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Abstract: It is possible to produce mobile phone worms, which are computer viruses with the ability
to command the running of cell phones by taking advantage of their flaws, to be transmitted from
one device to the other with increasing numbers. In our day, one of the services to gain currency for
circulating these malignant worms is SMS. The distinctions of computers from mobile devices render
the existing propagation models of computer worms unable to start operating instantaneously in
the mobile network, and this is particularly valid for the SMS framework. The susceptible–affected–
infectious–suspended–recovered model with a classical derivative (abbreviated as SAIDR) was
coined by Xiao et al., (2017) in order to correctly estimate the spread of worms by means of SMS.
This study is the first to implement an Atangana–Baleanu (AB) derivative in association with the
fractional SAIDR model, depending upon the SAIDR model. The existence and uniqueness of the
drinking model solutions together with the stability analysis are shown through the Banach fixed
point theorem. The special solution of the model is investigated using the Laplace transformation
and then we present a set of numeric graphics by varying the fractional-order θ with the intention of
showing the effectiveness of the fractional derivative.

Keywords: fractional differential equations; fixed point theory; Atangana–Baleanu derivative; mobile
phone worms

MSC: 34A08; 47H10; 34A34

1. Introduction

Although computer worms are collected under the category of computer viruses,
they can be treated as a separate group owing to their distinct characteristics. First and
foremost, our intervention is not needed for computer worms to transmit whereas it is a
must for viruses, as they need a user to have access to an electronic document, directive, or
software, etc. In addition, computer worms are able to autonomously transmit themselves
and are also capable of producing replicas of themselves; this grants worms the capacity to
generate numerous duplicates for being transmitted to and infecting other computers.

Mobile worms have become increasingly contagious in parallel with the immense
expansion of the cellular network system and the growing demand on mobile phones.
The majority of these worms carry the potential to cause irrepairable damages to the
mobile domain; for example, it is quite likely that private information can be seized,
collected, or leaked from an infected device by computer worms. Furthermore, the fact
that the smart phones available in the market today are open to plenty of security breaches
entails probable widespread infections by the mobile malware in question, which carries a
significant risk. In the meantime, people employ many diverse means to circulate various
electronic documents, participate in a variety of pursuits, or attend gatherings on the
Internet with the smart phones at their disposal, and these practices call forth the invasion
of mobile devices by worms. Therefore, SMS has also become one of the typical system
components via which worms are transmitted. A term called an “SMS-based worm”, which
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is a variety of mobile worms, has been coined in the literature following the example of
Sea [1], Cckun [2], Selfmite [3], and xxShenQi [4], which are the most prominent examples
of relevance amongst others.

In order to assess the impact of memory on computer models, fractional calculus
rises to prominence, which also yields more accurate outcomes. That is to say, fractional
calculus is more versatile compared to classical calculus owing to hereditary features
and the definition of memory. Caputo [5], Liouville-Caputo [6] , as well as Caputo and
Fabrizio [7] set forth a great deal of conceptions concerning fractional order operators and
these conceptions have been proven quite efficacious when devising representations of
many real-world problems [8–19]. In addition, the said derivatives have been proven quite
efficient when one adopts numerical methods and examines the relation between distinct
problems by means of comparison. It can be seen in a number of studies that employing
fractional order derivatives yields more successful outcomes in terms of acquiring real data
for distinct worm models [20,21]. Performed according to the principal of a generalised
Mittag–Leffler function in the role of a non-singular and non-local kernel, an innovative
fractional order derivative was brought into operation for the first time by Atangana and
Baleanu [22] in 2016. This newly defined Atangana–Baleanu (AB) derivative obtains better
results in many actual problems [22–28].

The purpose of this work was to delve into a susceptible–affected–infectious–suspended–
recovered (SAIDR) model, a type of fractional order model which, for the first time, was put
forward in [29] employing a classical derivative aimed at SMS-based worm propagation in
mobile networks, on the basis of more favourable fractional calculus theories. As long as
susceptible users of mobile devices refrain from opening the links that are harmful, it is not
possible for them to instantly enter into the infected state even if the malicious message is
delivered to the said devices. This is the reason behind the addition of the affected state
into [29] by its authors; abbreviated as state A(t), it delineates the circumstance when
a harmful link is delivered to a user but not yet opened. What is more, particularly if
the phone is damaged, the harmful message is not invariably circulated by an infected
node. Thus, another new state is also instituted, which is the suspended state, going by the
abbreviation of state D(t). This is of a unique quality since a harmful message cannot be
circulated by an infected smart phone in spite of its existence in the given device. Lastly, the
overall quantity of worm nodes are separated as follows: N = S(t) + A(t) + I(t) + D(t) +
R(t), i.e., S(t) susceptible state, A(t) affected state, I(t) infected state, D(t) suspended
state, R(t) recovered state. The integer order differential equation system which puts forth
the SAIDR model in [29] can be seen below:

dS(t)
dt

= µN − γS− βSI − µS,

dA(t)
dt

= βSI − δA− ηA− µA,

dI(t)
dt

= ηA− σI − τ I − µI,

dD(t)
dt

= τ I − ϕD− µD,

dR(t)
dt

= γS + δA + σI + ϕD− µR.

(1)

The variable factors concerning the model alter at time t as follows: the susceptible
node is converted into the affected state by β, the ratio of infection, when a harmful
electronic message is delivered to it from another point of intersection. The worm is
transmitted to the node which is in the affected state by a ratio of η in the event that it is
rendered active by the affected node opening the malignant link enclosed in the message.
The node shifts into the suspended state from the infected state by a transition ratio of τ.
Meanwhile, certain software against malware might be set up in mobile devices in order
to block or erase harmful messages. Once the said software are set up, the phone cannot
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permanently remain in the infected state. These safety software can also be set up in the
wake of a maintenance process, provided that the phone stays in the special suspended
state. Hence, the node is able to shift into the ultimate recovered state regardless of its
current state. The ratios by which the node recovers from states S(t), A(t), I(t), and D(t)
to state R(t) are denominated as γ, δ, σ, ϕ in the order given.

The article is further structured with the subdivisions specified below: in order to
clarify the remaining body of this work, several fundamental notions are introduced in
Section 2. Section 3 substantiates the existence and uniqueness of the solution for the
proposed model, while we scrutinize the specific solution for the model along with the
Laplace transformation and approach the stability analysis concerning the technique by
means of the fixed point principle in Section 4. In Section 5, this fractional order model is
numerically depicted so as to review the total effect. Finally, we bring our study to an end
by debating the acquired outcomes.

2. Some Preliminaries

Here, we recall some fundamental notions.

Definition 1. The ABR fractional derivative (R denotes Riemann–Liouville type) is defined by [30]

ABRDθ
a+ [ f (t)] =

F(θ)
1− θ

d
dt

t∫
a

f ′(x)Eθ

[
−θ

1− θ
(t− x)θ

]
dx (2)

for 0 < θ < 1, a < t < b and f ∈ L1(a, b).

Definition 2. The ABC fractional derivative (C denotes Caputo type) is defined by [30]

ABCDθ
a+ [ f (t)] =

F(θ)
1− θ

t∫
a

f ′(x)Eθ

[
−θ

1− θ
(t− x)θ

]
dx (3)

for 0 < θ < 1, a < t < b and f a differentiable function on [a, b] such that f ′ ∈ L1(a, b).

Definition 3. The AB fractional integral operator AB Iθ
a+ defined by [30]

AB Iθ
a+ f (t) =

1− θ

F(θ)
f (t) +

θ

F(θ)

RL
Iθ
a+ f (t). (4)

In the above definitions, the function Eθ is the Mittag–Leffler function given by

Eθ =
∞

∑
n=0

xn

Γ(θn + 1)
. (5)

3. Existence of a Unique Solution

In the present work, we enlarged the model (1) by substituting the time derivative
by the Atangana–Baleanu derivative. With this change, the right- and left-hand sides will
not have the same dimensions. To overcome this matter, we used an auxiliary parameter κ
with the dimension of s, to change the fractional operator so that the sides have the same
dimension [31]. Thereby, we give the following fractional system:
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1
κ1−θ

ABC

0
Dθ

t S(t) = µN − γS− βSI − µS,

1
κ1−θ

ABC

0
Dθ

t A(t) = βSI − δA− ηA− µA,

1
κ1−θ

ABC

0
Dθ

t I(t) = ηA− σI − τ I − µI,

1
κ1−θ

ABC

0
Dθ

t D(t) = τ I − ϕD− µD,

1
κ1−θ

ABC

0
Dθ

t R(t) = γS + δA + σI + ϕD− µR.

(6)

with the initial numbers S(0) = S0, A(0) = A0, I(0) = I0, D(0) = D0, R(0) = R0 where
ABC
a Dθ

t is the AB derivative in Caputo type and θ ∈ [0, 1].
In this part, we prove that the system (6) has a unique solution. Implementing the

fractional integral into the system (6) by handling the Corollary 2.3 in [30], we have:

S(t)− S(0) =
(1− θ)κ1−ϑ

F(θ)
[µN − γS(t)− βS(t)I(t)− µS(t)]

+
θκ1−ϑ

F(θ)Γ(θ)

t∫
0

(t− λ)θ−1[µN − γS(λ)− βS(λ)I(λ)− µS(λ)]dλ,

A(t)− A(0) =
(1− θ)κ1−ϑ

F(θ)
[βS(t)I(t)− δA(t)− ηA(t)− µA(t)]

+
θκ1−ϑ

F(θ)Γ(θ)

t∫
0

(t− λ)θ−1[βS(λ)I(λ)− δA(λ)− ηA(λ)− µA(λ)]dλ,

I(t)− I(0) =
(1− θ)κ1−ϑ

F(θ)
[ηA(t)− σI(t)− τ I(t)− µI(t)]

+
θκ1−ϑ

F(θ)Γ(θ)

t∫
0

(t− λ)θ−1[ηA(λ)− σI(λ)− τ I(λ)− µI(λ)]dλ,

D(t)− D(0) =
(1− θ)κ1−ϑ

F(θ)
[τ I(t)− ϕD(t)− µD(t)]

+
θκ1−ϑ

F(θ)Γ(θ)

t∫
0

(t− λ)θ−1[τ I(λ)− ϕD(λ)− µD(λ)]dλ,

R(t)− R(0) =
(1− θ)κ1−ϑ

F(θ)
[γS(t) + δA(t) + σI(t) + ϕD(t)− µR(t)]

+
θκ1−ϑ

F(θ)Γ(θ)

t∫
0

(t− λ)θ−1[γS(λ) + δA(λ) + σI(λ) + ϕD(λ)− µR(λ)]dλ.

(7)

Let:
P1(t, S) = µN − γS(t)− βS(t)I(t)− µS(t),

P2(t, A) = βS(t)I(t)− δA(t)− ηA(t)− µA(t),

P3(t, I) = ηA(t)− σI(t)− τ I(t)− µI(t),

P4(t, D) = τ I(t)− ϕD(t)− µD(t),

P5(t, R) = γS(t) + δA(t) + σI(t) + ϕD(t)− µR(t).

(8)
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Theorem 1. The kernel P1 satisfies the Lipschitz condition and contraction if the following inequal-
ity holds:

0 < γ + µ + βc ≤ 1.

Proof of Theorem 1. Let S and S1 be two functions, we have:

‖P1(t, S)− P1(t, S1)‖ = ‖γ(S(t)− S1(t)) + βI(t)(S(t)− S1(t)) + µ(S(t)− S1(t))‖
≤ [γ + µ + β‖I(t)‖]‖S(t)− S1(t)‖.

Taking ε1 = γ + µ + βc where ‖S(t)‖ ≤ a, ‖A(t)‖ ≤ b, ‖I(t)‖ ≤ c, ‖D(t)‖ ≤
d, ‖R(t)‖ ≤ e are bounded functions. Then, we find:

‖P1(t, S)− P1(t, S1)‖ ≤ ε1‖S(t)− S1(t)‖. (9)

Hence, we find that the Lipschitz condition is provided by P1 and since 0 < γ + µ +
βc ≤ 1, P1 is also a contraction.

Similarly, the other kernels P2, P3, P4 and P5 satisfy the Lipschitz condition and con-
traction:

‖P2(t, A)− P2(t, A1)‖ ≤ ε2‖A(t)− A1(t)‖,
‖P3(t, I)− P3(t, I1)‖ ≤ ε3‖I(t)− I1(t)‖,
‖P4(t, D)− P4(t, D1)‖ ≤ ε4‖D(t)− D1(t)‖,
‖P5(t, R)− P5(t, R1)‖ ≤ ε5‖R(t)− R1(t)‖.

(10)

Regarding kernels P1, P2, P3, P4,P5, Equation (7) becomes:

S(t) = S(0) +
(1− θ)κ1−θ

F(θ)
P1(t, S) +

θκ1−θ

F(θ)Γ(θ)

t∫
0

(t− λ)θ−1P1(λ, S)dλ,

A(t) = A(0) +
(1− θ)κ1−θ

F(θ)
P2(t, A) +

θκ1−θ

F(θ)Γ(θ)

t∫
0

(t− λ)θ−1P2(λ, A)dλ,

I(t) = I(0) +
(1− θ)κ1−θ

F(θ)
P3(t, I) +

θκ1−θ

F(θ)Γ(θ)

t∫
0

(t− λ)θ−1P3(λ, I)dλ,

D(t) = D(0) +
(1− θ)κ1−θ

F(θ)
P4(t, D) +

θκ1−θ

F(θ)Γ(θ)

t∫
0

(t− λ)θ−1P4(λ, D)dλ,

R(t) = R(0) +
(1− θ)κ1−θ

F(θ)
P5(t, R) +

θκ1−θ

F(θ)Γ(θ)

t∫
0

(t− λ)θ−1P5(λ, R)dλ.

(11)
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Considering Equation (11) for the following recursive formula:

Sn(t) =
(1− θ)κ1−θ

F(θ)
P1(t, Sn−1) +

θκ1−θ

F(θ)Γ(θ)

t∫
0

(t− λ)θ−1P1(λ, Sn−1)dλ,

An(t) =
(1− θ)κ1−θ

F(θ)
P2(t, An−1) +

θκ1−θ

F(θ)Γ(θ)

t∫
0

(t− λ)θ−1P2(λ, An−1)dλ,

In(t) =
(1− θ)κ1−θ

F(θ)
P3(t, In−1) +

θκ1−θ

F(θ)Γ(θ)

t∫
0

(t− λ)θ−1P3(λ, In−1)dλ,

Dn(t) =
(1− θ)κ1−θ

F(θ)
P4(t, Dn−1) +

θκ1−θ

F(θ)Γ(θ)

t∫
0

(t− λ)θ−1P4(λ, Dn−1)dλ,

Rn(t) =
(1− θ)κ1−θ

F(θ)
P5(t, Rn−1) +

θκ1−θ

F(θ)Γ(θ)

t∫
0

(t− λ)θ−1P5(λ, Rn−1)dλ.

(12)

where S0(t) = S(0), A0(t) = A(0), I0(t) = I(0), D0(t) = D(0), R0(t) = R(0).
We deal with the difference between successive terms as below:

Φ1n(t) = Sn(t)− Sn−1(t) =
(1− θ)κ1−θ

F(θ)
[P1(t, Sn−1)− P1(t, Sn−2)]

+
θκ1−θ

F(θ)Γ(θ)

t∫
0

(t− λ)θ−1[P1(λ, Sn−1)− P1(λ, Sn−2)]dλ,

Φ2n(t) = An(t)− An−1(t) =
(1− θ)κ1−θ

F(θ)
[P2(t, An−1)− P2(t, An−2)]

+
θκ1−θ

F(θ)Γ(θ)

t∫
0

(t− λ)θ−1[P2(λ, An−1)− P2(λ, An−2)]dλ,

Φ3n(t) = In(t)− In−1(t) =
(1− θ)κ1−θ

F(θ)
[P3(t, In−1)− P3(t, In−2)]

+
θκ1−θ

F(θ)Γ(θ)

t∫
0

(t− λ)θ−1[P3(λ, In−1)− P3(λ, In−2)]dλ,

Φ4n(t) = Dn(t)− Dn−1(t) =
(1− θ)κ1−θ

F(θ)
[P4(t, Dn−1)− P4(t, Dn−2)]

+
θκ1−θ

F(θ)Γ(θ)

t∫
0

(t− λ)θ−1[P4(λ, Dn−1)− P4(λ, Dn−2)]dλ,

Φ5n(t) = Rn(t)− Rn−1(t) =
(1− θ)κ1−θ

F(θ)
[P5(t, Rn−1)− P5(t, Rn−2)]

+
θκ1−θ

F(θ)Γ(θ)

t∫
0

(t− λ)θ−1[P5(λ, Rn−1)− P5(λ, Rn−2)]dλ.

(13)
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Notice that:

Sn(t) =
n

∑
j=0

Φ1j(t),

An(t) =
n

∑
j=0

Φ2j(t),

In(t) =
n

∑
j=0

Φ3j(t),

Dn(t) =
n

∑
j=0

Φ4j(t),

Rn(t) =
n

∑
j=0

Φ5j(t).

(14)

In the light of Φin (i = 1, 2, 3, 4, 5) definition and benefiting from triangular identity,
we obtain:

‖Φ1n(t)‖ = ‖Sn(t)− Sn−1(t)‖

=

∥∥∥∥ (1− θ)κ1−θ

F(θ)
[P1(t, Sn−1)− P1(t, Sn−2)]

+
θκ1−θ

F(θ)Γ(θ)

t∫
0

(t− λ)θ−1[P1(λ, Sn−1)− P1(λ, Sn−2)]dλ

∥∥∥∥∥∥. (15)

Since the kernel P1 provides a Lipschitz condition, we obtain:

‖Φ1n(t)‖ = ‖Sn(t)− Sn−1(t)‖

≤ (1− θ)κ1−θ

F(θ)
ε1‖Sn−1 − Sn−2‖+

θκ1−θ

F(θ)Γ(θ)
ε1

t∫
0

(t− λ)θ−1‖Sn−1 − Sn−2‖dλ. (16)

and:

‖Φ1n(t)‖ ≤
(1− θ)κ1−θ

F(θ)
ε1

∥∥∥Φ1(n−1)(t)
∥∥∥+ θκ1−θ

F(θ)Γ(θ)
ε1

t∫
0

(t− λ)θ−1
∥∥∥Φ1(n−1)(λ)

∥∥∥dλ. (17)

Analogously, we obtain the following results:

‖Φ2n(t)‖ ≤
(1− θ)κ1−θ

F(θ)
ε2

∥∥∥Φ2(n−1)(t)
∥∥∥+ θκ1−θ

F(θ)Γ(θ)
ε2

t∫
0

(t− λ)θ−1
∥∥∥Φ2(n−1)(λ)

∥∥∥dλ,

‖Φ3n(t)‖ ≤
(1− θ)κ1−θ

F(θ)
ε3

∥∥∥Φ3(n−1)(t)
∥∥∥+ θκ1−θ

F(θ)Γ(θ)
ε3

t∫
0

(t− λ)θ−1
∥∥∥Φ3(n−1)(λ)

∥∥∥dλ,

‖Φ4n(t)‖ ≤
(1− θ)κ1−θ

F(θ)
ε4

∥∥∥Φ4(n−1)(t)
∥∥∥+ θκ1−θ

F(θ)Γ(θ)
ε4

t∫
0

(t− λ)θ−1
∥∥∥Φ4(n−1)(λ)

∥∥∥dλ

‖Φ5n(t)‖ ≤
(1− θ)κ1−θ

F(θ)
ε5

∥∥∥Φ5(n−1)(t)
∥∥∥+ θκ1−θ

F(θ)Γ(θ)
ε5

t∫
0

(t− λ)θ−1
∥∥∥Φ5(n−1)(λ)

∥∥∥dλ. (18)

According to the results in hand, we determine that the system (6) has a solution.
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Theorem 2. The fractional SAIDR system (6) has a solution, if there exist ti, i = 1, 2, 3, 4, 5
such that:

(1− θ)κ1−θ

F(θ)
εi +

tθ
0κ1−θ

F(θ)Γ(θ)
εi < 1.

Proof of Theorem 2. We know that S(t), A(t), I(t), D(t), R(t) are bounded functions and
the kernels provide a Lipschitz condition. Using Equations (17) and (18), we have:

‖Φ1n(t)‖ ≤ ‖Sn(0)‖
[
(1− θ)κ1−θ

F(θ)
ε1 +

tθκ1−θ

F(θ)Γ(θ)
ε1

]n

,

‖Φ2n(t)‖ ≤ ‖An(0)‖
[
(1− θ)κ1−θ

F(θ)
ε2 +

tθκ1−θ

F(θ)Γ(θ)
ε2

]n

‖Φ3n(t)‖ ≤ ‖In(0)‖
[
(1− θ)κ1−θ

F(θ)
ε3 +

tθκ1−θ

F(θ)Γ(θ)
ε3

]n

‖Φ4n(t)‖ ≤ ‖Dn(0)‖
[
(1− θ)κ1−θ

F(θ)
ε4 +

tθκ1−θ

F(θ)Γ(θ)
ε4

]n

,

‖Φ5n(t)‖ ≤ ‖Rn(0)‖
[
(1− θ)κ1−θ

F(θ)
ε5 +

tθκ1−θ

F(θ)Γ(θ)
ε5

]n

.

(19)

Thus, Function (14) exists and is smooth. We aim to show that these functions are the
solution of Equation (6), assuming that:

S(t)− S(0) = Sn(t)− g1n(t),

A(t)− A(0) = An(t)− g2n(t),

I(t)− I(0) = In(t)− g3n(t)
D(t)− D(0) = Dn(t)− g4n(t),

R(t)− R(0) = Rn(t)− g5n(t).

(20)

Thus, we have:

‖g1n(t)‖ =
∥∥∥∥ (1− θ)κ1−θ

F(θ)
[P1(t, S)− P1(t, Sn−1)]

+
θκ1−θ

F(θ)Γ(θ)

t∫
0

(t− λ)θ−1[P1(λ, S)− P1(λ, Sn−1)]dλ

∥∥∥∥∥∥
≤ (1− θ)κ1−θ

F(θ)
‖P1(t, S)− P1(t, Sn−1)‖ (21)

+
θκ1−θ

F(θ)Γ(θ)

t∫
0

(t− λ)θ−1‖P1(λ, S)− P1(λ, Sn−1)dλ‖

≤ (1− θ)κ1−θ

F(θ)
ε1‖S− Sn−1‖+

tθκ1−θ

F(θ)Γ(θ)
ε1‖S− Sn−1‖.

Repeating this method, we obtain at t0:

‖g1n(t)‖ ≤
(
(1− θ)κ1−θ

F(θ)
+

tθ
0κ1−θ

F(θ)Γ(θ)

)n+1

γn+1
1 M. (22)

As n approaches ∞, ‖g1n(t)‖ → 0. In the same way, it can be shown that ‖gin(t)‖ → 0
(i = 2, 3, 4, 5).
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To show the uniqueness of the solution, we suppose that the system (6) has another
solution S1(t), A1(t), I1(t), R1(t) then:

‖S(t)− S1(t)‖ =
∥∥∥∥ (1− θ)κ1−θ

F(θ)
[P1(t, S)− P1(t, S1)]

+
θκ1−θ

F(θ)Γ(θ)

t∫
0

(t− λ)θ−1[P1(λ, S)− P1(λ, S1)]dλ

∥∥∥∥∥∥
≤ (1− θ)κ1−θ

F(θ)
‖P1(t, S)− P1(t, S1)‖

+
θκ1−θ

F(θ)Γ(θ)

t∫
0

(t− λ)θ−1‖P1(λ, S)− P1(λ, S1)‖dλ. (23)

Regarding the Lipschitz condition of S, we gain:

‖S(t)− S1(t)‖ ≤
(1− θ)κ1−θ

F(θ)
ε1‖S(t)− S1(t)‖+

tθκ1−θ

F(θ)Γ(θ)
ε1‖S(t)− S1(t)‖. (24)

This gives:

‖S(t)− S1(t)‖
(

1− (1− θ)κ1−θ

F(θ)
ε1 −

tθκ1−θ

F(θ)Γ(θ)
ε1

)
≤ 0. (25)

Obviously S(t) = S1(t), if the following inequality holds:(
1− (1− θ)κ1−θ

F(θ)
ε1 −

tθκ1−θ

F(θ)Γ(θ)
ε1

)
> 0

then ‖S(t)− S1(t)‖ = 0. Therefore, we gain:

S(t) = S1(t).

In the same way, we find:

A(t) = A1(t), I(t) = I1(t), D(t) = D1(t), R(t) = R1(t).

4. Stability Analysis by Fixed Point Theory

In this section, we give a special solution of the fractional SAIDR model (6) with a
recursive formula by using Laplace transform. The Laplace transform for the AB fractional
derivative was introduced by Atangana and Baleanu [22] as follows:

Theorem 3. Let θ ∈ [0, 1], a < b and g ∈ H1(a, b). The Laplace transform for the AB derivative
in the Caputo type is presented by:

L
{

ABC
0 Dθ

t [g(t)]
}
(p) =

F(θ)
1− θ

pθ L{g(t)}(p)− pθ−1g(0)
pθ + θ

1−θ

. (26)
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We apply the Laplace transform to the Equation (6), then:

L

(
1

κ1−θ

ABC

0
Dθ

t S(t)

)
(p) = L(µN − γS(t)− βS(t)I(t)− µS(t))(p),

L

(
1

κ1−θ

ABC

0
Dθ

t A(t)

)
(p) = L(βS(t)I(t)− δA(t)− ηA(t)− µA(t))(p),

L

(
1

κ1−θ

ABC

0
Dθ

t I(t)

)
(p) = L(ηA(t)− σI(t)− τ I(t)− µI(t))(p),

L

(
1

κ1−θ

ABC

0
Dθ

t D(t)

)
(p) = L(τ I(t)− ϕD(t)− µD(t))(p),

L

(
1

κ1−θ

ABC

0
Dθ

t R(t)

)
(p) = L(γS(t) + δA(t) + σI(t) + ϕD(t)− µR(t))(p).

Benefiting from the Laplace transform definition of the AB derivative, we obtain:

F(θ)
1− θ

1
pθ + θ

1−θ

(
pθ L(S(t))(p)− pθ−1S(0)

)
= κ1−θ L(µN − γS(t)− βS(t)I(t)− µS(t))(p),

F(θ)
1− θ

1
pθ + θ

1−θ

(
pθ L(A(t))(p)− pθ−1 A(0)

)
= κ1−θ L(βS(t)I(t)− δA(t)− ηA(t)− µA(t))(p),

F(θ)
1− θ

1
pθ + θ

1−θ

(
pθ L(I(t))(p)− pθ−1 I(0)

)
= κ1−θ L(ηA(t)− σI(t)− τ I(t)− µI(t))(p),

F(θ)
1− θ

1
pθ + θ

1−θ

(
pθ L(D(t))(p)− pθ−1D(0)

)
= κ1−θ L(τ I(t)− ϕD(t)− µD(t))(p),

F(θ)
1− θ

1
pθ + θ

1−θ

(
pθ L(R(t))(p)− pθ−1R(0)

)
= κ1−θ L(γS(t) + δA(t) + σI(t) + ϕD(t)− µR(t))(p). (27)
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Regulating Equation (27), we derive:

L(S(t))(p) =
1
p

S(0) + ψκ1−θ × L(µN − γS(t)− βS(t)I(t)− µS(t))(p),

L(A(t))(p) =
1
p

A(0) + ψκ1−θ × L(βS(t)I(t)− δA(t)− ηA(t)− µA(t))(p),

L(I(t))(p) =
1
p

I(0) + ψκ1−θ × L(ηA(t)− σI(t)− τ I(t)− µI(t))(p),

L(D(t))(p) =
1
p

D(0) + ψκ1−θ × L(τ I(t)− ϕD(t)− µD(t))(p),

L(R(t))(p) =
1
p

R(0) + ψκ1−θ × L(γS(t) + δA(t) + σI(t) + ϕD(t)− µR(t))(p),

where:

ψ =

(
1− θ +

θ

pθ

)
1

F(θ)
.

Thus, we have the following iterative formula by taking the inverse Laplace transform
both sides of all equations, as follows:

Sn+1(t) = Sn(0) + L−1
(

ψκ1−θST(µN − γS(t)− βS(t)I(t)− µS(t))(p)
)

,

An+1(t) = An(0) + L−1
(

ψκ1−θST(βS(t)I(t)− δA(t)− ηA(t)− µA(t))(p)
)

,

In+1(t) = In(0) + L−1
(

ψκ1−θST(ηA(t)− σI(t)− τ I(t)− µI(t))(p)
)

,

Dn+1(t) = Dn(0) + L−1
(

ψκ1−θST(τ I(t)− ϕD(t)− µD(t))(p)
)

,

Rn+1(t) = Rn(0) + L−1
(

ψκ1−θST(γS(t) + δA(t) + σI(t) + ϕD(t)− µR(t))(p)
)

.

(28)

The approximate solution of the model (6) is as below:

S(t) = lim
n→∞

Sn(t), A(t) = lim
n→∞

An(t), I(t) = lim
n→∞

In(t),

D(t) = lim
n→∞

Dn(t), R(t) = lim
n→∞

Rn(t).

Stability Analysis of Iteration Method

Considering the Banach space (X, ‖.‖), a self map T on X and the recursive method
qn+1 = φ(T, qn). We assume that {tn} ⊂ γ is the fixed point set of T which γ(T) 6= ∅
and limn→∞qn = q ∈ γ(t). We also suppose that {tn} ⊂ γ and rn = ‖tn+1 − φ(T, tn)‖. If
limn→∞rn = 0 implies that limn→∞tn = q, then the iteration method qn+1 = φ(T, qn) is
T-stable. We suppose that our sequence {tn} has an upper boundary. If Picard’s iteration
qn+1 = Tqn satisfies all conditions, then qn+1 = Tqn is T-stable.

Theorem 4. Let (X, ‖.‖) be Banach space and T : X → X be a map satisfying:∥∥Tx − Ty
∥∥ ≤ K‖x− Tx‖+ k‖x− y‖,

for all x, y ∈ X, where 0 ≤ K, 0 ≤ k < 1. Then, T is Picard T-stable [32].
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Theorem 5. Assume that T is a self map defined as below:

T(Sn(t)) = Sn+1(t)

= Sn(t) + L−1
(

ψκ1−θ × L(µN − γS(t)− βS(t)I(t)− µS(t))(p)
)

,

T(An(t)) = An+1(t)

= An(t) + L−1
(

ψκ1−θ × L(βS(t)I(t)− δA(t)− ηA(t)− µA(t))(p)
)

,

T(In(t)) = In+1(t)

= In(t) + L−1
(

ψκ1−θ × L(ηA(t)− σI(t)− τ I(t)− µI(t))(p)
)

,

T(Dn(t)) = Dn+1(t)

= Dn(t) + L−1
(

ψκ1−θ × L(τ I(t)− ϕD(t)− µD(t))(p)
)

,

T(Rn(t)) = Rn+1(t)

= Rn(t) + L−1
(

ψκ1−θ × L(γS(t) + δA(t) + σI(t) + ϕD(t)− µR(t))(p)
)

.

Then, the iteration is T-stable in L1(a, b) if the following statements are achieved:

1− (µ + γ)h1(γ)− β(M3 + M1)h2(γ) < 1,

1− β(M3 + M1)h3(γ)− (δ + η + µ)h4(γ) < 1,

1 + ηh5(γ)− (σ + τ + µ)h6(γ) < 1,

1 + τh7(γ)− (ϕ + µ)h8(γ) < 1,

1 + γh9(γ) + δh10(γ) + σh11(γ) + ϕh12(γ)− µh13(γ) < 1.

Proof. To show that T has a fixed point, we evaluated the following for (i, j) ∈ N×N:

T(Si(t))− T
(
Sj(t)

)
= Si(t)− Sj(t)

+L−1
(

ψκ1−θ × L(µN − γSi(t)− βSi(t)Ii(t)− µSi(t))(p)
)

(29)

−L−1
(

ψκ1−θ × L
(
µN − γSj(t)− βSj(t)Ij(t)− µSj(t)

)
(p)
)

.

Taking the norm, Equation (30) is converted to:∥∥T(Si(t))− T
(
Sj(t)

)∥∥ =
∥∥Si(t)− Sj(t)

+L−1
(

ψκ1−θ × L(µN − γSi(t)− βSi(t)Ii(t)− µSi(t))(p)
)

(30)

−L−1
(

ψκ1−θ × L
(
µN − γSj(t)− βSj(t)Ij(t)− µSj(t)

)
(p)
)∥∥∥.

Using norm properties, we obtain:∥∥T(Si(t))− T
(
Sj(t)

)∥∥ ≤ ∥∥Si(t)− Sj(t)
∥∥

+ L−1
(

ψκ1−θ × L
( ∥∥−(γ + µ)

(
Si(t)− Sj(t)

)
−β
(

Ii(t)
(
Si(t)− Sj(t)

)
+ Sj(t)

(
Ii(t)− Ij(t)

))∥∥ )(p)
)

(31)

Since the solutions play the same role, we assume that:∥∥Si(t)− Sj(t)
∥∥ ∼=

∥∥Ai(t)− Aj(t)
∥∥

∼=
∥∥Ii(t)− Ij(t)

∥∥ ∼= ∥∥Di(t)− Dj(t)
∥∥ ∼= ∥∥Ri(t)− Rj(t)

∥∥ (32)
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From Equations (31) and (32), we find:∥∥T(Si(t))− T
(
Sj(t)

)∥∥ ≤ ∥∥Si(t)− Sj(t)
∥∥

+L−1
(

ψκ1−θ × L
(∥∥−(γ + µ)

(
Si(t)− Sj(t)

)∥∥)(p)
)

(33)

+L−1
(

ψκ1−θ × L
(∥∥−β

(
Ii
(
Si(t)− Sj(t)

)
+ Sj

(
Si(t)− Sj(t)

))∥∥)(p)
)

Because Si(t), Ai(t), Ii(t), Di(t) and Ri(t) are bounded, for all t there exists Mi,
i = 1, 2, 3, 4, 5 such that:

‖Si(t)‖ ≤ M1, ‖Ai(t)‖ ≤ M2,

‖Ii(t)‖ ≤ M3, ‖Di(t)‖ ≤ M4, ‖Ri(t)‖ ≤ M5. (34)

Here, considering Equations (33) and (34), we have:∥∥T(Si(t))− T
(
Sj(t)

)∥∥ ≤ ∥∥Si(t)− Sj(t)
∥∥× [1− (γ + µ)h1(γ)− β(M3 + M1)h2(γ)] (35)

where hi are functions from L−1{ψκ1−θ L
}

. In an analogous way, we achieve:∥∥T(Ai(t))− T
(

Aj(t)
)∥∥ ≤ ∥∥Ai(t)− Aj(t)

∥∥
× [1− β(M3 + M1)h3(γ)− (δ + η + µ)h4(γ)],

∥∥T(Ii(t))− T
(

Ij(t)
)∥∥ ≤ ∥∥Ii(t)− Ij(t)

∥∥
× [1 + ηh5(γ)− (σ + τ + µ)h6(γ)],

∥∥T(Di(t))− T
(

Dj(t)
)∥∥ ≤ ∥∥Di(t)− Dj(t)

∥∥
× [1 + τh7(γ)− (ϕ + µ)h8(γ)],

∥∥T(Ri(t))− T
(

Rj(t)
)∥∥ ≤ ∥∥Ri(t)− Rj(t)

∥∥
× [1 + γh9(γ) + δh10(γ) + σh11(γ) + ϕh12(γ)− µh13(γ)] (36)

where:

1− (γ + µ)h1(γ)− β(M3 + M1)h2(γ) < 1,

1− β(M3 + M1)h3(γ)− (δ + η + µ)h4(γ) < 1,

1 + ηh5(γ)− (σ + τ + µ)h6(γ) < 1,

1 + τh7(γ)− (ϕ + µ)h8(γ) < 1,

1 + γh9(γ) + δh10(γ) + σh11(γ) + ϕh12(γ)− µh13(γ) < 1.

Therefore, T has a fixed point. Considering Equations (35) and (36), we assume:

k = (0, 0, 0, 0, 0),

K =


1− (γ + µ)h1(γ)− β(M3 + M1)h2(γ),

1− β(M3 + M1)h3(γ)− (δ + η + µ)h4(γ),
1 + ηh5(γ)− (σ + τ + µ)h6(γ),

1 + τh7(γ)− (ϕ + µ)h8(γ)
1 + γh9(γ) + δh10(γ) + σh11(γ) + ϕh12(γ)− µh13(γ)

.

Thus, all the conditions of Theorem 4 are satisfied. This completes the proof.
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5. Numerical Results

With the aim of obtaining the solution, through some equations of fractional deriva-
tives with a non-local and non-singular kernel, Toufik and Atangana [33] presented a novel
numerical scheme based on the fundamental theorem of fractional calculus and a two-step
Lagrange polynomial. We give the so-called method for the fractional SMS-based worm
propagation model in mobile networks (6). At a point t = tn+1, we apply this scheme to
Equation (12):

Sn+1 = S0 +
(1− θ)κ1−θ

F(θ)
P1(tn, S(tn))

+
θ

F(θ)

n

∑
k=0

(
hθ P1(tk, Sk)

Γ(θ + 2)

(
(n− k + 1)θ(n− k + 2 + θ)− (n− k)θ(n− k + 2 + 2θ)

)
(37)

− hθ P1(tk−1, Sk−1)

Γ(η + 2)

(
(n− k + 1)θ+1 − (n− k)θ(n− k + 1 + θ)

)
+1 Lθ

n,

An+1 = A0 +
(1− θ)κ1−θ

F(θ)
P2(tn, A(tn))

+
θ

F(θ)

n

∑
k=0

(
hθ P2(tk, Ak)

Γ(θ + 2)

(
(n− k + 1)θ(n− k + 2 + θ)− (n− k)θ(n− k + 2 + 2θ)

)
(38)

− hθ P2(tk−1, Ak−1)

Γ(η + 2)

(
(n− k + 1)θ+1 − (n− k)θ(n− k + 1 + θ)

)
+2 Lθ

n,

In+1 = I0 +
(1− θ)κ1−θ

F(θ)
P3(tn, I(tn))

+
θ

F(θ)

n

∑
k=0

(
hθ P3(tk, Ik)

Γ(θ + 2)

(
(n− k + 1)θ(n− k + 2 + θ)− (n− k)θ(n− k + 2 + 2θ)

)
(39)

− hθ P3(tk−1, Ik−1)

Γ(η + 2)

(
(n− k + 1)θ+1 − (n− k)θ(n− k + 1 + θ)

)
+3 Lθ

n,

Dn+1 = D0 +
(1− θ)κ1−θ

F(θ)
P4(tn, D(tn))

+
θ

F(θ)

n

∑
k=0

(
hθ P4(tk, Dk)

Γ(θ + 2)

(
(n− k + 1)θ(n− k + 2 + θ)− (n− k)θ(n− k + 2 + 2θ)

)
(40)

− hθ P4(tk−1, Dk−1)

Γ(η + 2)

(
(n− k + 1)θ+1 − (n− k)θ(n− k + 1 + θ)

)
+4 Lθ

n,

Rn+1 = R0 +
(1− θ)κ1−θ

F(θ)
P5(tn, R(tn))

+
θ

F(θ)

n

∑
k=0

(
hθ P5(tk, Rk)

Γ(θ + 2)

(
(n− k + 1)θ(n− k + 2 + θ)− (n− k)θ(n− k + 2 + 2θ)

)
(41)

− hθ P5(tk−1, Rk−1)

Γ(η + 2)

(
(n− k + 1)θ+1 − (n− k)θ(n− k + 1 + θ)

)
+5 Lθ

n,
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where iLθ
n, i = 1, 2, 3, 4, 5 are remainder terms given by

1Lθ
n =

θ

F(θ)Γ(θ)

n

∑
k=0

tk−1∫
tk

(λ− tk)(λ− tk−1)

2!
∂2

∂λ2 [P1(λ, S(λ))]λ=ελ
(tn+1 − λ)η−1dλ,

2Lθ
n =

θ

F(θ)Γ(θ)

n

∑
k=0

tk−1∫
tk

(λ− tk)(λ− tk−1)

2!
∂2

∂λ2 [P2(λ, A(λ))]λ=ελ
(tn+1 − λ)η−1dλ,

3Lθ
n =

θ

F(θ)Γ(θ)

n

∑
k=0

tk−1∫
tk

(λ− tk)(λ− tk−1)

2!
∂2

∂λ2 [P3(λ, I(λ))]λ=ελ
(tn+1 − λ)η−1dλ,

4Lθ
n =

θ

F(θ)Γ(θ)

n

∑
k=0

tk−1∫
tk

(λ− tk)(λ− tk−1)

2!
∂2

∂λ2 [P4(λ, D(λ))]λ=ελ
(tn+1 − λ)η−1dλ,

5Lθ
n =

θ

F(θ)Γ(θ)

n

∑
k=0

tk−1∫
tk

(λ− tk)(λ− tk−1)

2!
∂2

∂λ2 [P5(λ, R(λ))]λ=ελ
(tn+1 − λ)η−1dλ.

The numerical productions of the model (6) are hereby displayed by the foregoing
method. To this end, the initial conditions are posited as S(0) = 99, 000, A(0) = 500,
I(0) = 500, D(0) = 0, R(0) = 0 and the variable factors µ = 0.000001, η = 0.003, δ = 0.003,
σ = 0.004, τ = 0.001, ϕ = 0.007, β = 0.000003 are selected as specified in [29]. Any
elevation or decline in the susceptible nodes, affected nodes, infected nodes, suspended
nodes, or recovered nodes with respect to the distinct fractional order, and the numerical
amounts of the chosen variable quantities are displayed by the figures. Figure 1a illustrates
the preliminary elevation in the quantity of infected nodes which rises to the highest point,
nearly 20% of the overall amount present within the structure at approximately the 300th
minute; but afterwards, this number diminishes at a fast pace. It follows from here that
SMS is one of the ways that enables the worm to be quickly transmitted throughout the
mobile network. Figure 1b–d indicate that the quantity of infected nodes gradually rises
while the fractional order declines. Hence, we can assert that SMS is a means for the worm
to transmit itself gradually; however, the quantity of infected nodes that continues existing
in the system is higher.

In order to illustrate the reasonableness of the fractional SAIDR model, let us herein
investigate the ratio of infection and the ratio of transition between infected and suspended
states, which are two substantial variables. Figure 2a,b evince that a larger quantity
of nodes will be contaminated more quickly as the infection rate scales up. To put it
differently, as β for the fractional order θ = 0.95 and θ = 0.65 elevates, the worm circulates
more swiftly. For this reason, it is possible to say that reducing the infection ratio results
in an acceleration of the duration during which the harmful software is wiped out. It
follows from Figure 3a,b that the graph τ = 0.003 hits the lowest point when the graph
τ = 0.001 comes to the topmost more or less simultaneously, approximately at the 400th
min, reciprocally involving the three graphs’ highest points. A smaller amount of nodes
becomes simultaneously contaminated as a consequence of the escalation in transition
ratios to the suspended state from the infected state. The reason is that a smaller number
of nodes continue staying in the infected state since a greater amount of nodes are able to
shift to the suspended state from the infected state with the escalating ratio.
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Figure 1. Numerical simulation of Equation (6) for (a) θ = 0.95; (b) θ = 0.85; (c) θ = 0.75; and (d) θ = 0.65.
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Figure 2. Effect of β on the infected nodes for the fractional order (a) θ = 0.95 and (b) θ = 0.65, respectively.
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Figure 3. Relation between τ and infected nodes for the fractional order (a) θ = 0.95 and (b) θ = 0.65, respectively.
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6. Conclusions

A novel fractional order derivative involving a Mittag–Leffler kernel has recently
been introduced by Atangana in cooperation with Baleanu. First and foremost, the AB
derivative broadens the scope of the model grounding on [29] so that we can consider the
additional implementation of the relevant fractional derivative and monitor the propa-
gation of computer worms in mobile networks more comprehensively. We propound a
fractional model which carries the probability of not having any closed form solution since
it is nonlinear. Hence, the circumstances providing the existence and uniqueness of the
solution regarding this fractional SAIDR model become evident, and the special solution is
thus reproduced through the Laplace transform. Lastly, we apply numerical simulations of
this model so as to reach efficacy with this novel derivative provided with a fractional order.
Additionally, we express the impact that infection ratio has on infected nodes numerically,
and on the grounds of the relevant graphics, we conclude that diminishing the ratio of
infection speeds up the duration during which the malignant software are eliminated.
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11. Özdemir, N.; Agrawal, O.P.; İskender, B.B.; Karadeniz, D. Fractional optimal control of a 2-dimensional distributed system using

eigenfunctions. Nonlinear Dyn. 2009, 55, 251–260. [CrossRef]
12. Baleanu, D.; Fernandez, A.; Akgül, A. On a fractional operator combining proportional and classical differintegrals. Mathematics

2020, 8, 13. [CrossRef]
13. Uçar, E.; Özdemir, N.; Altun, E. Fractional order model of immune cells influenced by cancer cells. Math. Model. Nat. 2019, 14, 12.
14. Evirgen, F.; Özdemir, N. Multistage adomian decomposition method for solving NLP problems over a nonlinear fractional

dynamical system. J. Comput. Nonlinear Dyn. 2011, 6. [CrossRef]
15. Evirgen, F. Conformable Fractional Gradient Based Dynamic System for Constrained Optimization Problem. Acta Phys. Pol. A

2017, 132, 1066–1069. [CrossRef]

http://doi.org/10.1016/j.techsoc.2010.07.001
https://www.cert.org.cn/publish/main/8/2013/20130924145326642925406/20130924145326642925406_.html
http://www.computerworld.com/article/2824619/android-sms-worm-selfmite-is-back-more-aggressive-than-ever.html
http://www.computerworld.com/article/2824619/android-sms-worm-selfmite-is-back-more-aggressive-than-ever.html
https://www.cert.org.cn/publish/main/12/2014/20140803174220396365334/20140803174220396365334_.html
https://www.cert.org.cn/publish/main/12/2014/20140803174220396365334/20140803174220396365334_.html
http://dx.doi.org/10.1007/BF00879562
http://dx.doi.org/10.11121/ijocta.01.2018.00532
http://dx.doi.org/10.1016/j.chaos.2018.06.009
http://dx.doi.org/10.1140/epjp/s13360-020-00420-w
http://dx.doi.org/10.1007/s11071-008-9360-4
http://dx.doi.org/10.3390/math8030360
http://dx.doi.org/10.1115/1.4002393
http://dx.doi.org/10.12693/APhysPolA.132.1066


Fractal Fract. 2021, 5, 32 18 of 18

16. Uçar, E.; Özdemir, N. A fractional model of cancer-immune system with Caputo and Caputo–Fabrizio derivatives. Eur. Phys. J.
Plus 2021, 136, 1–17. [CrossRef] [PubMed]

17. Aljoudi, S.; Ahmad, B.; Alsaedi, A. Existence and uniqueness results for a coupled system of Caputo-Hadamard fractional
differential equations with nonlocal Hadamard type integral boundary conditions. Fractal Fract. 2020, 4, 15. [CrossRef]

18. Baleanu, D.; Hakimeh M.; Shahram, R. A fractional differential equation model for the COVID-19 transmission by using the
Caputo–Fabrizio derivative. Adv. Differ. Eq. 2020, 2020, 299. [CrossRef] [PubMed]

19. Aliyu, A. I.; Inc M.; Yusuf, A.; Baleanu, D. A fractional model of vertical transmission and cure of vector-borne diseases pertaining
to the Atangana–Baleanu fractional derivatives. Chaos Solitons Fractals 2018, 116, 268–277. [CrossRef]

20. Uçar, S. Analysis of a basic SEIRA model with Atangana-Baleanu derivative. AIMS Math. 2020, 5, 1411–1424. [CrossRef]
21. Kumar, D.; Singh, J. New aspects of fractional epidemiological model for computer viruses with Mittag–Leffler law. In Mathematical

Modelling in Health, Social and Applied Sciences; Dutta, H., Ed.; Springer: Singapore, 2020; pp. 283–301.
22. Atangana, A.; Baleanu, D. New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat

transfer model. Therm. Sci. 2016, 20, 763–769. [CrossRef]
23. Fernandez, A.; Baleanu, D.; Srivastava, H.M. Series representations for fractional-calculus operators involving generalised

Mittag-Leffler functions. Commun. Nonlinear Sci. Numer. 2019, 67, 517–527. [CrossRef]
24. Baleanu, D.; Jajarmi, A.; Hajipour, M. On the nonlinear dynamical systems within the generalized fractional derivatives with

Mittag-Leffler kernel. Nonlinear Dyn. 2018, 94, 397–414. . [CrossRef]
25. Qureshi, S.; Yusuf, A.; Shaikh, A.A.; Inc, M.; Baleanu, D. Fractional modeling of blood ethanol concentration system with real

data application. Chaos 2019, 29, 131–143. [CrossRef]
26. Uçar, S.; Uçar, E.; Özdemir, N.; Hammouch, Z. Mathematical analysis and numerical simulation for a smoking model with

Atangana-Baleanu derivative. Chaos Solitons Fractals 2019, 118, 300–306. [CrossRef]
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