s, )3+ sup Elg(s,-) — (s, )[I7 = 0.
se[-1,0] s€[0,T)

Thus, 7(t,x) = j(t,x),as., forallt € [-7,T] and, a.e., x € O. O

3.2. Nonlinear Fractional Noises

In this subsection, we prove the existence and uniqueness of mild solution to the
problem (1) by the Banach Fixed Point Theorem. Different from the problem (9), the
fractional noise term in (1) is a nonlinear noise. We assume that g : [0,T] x Cr, —
LD(W,L*(0)) satisfies
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Hypothesis 4 (H4). Forany j, 7 € 2(T), there exist My, Ms > 0 such that

I8t 72, ) = 8(t,7(t, )% < MAEIF(E ) = 5t )3 [13(2,0)l] o < Ms,
forany t € [0, T].
Theorem 2. Let 1/2 < &, v, H < 1,and N > 2+, assumptions (H1), (H2), and (H4) hold. If

¢ € Cgz,([-7,0]; L?>(O))and v € L2([0,T); V), then there exists T > 0 such that the problem (1)
admits a unique mild solution in D(T).

Proof. First, we show that there exists a solution mapping. By (H4), we deduce that for
any t € [0,T] and ¢ € 2(T),

Hg(t/(l’)Hfgzo = |lg(t, ¢) — (t,0) +g(t/0)||fgzo
< 2M4”¢H%% +2(|8(£,0)]l 20 (12)
< C(My, Ms).

Thus, by Theorem 1, there exists a unique mild solution y of the following problem:

H
§DF y(t,x) + (=8)Ty (%) = £t 0, (%)) + [Bo(0)](x) + g(t,9) T
—|—fuh(t,x,yr(t,x);u)é(du), te (0,T], xe O,
y(t,x) =¢(tx), te[-1,0, x€0O,
y(t,x)=0,te[-1,T], x€ RN \ O,
Let ) )
Y: Cz (-7, T;L7(0)) = Cx([-7, T L7(0)),
=y
Next, we demonstrate that ¥ is a contraction map. For any ¢, ¢ € Z(T), consider

¥ —¥plE, =0+ sup E|[¥(t,-) —¥(t, )3
te[0,T)

Further, similar to the proof of the uniqueness of mild solution to the problem (9), we
get

; B _ ot - -
EI¥G(t, ) —¥(t, )3 < 2HET22 [g(s, §) — g5, ) gds
< 2HMT*2726 — |2,

in review of (H4). We conclude that

¥ —¥PIIE, <2HMT272(1g — |2 .

Taking T} = min{m, T}, then ¥ is a contraction mapping on 2(Ty).
Furthermore, by the Banach Fixed Point Theorem, there exists a unique mild solution of
problem (1) on [—7, Ty|. By taking T as the initial time and repeating this process, we can

extend the mild solution to [—7, T] in finite steps. [

3.3. An Estimate

According to the proof of Theorems 1 and 2, we observed that mild solutions are
bounded in D(T). In particular, we get the following results.
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Proposition 2. Let 1/2 < a, v, H < 1, N > 2, (H1), (H2) and (H3) hold. If y is a mild
solution of problem (9), then there exists a positive constant M such that

2
<
Ilyliz,, <M,

where M depends on «, T, H, My, My, M3, ||(p\|cf0, 91l L2¢p0,17,v) and |1
Proof. Since y(t,x) = ¢(t,x),a.s., forall t € [-7,0] and x € O, we obtain that
9l —eallcs, = lelcs
On the other hand, for any ¢ € (0, T], we get
Bl )3 <5E|| [ (e~ 2)9(0,2)az13+SEN [ [ a(t— s, — 2)Bo(s) z)zas|}
+ 5E| /O [ &t =% = 2)£ 5,2,y (5,2)) s
t
+5B| [ [ a(t—sx —2)g(s)d=dB" ()
0
t <
+5]E\|/ / /Og(t—s,x—z)h(s,z,yf(s,z);u)dz()(du,ds)H%
0 Ju
5
=5) L.
k=1
First, we consider
t
11+12:5E||/@n(t,x—z)<p(o,z)dz||§+5E||/ / E(t—s,x — 2)Bo(s) (2)dzds| |3

< 5l (e, NREN(©, VB +5 [ 8t 5.} Rds [ |1Bo(s)lfads
< Cllglicy, +CT* ol 2o,1y,v)-

Second, we get

Iy <5 [ 160~ 5, )IRASE [ 175y, ) s

<Cr (@l + Mo)E [ Jly(s, )3
By similar discussions to (10), we obtain

1y < 4T [ (e = 5, ) Rl9(5) s < CMETH 4241

Further,

s <SE [ [ e s YR, yels, ) Be(du)ds
20—1 2
< C(T*7 4 MyE / ly(s, ) 3ds
-7
Therefore, we conclude that for any t € [—7, T],
Elly(t, )3 <C(a, T, H,Ms, @l cs, I0ll201,v))

t
+ Cla, T, My, My, [@IDE [ [ly(s,)l3ds,
—T
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where C(-) depends on the parameters in brackets. By taking supremum on both sides and
the Granwall inequality, we get that there exists M > 0 such that

Ilylle,, < Cla, T, H,Ms, l|9llcs, . 2]l 20,11, v)) exp{Cla, T, My, Ma, [ @]1)} < M.
O

Proposition 3. Let1/2 < w, v, H < 1,and N > 2y, assumptions (H1), (H2), and (H4) hold. If
v is a mild solution of problem (1), then there exists a positive constant M such that

5 _
<M
HyHCgt ’

where M depends on a, T, H, M1, My, My, M, ||g0|\cf0, [0l L2([0,71,v), and [|®][1-
Proof. Let [y = E| fot Jo &(t—s,x —z)g(s,y<(s))dzdBH (s) ||3. Then, by (H4) we get that

B _ t
L < 4HT0 [t =5, [Rl1g(sve(s) s
t
< CT 2 My ME [y, )|3ds).
-7

Hence, by a similar proof to Proposition 2, we obtain
IYlIE,, < Cla, T, H, My, | 9llcs, 0]l 20,y v)) exp{C(a, T, My, Ma, Ms, || ®[|1)} < M.
O

4. Approximate Controllability

In this section, we apply the results in Section 3 to prove the approximate controllability
of problem (9) and problem (1).

Remark 2. In this section, we switch the viewpoint to clarify the presentation. By defining
[y(H)](x) = y(t,x), t € [-7,T), and x € O, we consider y : [—7,T] — L2(O) as a mapping
rather than a function. Further, define
¢:[~7,0] = L*(0), f:]0,T] x Cx, — L2(O), h:[0,T] x Cx, x U — L2(0),
by [p(t)](x) = @(t, ), [F(t,9)](x) = £(t, %, y(t,x)), and [1(t,y;))(x) = h(t, %,y (¢, x); ).
Let

R(T; ¢) ={y(T) = y(T; ¢;v) : y is the mild solution corresponding to
v e L*([0,T]; V) and ¢ € C,([—7,0];L*(0))}.

R(T; ¢) denotes the set of terminate states at time T. For any y(T; ¢;v) € R(T; ¢), it means
that there exists a control v which transfer initial state ¢ to terminate state y(T).

Definition 2. Problem (1) is called approximately controllable on [0,T] if for any
¢ € Cz,([-7,0];L*(0)), R(T; @) satisfies

Let



Fractal Fract. 2021, 5, 30

16 of 21

YI0) = [ 24T - ) BB (2)"(T —5)()as,

T
Gl = [ Z4(T ~)BB*(73)"(T - 5)d
T= [ Zy(r - 985 (25) (T - 5)ds
where A € [0, T). It is easy to see II] € .Z(L?([0,T]; V); L>(Z, L?(0))). Therefore, there
exists the adjoint operator denoted by (I1])*. Note that YI € .Z(L%(%,L?(O)) for any
A € [0, T) and for arbitrary ¢ € L2(X, L*(O)),

Y4 () = 115 (T15) " ().

GI':L?(0) — L*(O) is called the controllability Gramian of control problem (9). Assume
that

(C) For arbitrary A € [0, T), x(xI + G1)~! € £(L*(0)), and

(I +GL)~Y| — 0as k — 07, uniformly with respect to A € [0, T).

Under assumption (C), the deterministic linear fully nonlocal stochastic control prob-
lem without delay corresponding to problem (9) is approximately controllable, see [42—44].

To illustrate approximate controllability of control problem (9) and problem (1), we

recall the following result.

Lemma 6 ([34]). Forany p € L*>(%;L?(Q)), there exists { such that

p=Ep+ [ ()8 (),
where { € L*(Z; L% ([0, T]; .23 (W, L*(0)))).

Theorem 3. Let the conditions in Theorem 1 and assumption (C) hold, then stochastic control
problem (9) is approximately controllable on [—, T).

Proof. It is necessary to prove that there exists a sequence of controls whose limit transfers
initial state ¢ to y(T) at time T. The construction of the sequence is inspired by [42].
Step 1: The sequence of controls. For any positive integer x, 0 < t < T, p €
L2(%;12(0)) and y € D(T), choose
o"(ty) =B"(Z5)"(T — t)(xI + G5 )~ {Ep — Y5(T)(0)}
t
= BZ8) (T = 1) [ (<1 +GI)Z(T =) (5, ye)ds
0
t
—BH(Z5)"(T — ) /O (el + GI)THZG(T —5)g(s) — £(s)]dB (s)
t ~
— B*(Z8)"(T - t)/ (K1+c§)*1zg(T—s)/ h(s, ye; 1)0(du, ds).
0 u
Let y* be the mild solution of problem (9) associated with v*. Therefore, y*(T) satisfies
y*(T) =p — (kI + Gg) " {Ep — Y5(T)(0)}
T
[ e+ G N Z3(T = 5) (s, y5)ds
0
T
+ [ k(e + G Z(T = )g(s) — £(6)1aB(5)

T
+/O K(KI+GST)_lZf‘r(T—s)/uh(s,yﬁ;u)é(du,ds).

We will show that {0*}% ; is the sequence that we needed.
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Step 2: Approximate controllability. Since {y*}% ; is a sequence of mild solutions,
{y*}>_, is bounded in C,([—7, T], L?(©)) by Proposition 2. Therefore,

B [ 7G5, y5(6) Bds +E [ [ (s, 5(6); ) e(cu)ds

<2l +2ME [ y¥(s)l3ds )
<2|| @1 + (My + M) M(T + 7).

Denote f*(s) = f(s,y%) and h*(s;u) = h(s,y%;u), then {f*}?° , is bounded in

L%Tt([o, T],L2(0)) and {h*}>_, is bounded in Mez([O T] x U, L2(O)). On the other hand,
by assumption (C), for x > O sufficiently small,

(kI +G1)7Y <1, YA € [0,T). (14)
Further, we deduce that
E[ly*(T) — pll5 <5E|[x(xI + Gg) " {Ep — Y5 (T)p(0)}5
T
+5EH/ k(o + GT) 1Z%(T — 5) £~(s)ds 3
0
T
+5E|\/ k(e + GT)~1Z8(T — s)g(s)ds 3
0
T
+5E|\/ k(e + GT) 1 Z8(T - ) / 1 (s; u)e(du)ds|2
0 JUu
T
+5EH/O K(KI—!—GsT)flg(s)dsH%
=Wj + Wp + W3 + Wy + Ws.
By Lemma 5 and (C) we have
Wi < Clle(xl + GI)H{E] ol + El9(0) 3} — 0asx — 0F.

By the Minkowsky inequality, Lemma 5, (13), and (14), the Holder inequality, (C), and
the Lebesgue Dominated Convergence Theorem, we get

Wo CLE [ Ix(sl + GI) ™ Z5(T —5)*(s) )
<C{E / et + G T = )45 s
<C [0 sy [ (et + GT) PRI s

—0asx — 0.

By similar discussions to W,, we obtain
W, < CT2-1 /OT/U (kT + GT) Y2 |1 (s; u) | Ze(du)ds — 0 as x — 0%,
Further, by (H3) and { € L2(%; L%Tt ([0, T]; £2(W, L2(0)))), we get that
Ws + W5 <CHT24+2H- Z]E/ KL+ GI) P g(5) s

n CHTZH—lE/O |l (I + Gg)_1||2||§(5)||fy§ds

—0ask — 07.
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To sum up, we get
E|y*(T) —p|l3 — 0asx — 07.

Therefore, by the arbitrariness of p € L?(X; L?(0)), we obtain the approximate con-
trollability of problem (9) on [—7, T]. O

Theorem 4. Let the conditions in Theorem 2 and (C) hold, then stochastic control problem (1) is
approximately controllable on [—t, T).

Proof. By the similar discussions to the proof of Theorem 3, we only need to show that
YA T T\—1~7a K 2
Ws = E| /O k(e + GT)1Z%(T — s)g(s, y5(s))ds|3 — 0 as x — 0.

By (12) and Proposition 3, for any ¢t € [0, T], we get

IIg(fryﬁ(f))Hfg; < 2M4||y'<|\2c(% +2Ms < 2MMjy + 2Ms.
Therefore,
- T
Wy < CHT2“+2H_2/ Ik (kT + GT) Y Pllg(s, y5(5)) |pods — 0 as x — 0.
0 2

O

5. Conclusions

In this paper, we discuss a class of stochastic control problems with Caputo fractional
derivatives, fractional Laplacian operators, fractional Brownian motions and Poisson jumps.
We consider the problems with linear and nonlinear fractional noises by different methods.
We obtain the existence and uniqueness of mild solutions when 1/2 < «, v, H < 1,
and N > 2v. Furthermore, we apply the results obtained for mild solutions to get the
approximate controllability of the stochastic control problems.
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