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Abstract: We considered relaxation, creep, dissipation, and hysteresis resulting from a six-parameter
fractional constitutive model and its particular cases. The storage modulus, loss modulus, and loss
factor, as well as their characteristics based on the thermodynamic requirements, were investigated.
It was proved that for the fractional Maxwell model, the storage modulus increases monotonically,
while the loss modulus has symmetrical peaks for its curve against the logarithmic scale log(ω), and
for the fractional Zener model, the storage modulus monotonically increases while the loss modulus
and the loss factor have symmetrical peaks for their curves against the logarithmic scale log(ω). The
peak values and corresponding stationary points were analytically given. The relaxation modulus
and the creep compliance for the six-parameter fractional constitutive model were given in terms of
the Mittag–Leffler functions. Finally, the stress–strain hysteresis loops were simulated by making
use of the derived creep compliance for the fractional Zener model. These results show that the
fractional constitutive models could characterize the relaxation, creep, dissipation, and hysteresis
phenomena of viscoelastic bodies, and fractional orders α and β could be used to model real-world
physical properties well.

Keywords: constitutive model; fractional calculus; fractional derivative; creep compliance; hysteresis;
relaxation modulus; dissipation

1. Introduction

Theories and applications of fractional calculus have attracted much attention and ac-
quired rapid developments during the last several decades because fractional calculus is ap-
propriate for representing the memory and hereditary properties of materials and processes.
Oldham and Spanier [1] completed the first monograph in 1974, and Ross [2] contributed
the first proceedings in 1975. To date, the number of monographs and proceedings special-
izing in fractional calculus and its applications has gone up to several dozens; e.g., [3–15].
The application areas of fractional calculus include rheology [16], non-Newtonian fluid
dynamics [17–19], viscoelastic theory [9,20–23], anomalous diffusion [1,24–30], control
theory [7,31–35], hysteresis phenomena [36], dynamical systems [12,37–41], and so on.

The applications of fractional calculus to viscoelasticity were promoted by the wide
use of viscoelastic materials in damping design and shock absorption. Scott-Blair [42,43]
presented a fractional constitutive relation σ(t) = E ε(α)(t), where 0 < α < 1 and E
and α are material constants for a viscoelastic material that is an intermediate between
a pure elastic solid (Hooke model) and a pure viscous fluid (Newton model). In [9,44],
this relation was called the Scott-Blair model. Macromolecule materials, such as butyl and
polybutadiene, are typical viscoelastic bodies whose constitutive relations can be modeled
by using fractional derivatives [45]. Fractional constitutive models, such as the fractional
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Maxwell, Kelvin–Voigt, and Zener models, were suggested by replacing the classical
Newton element with the Scott-Blair element [9,23,45–50], i.e., substituting the integer-
order derivatives into the fractional-order derivatives. In [51], viscoelastic dampers were
simulated by using the Maxwell and Kelvin–Voigt fractional models. In [52], a fractional
integral form and differential form were compared for the the standard solid model.

In [53], a fractional five-parameter model was proposed, and it was compatible with
the high-frequency metadata. In [54], a fractional six-parameter model was proposed to
include all of the four types of viscoelasticity. In [55], energy storage and energy dissipation
for the fractional equations were discussed. In [49,56–59], distributed-order derivatives
were introduced to model viscoelastic constitutive equations.

Suppose that f (t) is a piecewise continuous function defined on (0,+∞) and is
integrable on each finite subinterval. Then, the Riemann–Liouville fractional integral of
order λ is defined as

Iλ
t f (t) =

∫ t

0

(t− τ)λ−1

Γ(λ)
f (τ)dτ, t > 0, (1)

for λ > 0, and Iλ
t f (t) = f (t) for λ = 0, where Γ(·) is the Gamma function. The Riemann–

Liouville fractional derivative of order α is defined, when it exists, as

Dα
t f (t) =

dm

dtm

(
Im−α
t f (t)

)
, t > 0, m− 1 < α ≤ m, m ∈ N+. (2)

The functions that we considered are causal, viz., identically equal to zero when t < 0.
We use the Laplace transform with a lower limit of integral 0−,

f̄ (s) = L[ f (t)] =
∫ ∞

0−
e−st f (t)dt, Re(s) > c. (3)

So, the Laplace transform of the Riemann–Liouville fractional derivative satisfies

L[Dα
t f (t)] = sα f̄ (s). (4)

We note that the initial conditions at t = 0+ will not appear in the Laplace transform
of the constitutive relation of the stress and strain on the assumption that the contributions
from the initial conditions are canceled if the Laplace transform with the starting point
t = 0+ is used [9].

The Mittag–Leffler functions are significant in fractional models. These types of
functions have the definition [7,60,61]

Eλ,µ(z) =
∞

∑
k=0

zk

Γ(λk + µ)
, λ > 0, µ > 0. (5)

The following Laplace transform formula holds:

L
[
tλk+µ−1E(k)

λ,µ(−c tλ)
]
=

k!sλ−µ

(sλ + c)k+1 , λ > 0, µ > 0. (6)

Dissipation and hysteresis phenomena exist broadly in mechanical systems [9,49,62–64].
Energy dissipation was considered in some fractional constitutive equations in [9,49,53,55,65].
In [36], fractional-order models were proposed to describe the broadband hysteresis of a piezo-
electric actuator by looking into the relationship between the input voltage and the output
displacement. Simulations and experiments were performed to validate the effectiveness of
the fractional-order model.

The purpose of this work is to consider dissipation, creep, relaxation, and hysteresis
for a six-parameter fractional constitutive model and its particular cases. In the next
section, we consider the storage modulus, loss modulus, and loss factor, as well as their
characteristics for different fractional constitutive models based on the thermodynamic
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requirements. For the fractional Maxwell model, we prove that the storage modulus
increases monotonically, while the loss modulus has symmetrical peaks for its curve
against the logarithmic scale log(ω). For the fractional Zener model, we demonstrate that
the storage modulus monotonically increases, while the loss modulus and the loss factor
have symmetrical peaks for their curves against the logarithmic scale log(ω). In Section 3,
the relaxation, creep, and hysteresis for the six-parameter fractional constitutive model are
considered by making use of the Mittag–Leffler functions.

2. Fractional Models and Thermodynamic Requirements

We consider the six-parameter fractional constitutive equation

σ(t) + aDα
t σ(t) = b0ε(t) + b1Dα

t ε(t) + b2Dβ
t ε(t), (7)

where the coefficients and the orders are subject to the constraints

a ≥ 0, bk ≥ 0 (k = 0, 1, 2), ab0 ≤ b1, b0, b1 and b2 are not all zeros, (8)

0 < α ≤ β ≤ 1. (9)

The creep compliance and relaxation modulus of a six-parameter model similar to that
in Equation (7) were considered by using the complex inversion formula of the Laplace
transform, and the results were expressed by infinite integrals. In this article, we focus on
the thermodynamic requirements in this section and the Mittag–Leffler function expressions
of the creep compliance and relaxation modulus in the next section for the six-parameter
model (7). Based on these results, the storage modulus, loss modulus, and loss factor
are investigated and hysteresis loops are simulated. Operating the Laplace transform for
Equation (7) leads to

(1 + asα)σ̄(s) = (b0 + b1sα + b2sβ)ε̄(s). (10)

The complex modulus is defined as

G∗(ω) =
σ̄(iω)

ε̄(iω)
=

b0 + b1(iω)α + b2(iω)β

1 + a(iω)α
. (11)

The storage modulus Gs and loss modulus Gl are defined as the the real part and the
imaginary part of the complex modulus

G∗(ω) = Gs(ω) + iGl(ω). (12)

The loss factor is defined as

ζ(ω) =
Gl(ω)

Gs(ω)
. (13)

The loss factor is a measure of the damping ability of a linear viscoelastic material. We
note that the loss factor is also called loss tangent [9]. The storage modulus Gs and loss
modulus Gl are also denoted as G′ and G′′ in [9,52,66].

For a constitutive equation of real viscoelastic materials, thermodynamic requirements
must be satisfied. It is known from thermodynamics that the internal work and the dissi-
pated energy must be positive. We can satisfy the thermodynamic restrictions by ensuring
that both the storage modulus and the loss modulus are positive for all frequencies [65], i.e.,

Gs(ω) ≥ 0 and Gl(ω) ≥ 0 for all ω > 0. (14)
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Inserting the formula iλ = cos(πλ
2 ) + i sin(πλ

2 ) into Equation (11) and separating the
real part from the imaginary part, we obtain the loss modulus and the storage modulus:

Gl(ω) =
1
∆

[
(b1 − ab0) sin(

πα

2
)ωα + b2 sin(

πβ

2
)ωβ + ab2 sin(

π(β− α)

2
)ωα+β

]
, (15)

Gs(ω) =
1
∆

[
b0 + (b1 + ab0) cos(

πα

2
)ωα + b2 cos(

πβ

2
)ωβ + ab1ω2α + ab2 cos(

π(β− α)

2
)ωα+β

]
, (16)

where

∆ = 1 + 2a cos(
πα

2
)ωα + a2ω2α. (17)

By using Equations (15) and (16), the following proposition can be directly checked.

Proposition 1. Under the assumptions in (8) and (9), Equation (7) satisfies the thermodynamic
requirements.

The model (7) covers common special cases, including the classical integer-order
equations. We firstly list five integer-order equations, as well as their loss and storage
moduli and loss factors.

Hook model (a = b1 = b2 = 0):
σ(t) = b0ε(t), (18)

Gl = 0, Gs = b0, ζ = 0. (19)

Newton model (a = b0 = b2 = 0, α = 1):

σ(t) = b1ε̇(t), (20)

Gl = b1ω, Gs = 0, ζ = ∞. (21)

Kelvin–Voigt model (a = b2 = 0, α = 1):

σ(t) = b0ε(t) + b1ε̇(t), (22)

Gl = b1ω, Gs = b0, ζ = (b1/b0)ω. (23)

Maxwell model (b0 = b2 = 0, α = 1):

σ(t) + aσ̇(t) = b1ε̇(t), (24)

Gl =
b1ω

1 + a2ω2 , Gs =
ab1ω2

1 + a2ω2 , ζ =
1

aω
. (25)

Here Gs increases monotonically from 0 to b1/a, Gl has a symmetrical peak for plot
with respect to the logarithmic scale log(ω).

Zener model (b2 = 0, α = 1):

σ(t) + aσ̇(t) = b0ε(t) + b1ε̇(t), (26)

Gl =
(b1 − ab0)ω

1 + a2ω2 , Gs =
b0 + ab1ω2

1 + a2ω2 , ζ =
(b1 − ab0)ω

b0 + ab1ω2 . (27)

Here, Gs increases monotonically from b0 to b1/a, and Gl and ζ have symmetrical
peaks for their plots with respect to the logarithmic scale log(ω).

Next, we consider the fractional cases.



Fractal Fract. 2021, 5, 36 5 of 19

Fractional Scott-Blair model (a = b0 = b2 = 0):

σ(t) = b1Dα
t ε(t), (28)

Gl(ω) = b1 sin(
πα

2
)ωα, Gs(ω) = b1 cos(

πα

2
)ωα, ζ = tan

πα

2
. (29)

The loss modulus and the storage modulus have the same power law with respect to
the frequency ω, and the loss factor is independent of ω.

Fractional Kelvin–Voigt model (a = b2 = 0):

σ(t) = b0ε(t) + b1Dα
t ε(t), (30)

Gl(ω) = b1 sin(
πα

2
)ωα, (31)

Gs(ω) = b0 + b1 cos(
πα

2
)ωα, (32)

ζ(ω) =
b1 sin(πα

2 )ωα

b0 + b1 cos(πα
2 )ωα

. (33)

The two moduli Gl and Gs increase in their power law with respect to ω; ζ(ω) mono-
tonically increases on [0,+∞) and satisfies

ζ(0) = 0, ζ(+∞) = tan
πα

2
. (34)

Before considering new models, we give the following lemma.

Lemma 1. The function

f (ω) =
ωα

c0 + c1ωα + c2ω2α
, c0, c2 > 0, c1 ≥ 0, 0 < α ≤ 1, ω ≥ 0, (35)

has the unique stationary point
ω∗ = (c0/c2)

1/(2α), (36)

and the peak value

f (ω∗) =
1

c1 + 2
√

c0c2
, (37)

and f (ω) increases monotonically on [0, ω∗] and decreases monotonically on [ω∗,+∞). For any
positive real number p, the following equation holds:

f (ω∗p−1) = f (ω∗p). (38)

Proof. From the derivative

f ′(ω) =
αωα−1(c0 − c2ω2α

)
(c0 + c1ωα + c2ω2α)

2 ,

we have the stationary point ω∗, the peak value f (ω∗) in Equation (37), and the monotonic-
ity on the intervals [0, ω∗] and [ω∗,+∞).

For Equation (38), first, by direct substitution, it is easy to verify that

c0 p2α + c2ω2α
∗ = c0 + c2(ω∗p)2α. (39)

Next, we have
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f (ω∗p−1) =
ωα
∗ p−α

c0 + c1ωα∗ p−α + c2ω2α∗ p−2α

=
(ω∗p)α

c0 p2α + c1(ω∗p)α + c2ω2α∗
.

By the relation (39), the Equation (38) is obtained.

Fractional Maxwell model (b0 = b2 = 0):

σ(t) + aDα
t σ(t) = b1Dα

t ε(t), (40)

Gl(ω) =
b1 sin(πα

2 )ωα

1 + 2a cos(πα
2 )ωα + a2ω2α

, (41)

Gs(ω) =
b1 cos(πα

2 )ωα + ab1ω2α

1 + 2a cos(πα
2 )ωα + a2ω2α

, (42)

ζ(ω) =
b1 sin(πα

2 )

b1 cos(πα
2 ) + ab1ωα

. (43)

The loss factor ζ(ω) monotonically decreases on [0,+∞) and satisfies

ζ(0) = tan
πα

2
, ζ(+∞) = 0. (44)

For the storage and loss moduli, we give the following proposition.

Proposition 2. For the fractional Maxwell model (40), the storage modulus Gs(ω) increases
monotonically on the interval [0,+∞) and satisfies

Gs(0) = 0, Gs(+∞) = b1/a, (45)

the loss modulus Gl(ω) has the unique stationary point

ωl = (1/a)1/α, (46)

and the peak value

Glmax = Gl(ωl) =
b1

2a
tan(

πα

4
), (47)

has symmetrical peaks for its curve against the logarithmic scale log(ω).

Proof. From the derivative

G′s(ω) =
αb1ωα−1(cos

(
πα
2
)
+ 2aωα + a2 cos

(
πα
2
)
ω2α

)(
1 + 2a cos

(
πα
2
)
ωα + a2ω2α

)2 ,

we know that the storage modulus Gs(ω) increases monotonically on the interval [0,+∞).
Equation (45) is direct from (42). The results for the loss modulus come from Lemma 1.

Fractional Zener model (b2 = 0):

σ(t) + aDασ(t) = b0ε(t) + b1Dαε(t), (48)
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Gl(ω) =
(b1 − ab0) sin(πα

2 )ωα

1 + 2a cos(πα
2 )ωα + a2ω2α

, (49)

Gs(ω) =
b0 + (b1 + ab0) cos(πα

2 )ωα + ab1ω2α

1 + 2a cos(πα
2 )ωα + a2ω2α

, (50)

ζ(ω) =
(b1 − ab0) sin(πα

2 )ωα

b0 + (b1 + ab0) cos(πα
2 )ωα + ab1ω2α

. (51)

First, we notice that when α = 0, the model becomes the Hook model, and there
is no energy dissipation. For the special case ab0 = b1, i.e., the coefficients satisfy the
proportional relation 1/b0 = a/b1, the model stores an invariant energy and has no energy
dissipation like a Hook model,

Gl(ω) = 0, Gs(ω) = b0. (52)

In the following, we always assume that 0 < α ≤ 1 and b1 > ab0.

Proposition 3. For the fractional Zener model (48), (i) the storage modulus Gs(ω) monotonically
increases on the interval [0,+∞) with the limits

Gs(0) = b0, Gs(+∞) = b1/a; (53)

(ii) the loss modulus Gl(ω) has the unique stationary point

ωl = (1/a)1/α, (54)

and the peak value

Glmax = Gl(ωl) =
b1 − ab0

2a
tan(

πα

4
); (55)

(iii) the loss factor ζ has the unique stationary point

ω f =

(
b0

ab1

)1/(2α)

, (56)

and the peak value

ζmax = ζ(ω f ) =
(b1 − ab0) sin(πα

2 )

(b1 + ab0) cos(πα
2 ) + 2

√
ab0b1

; (57)

(iv) the graphs of the loss modulus and the loss factor against the logarithmic scale log(ω) have
symmetrical peaks, the stationary points of the loss modulus and the loss factor satisfy the inequality

ω f < ωl , (58)

the peak values of the loss modulus and loss factor increase monotonically with increasing α and
satisfy the inequalities

Glmax ≤
b1 − ab0

2a
, ζmax ≤

b1 − ab0

2
√

ab0b1
, (59)

where either of the equal signs holds only if α = 1, and the two peak values satisfy the relation

a
b1

Glmax < ζmax <
1
b0

Glmax. (60)

Proof. (i) It is easy to check that the derivative G′s(ω) ≥ 0. This means that Gs(ω) is
monotonically increasing on the interval [0,+∞). The limits in Equation (53) are directly
from (50). (ii) and (iii) result from Lemma 1. (iv) From Equation (38) in Lemma 1, we
know that the graphs of the loss modulus and the loss factor against the logarithmic
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scale log(ω) have symmetrical peaks. By the hypothesis b1 > ab0, we have b0/(ab1) <
1/a2. This leads to the inequality ω f < ωl , referring to Equations (54) and (56). From
Equations (55) and (57), the peak values Glmax and ζmax increase monotonically with in-
creasing α and satisfy the inequalities in (59). Since b1 + ab0 > 2

√
ab0b1, we have from (57)

that
b1 − ab0

b1 + ab0
tan(

πα

4
) < ζmax <

b1 − ab0

2
√

ab0b1
tan(

πα

4
).

This is equivalent to

2a
b1 + ab0

Glmax < ζmax <

√
a

b0b1
Glmax,

by using (55). Finally, (60) is obtained by using the inequality b1 > ab0.

In Figures 1 and 2, we plot the storage modulus, the loss modulus, and the loss factor
against ω for two groups of different parameter values. In Figure 1, ζmax < Glmax, while in
Figure 2, ζmax > Glmax.

0.01 0.10 1 10 100
0

1

2

3

4

5

6

ω

G
s
,G
l,
ζ

Figure 1. Curves of Gs (solid line), Gl (dotted line), and ζ (dashed line) versus ω for a = 0.5, b0 = 1,
b1 = 3, and α = 0.8 in the fractional Zener model (48).

0.001 0.010 0.100 1 10
0.0

0.5

1.0

1.5

2.0

2.5

3.0

ω

G
s
,G
l,
ζ

Figure 2. Curves of Gs (solid line), Gl (dotted line), and ζ (dashed line) versus ω for a = 5, b0 = 0.2,
b1 = 15, and α = 0.8 in the fractional Zener model (48).

The effects in the order α on the storage modulus Gs and the loss factor ζ are shown
in Figures 3 and 4, respectively. The increase of order α makes the curves of Gs ∼ ω
become steeper, but α does not affect the limits Gs(0) and Gs(+∞). The increase in order α
enhances the peaks of the curves of ζ ∼ ω. The plot of Gl ∼ ω is similar to that of ζ ∼ ω.
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0.01 0.10 1 10 100 1000
1

2

3

4

5

6

ω

G
s
(ω
)

Figure 3. Curves of Gs ∼ ω for a = 0.5, b0 = 1, and b1 = 3 and for α = 0 (solid line), 0.25 (dotted
line), 0.5 (dashed line), 0.75 (dotted–dashed line), and 1 (dotted–dotted–dashed line) in the fractional
Zener model (48).

0.01 0.10 1 10 100 1000
0.0

0.5

1.0

1.5

2.0

2.5

ω

ζ

Figure 4. Curves of ζ ∼ ω for a = 0.5, b0 = 1, and b1 = 3 and for α = 0 (solid line), 0.25 (dotted line),
0.5 (dashed line), 0.75 (dotted–dash line), and 1 (dotted–dotted–dashed line) in the fractional Zener
model (48).

The following models involve the term of the fractional derivative of order β, and we
assume that α < β.

Fractional four-parameter model (b0 = b1 = 0):

σ(t) + aDα
t σ(t) = b2Dβ

t ε(t), (61)

Gl(ω) =
b2 sin(πβ

2 )ωβ + ab2 sin(π(β−α)
2 )ωα+β

1 + 2a cos(πα
2 )ωα + a2ω2α

, (62)

Gs(ω) =
b2 cos(πβ

2 )ωβ + ab2 cos(π(β−α)
2 )ωα+β

1 + 2a cos(πα
2 )ωα + a2ω2α

, (63)

ζ(ω) =
sin(πβ

2 ) + a sin(π(β−α)
2 )ωα

cos(πβ
2 ) + a cos(π(β−α)

2 )ωα
. (64)
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By combining their derivatives, the following assertions can be yielded: Gl(ω) and
Gs(ω) increase monotonically on [0,+∞) with limits

Gl(0) = 0, Gl(+∞) = +∞, (65)

Gs(0) = 0, Gs(+∞) = +∞, (66)

and ζ(ω) decreases monotonically on [0,+∞) with the limits

ζ(0) = tan
πβ

2
, ζ(+∞) = tan

π(β− α)

2
. (67)

Three monotonic curves of Gs, Gl , and ζ versus ω are plotted in Figure 5.

0.001 0.010 0.100 1 10 100 1000
0

2

4

6

8

10

12

ω

G
s
,G
l,
ζ

Figure 5. Curves of Gs (solid line), Gl (dotted line), and ζ (dashed line) versus ω for a = 1, b2 = 1,
α = 0.4, and β = 0.8 in the fractional four-parameter model (61).

Fractional five-parameter model (b0 = 0):

σ(t) + aDα
t σ(t) = b1Dα

t ε(t) + b2Dβ
t ε(t), (68)

Gl(ω) =
b1 sin(πα

2 )ωα + b2 sin(πβ
2 )ωβ + ab2 sin(π(β−α)

2 )ωα+β

1 + 2a cos(πα
2 )ωα + a2ω2α

, (69)

Gs(ω) =
b1 cos(πα

2 )ωα + b2 cos(πβ
2 )ωβ + ab1ω2α + ab2 cos(π(β−α)

2 )ωα+β

1 + 2a cos(πα
2 )ωα + a2ω2α

, (70)

ζ(ω) =
b1 sin(πα

2 ) + b2 sin(πβ
2 )ωβ−α + ab2 sin(π(β−α)

2 )ωβ

b1 cos(πα
2 ) + b2 cos(πβ

2 )ωβ−α + ab1ωα + ab2 cos(π(β−α)
2 )ωβ

. (71)

By examining their derivatives, we can conclude that Gs(ω) increases monotonically
on [0,+∞) with the limits

Gs(0) = 0, Gs(+∞) = +∞; (72)

Gl(ω) satisfies Gl(0) = 0 and increases monotonically to +∞ when ω is large enough; and
ζ(ω) satisfies

ζ(0) = tan
πα

2
, ζ(+∞) = tan

π(β− α)

2
, (73)

and decreases monotonically when ω is large enough.
From Equation (73), the linear-logarithmic curve of ζ ∼ ω does not have symmetrical

peaks if 2α 6= β. In Figures 6 and 7, curves of Gs, Gl , and ζ versus ω are plotted, where the
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orders α and β affect the limits of ζ as ω → 0 or +∞, but do not affect the limits of Gs and
Gl . In order to further examine the effects of the orders α and β on the loss factor ζ, we plot
the curves of ζ versus ω for different order values in Figures 8 and 9. The asymmetrical
peaks of the loss factor ζ are tuned by the two orders α and β.
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Figure 6. Curves of Gs (solid line), Gl (dotted line), and ζ (dashed line) versus ω for a = 1, b1 = 1,
b2 = 2, α = 0.6, and β = 0.8 in the fractional five-parameter model (68).
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Figure 7. Curves of Gs (solid line), Gl (dotted line), and ζ (dashed line) versus ω for a = 1, b1 = 1,
b2 = 2, α = 0.2, and β = 0.8 in the fractional five-parameter model (68).
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Figure 8. Curves of ζ ∼ ω for a = 1, b1 = 1, b2 = 2, and α = 0.4 and for β = 0.6 (solid line), 0.7
(dotted line), 0.8 (dashed line), 0.9 (dotted–dashed line), and 1 (dotted–dotted–dashed line) in the
fractional five-parameter model (68).
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Figure 9. Curves of ζ ∼ ω for a = 1, b1 = 1, b2 = 2, and β− α = 0.4 and for α = 0.2 (solid line), 0.3
(dotted line), 0.4 (dashed line), 0.5 (dotted–dashed line), and 0.6 (dotted–dotted–dashed line) in the
fractional five-parameter model (68).

We noticed that the two fractional derivative terms on the right-hand side of the consti-
tutive equation lead to an asymmetrical loss factor peak. In [53], a five-parameter fractional
derivative model, which also includes two fractional derivative terms with respect to the
strain, but different from those of (68), was presented to describe this phenomenon.

Fractional six-parameter model (7):
By checking the signs of the derivatives, we have the following results for the general

six-parameter model (7). Gs(ω) increases monotonically on [0,+∞) with limits

Gs(0) = b0, Gs(+∞) = +∞. (74)

Gl(ω) satisfies Gl(0) = 0 and increases monotonically to +∞ when ω is large enough.
ζ(ω) satisfies

ζ(0) = 0, ζ(+∞) = tan
π(β− α)

2
. (75)

In Figures 10 and 11, curves of Gs, Gl , and ζ versus ω in the fractional six-parameter
model (7) are plotted, where α distinctly affects the trends of ζ as ω → ∞. Compared with
the fractional five-parameter model (68), here, Gs(0) > 0 and ζ(0) = 0, which are different
from those in Equations (72) and (73).
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Figure 10. Curves of Gs (solid line), Gl (dotted line), and ζ (dashed line) versus ω for a = 1, b0 = 0.5,
b1 = 1, b2 = 2, α = 0.6, and β = 0.8 in the fractional six-parameter model (7).
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Figure 11. Curves of Gs (solid line), Gl (dotted line), and ζ (dashed line) versus ω for a = 1, b0 = 0.5,
b1 = 1, b2 = 2, α = 0.2, and β = 0.8 in the fractional six-parameter model (7).

3. Relaxation, Creep, and Hysteresis

The relaxation modulus and creep compliance are two important material functions
describing the mechanical characteristics of viscoelastic materials. The relaxation modulus
R(t) is the behavior of stress relaxing with time under a suddenly applied unit strain
ε(t) = H(t), where H(t) is the Heaviside unit-step function. Creep compliance C(t) is
the strain response to an instantaneously applied stress σ(t) = H(t). Both the material
functions are nonnegative. Furthermore, for 0 < t < +∞, R(t) is decreasing and C(t)
is increasing.

Inserting ε̄(s) = 1/s into Equation (10), we obtain the relaxation modulus in the
Laplace domain:

R̄(s) =
b0 + b1sα + b2sβ

s(1 + asα)
. (76)

If a = 0, i.e., the model (7) degenerates into the following five-parameter model,

σ(t) = b0ε(t) + b1Dα
t ε(t) + b2Dβ

t ε(t), (77)

then the relaxation modulus is

R(t) = b0H(t) +
b1t−α

Γ(1− α)
+

b2t−β

Γ(1− β)
. (78)

If a > 0, we rewrite Equation (76) as

R̄(s) =
a−1b0s−1 + a−1b1sα−1 + a−1b2sβ−1

a−1 + sα
. (79)

By Formula (6), the inverse Laplace transform yields the relaxation modulus in terms
of the Mittag–Leffler functions

R(t) = a−1b0tαEα,α+1(−a−1tα) + a−1b1Eα,1(−a−1tα) + a−1b2tα−βEα,α+1−β(−a−1tα). (80)

The relaxation moduli R(t) in Equations (78) and (80) are plotted in Figures 12 and 13,
respectively. The appearance of the fractional derivative term with respect to stress acceler-
ates the relaxation of stress by comparing the two figures. In addition, the variation in the
order tunes the relaxing rate.
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Figure 12. Curves of the relaxation modulus R(t) in Equation (78) for b0 = b1 = b2 = 1, β = 0.9,
and α = 0.1 (solid line), 0.3 (dotted line), 0.5 (dashed line), 0.7 (dotted–dashed line), and 0.9 (dotted–
dotted–dashed line).
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Figure 13. Curves of the relaxation modulus R(t) in Equation (80) for a = b0 = b1 = b2 = 1,
β = 0.9, and α = 0.1 (solid line), 0.3 (dotted line), 0.5 (dashed line), 0.7 (dotted–dashed line), and 0.9
(dotted–dotted–dashed line).

In a similar manner, letting σ̄(s) = 1/s in Equation (10), we obtain the creep compli-
ance in the Laplace domain:

C̄(s) =
1 + asα

s(b0 + b1sα + b2sβ)
. (81)

We give the creep compliance C(t) by discriminating the following three cases.

Case I. b2 = b1 = 0

In this case, it is necessary that b0 > 0 and a = 0 from the condition (8). The model
degenerates into a Hook spring σ(t) = b0ε(t), and the creep compliance is

C(t) =
1
b0

H(t). (82)

In fact, there is no “creep”.

Case II. b2 = 0 and b1 6= 0
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This case corresponds to the fractional Zener model (48). Rewriting Equation (81) as

C̄(s) =
1 + asα

s(b0 + b1sα)
=

s−1 + asα−1

b1(sα + b0
b1
)

, (83)

and applying the inverse Laplace transform using Formula (6), we derive the creep compli-
ance in terms of the Mittag–Leffler functions:

C(t) =
1
b1

tαEα,α+1(−
b0

b1
tα) +

a
b1

Eα,1(−
b0

b1
tα). (84)

In Figure 14, the curves of the creep compliance C(t) in Equation (84) are plotted for
different values of α. Apart from an initial period, the creep compliance C(t) increases with
the rising α.
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Figure 14. Curves of the creep compliance C(t) in Equation (84) for a = 2, b0 = 1, b1 = 5, and α = 0.1
(solid line), 0.3 (dotted line), 0.5 (dashed line), 0.7 (dotted–dashed line), and 0.9 (dotted–dotted–
dashed line).

Case III. b2 6= 0

Rewriting Equation (81) as

C̄(s) =
∞

∑
k=0

(−b0)
k

bk+1
2

s−1−α−αk + as−1−αk

( b1
b2
+ sβ−α)k+1

, (85)

and operating the inverse Laplace transform using Formula (6), we have the creep compli-
ance:

C(t) =
∞

∑
k=0

(−b0/b2)
k

b2k!
tβk+β

[
E(k)

β−α,1+αk+β(−
b1

b2
tβ−α) + at−αE(k)

β−α,1+αk−α+β(−
b1

b2
tβ−α)

]
. (86)

Here, the creep compliance is expressed as a series in which the Mittag–Leffler func-
tions and their derivatives are involved.

In terms of the creep compliance C(t) and the relaxation modulus R(t), the strain and
the stress have the expressions

ε(t) = C(t) ∗ σ̇(t), σ(t) = R(t) ∗ ε̇(t), (87)

respectively, where ∗ denotes the convolution.
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Making use of the creep compliance C(t) and Formula (87), we may simulate the
hysteresis phenomena. We consider the strain response to the sinusoidal stress loading
σ(t) = sin(t). From (87), the strain response is

ε(t) = C(t) ∗ cos(t). (88)

For the numerical simulation here, we use the fractional Zener model and its creep
compliance in Equation (84). Taking a = 0.5, b0 = 1, b1 = 3, and four different values of α
(0.25, 0.5, 0.75, and 1), the stress–strain hysteresis loops are depicted in Figure 15, where t
serves as the parameter varying from 0 to 8π. For comparison, the coordinate ranges are
the same in the four subfigures.
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Figure 15. Stress–strain hysteresis loops for a = 0.5, b0 = 1, and b1 = 3 and for α = 0.25 (a), 0.5 (b),
0.75 (c), and 1 (d) in the fractional Zener model.

The unloading curve falls to the right side of the loading curve to form the hysteresis
loops. In other words, the fluctuations of the strain fall behind those of the stress. With in-
creasing α, the hysteresis loops grow fat and encircle a larger area, which means that the
ability of dissipation of the model is raised.

4. Conclusions

We considered dissipation, creep, relaxation, and hysteresis resulting from a six-
parameter fractional constitutive model and its particular cases. In Section 2, we considered
the storage modulus, loss modulus, and loss factor, as well as their characteristics for differ-
ent fractional constitutive models based on the thermodynamic requirements. We proved
that for the fractional Maxwell model, the storage modulus Gs increases monotonically,
while the loss modulus Gl has symmetrical peaks for its curve against the logarithmic
scale log(ω), and for the fractional Zener model, the storage modulus Gs monotonically
increases, while the loss modulus Gl and the loss factor ζ have symmetrical peaks for
their curves against the logarithmic scale log(ω). The peak values and corresponding
stationary points were accurately given. A series of results for the fractional Zener model
were presented in Proposition 3. In Section 3, we derived the relaxation modulus and
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the creep compliance for the six-parameter fractional constitutive model in terms of the
Mittag–Leffler functions. Then, the stress–strain hysteresis loops were simulated by making
use of the derived creep compliance for the fractional Zener model. These results show
that the fractional constitutive models could simulate the relaxation, creep, dissipation,
and hysteresis phenomena of viscoelastic bodies, and the tuning of the fractional orders α
and β could model the physical properties well.
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