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Abstract: Phytoplankton movement patterns and swimming behavior are important and basic topics
in aquatic biology. Heavy tail distribution exists in diverse taxa and shows theoretical advantages
in environments. The fat tails in the movement patterns and swimming behavior of phytoplankton
in response to the food supply were studied. The log-normal distribution was used for fitting the
probability density values of the movement data of Oxyrrhis marina. Results showed that obvious
fat tails exist in the movement patterns of O. marina without and with positive stimulations of food
supply. The algal cells tended to show a more chaotic and disorderly movement, with shorter and neat
steps after adding the food source. At the same time, the randomness of turning rate, path curvature
and swimming speed increased in O. marina cells with food supply. Generally, the responses of
phytoplankton movement were stronger when supplied with direct prey cells rather than the cell-
free filtrate. The scale-free random movements are considered to benefit the adaption of the entire
phytoplankton population to varied environmental conditions. Inferentially, the movement pattern
of O. marina should also have the characteristics of long-range dependence, local self-similarity and a
system of fractional order.

Keywords: movement pattern; phytoplankton; prey-predator interaction; fractional Gaussian noise;
fractional-order systems; heavy-tailed distribution; long-range dependence processes; self-similarity

1. Introduction

Phytoplankton play a fundamental and important role in aquatic ecosystems [1]. In
addition to the fluid-dependent locomotion, they can also change the locations through
active swimming and changes in their buoyancy [1]. The individual movement pattern of
phytoplankton is a classic and important topic in aquatic ecology [2–4]. It could directly
influence the encounter rates of algal cells to food sources and potential grazers in their sur-
rounding fluid environment [5,6]. It could also enhance the surface algal cell aggregations
by affecting their population distributions [3]. Nowadays, harmful algae blooms frequently
occur in both marine and freshwater environments all around the world [7–9]. Resolving
the individual movement pattern of phytoplankton involved in blooming events would
also benefit our understanding of the harmful algal blooms (HABs) mechanisms and its
control (e.g., through down-manipulation by zooplanktons, allelopathic control) [10,11].

Given the importance of phytoplankton movement patterns and swimming behavior, it
is surprising that there are relatively few studies on their probability distribution [2,3,5,12–16].
Limited by the experiment condition, the studies before the development of 3D digital video
analysis could only focus on the theoretical calculations and numerical simulations [2,4,12].
Recently, the observations and investigations of phytoplankton movement were realized
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by the 3D digital video analysis [5,13,14]. In these studies, phytoplankton movement be-
havior varied significantly, in response to the changes in various biotic and abiotic factors.
For instance, a significant increase in the downward velocity of Heterosigma akashiwo cells
and the frequency of downward swimming cells were observed under ocean acidification
(increased pCO2 concentrations and lower pH) [13]. Another example is that after the food
source (prey phytoplankton, Isochrysis galbana) was introduced, the turning rate of swimming
tracks of predator phytoplankton Oxyrrhis marina—a wide distributed red tide organism—
significantly increased, and at the same time the vertical velocities of O. marina significantly
decreased [5,17]. Further, a scale-free, vertical tracking microscope was developed for observ-
ing multiscale behavioral of single cells, e.g., nonadherent planktonic cells and organisms [18].
These modern techniques provide efficient tools for tracking the behavior of phytoplankton
movements response to environmental change.

However, most of the previous plankton swimming behavioral studies had focused
on steady-state locomotion, assuming that most movements occur at constant speeds or
ignoring the importance of variations in the speed [4] The variations in speed include two
important aspects, variability in time and variability among individuals in a population [16].
The most extreme fluctuations, in which increments are distributed according to a heavy-
tailed distribution, were somehow neglected. Indeed, ecological examples of heavy-tailed
distributions in the movement patterns have been provided for a wide range of organ-
isms [19], i.e., the intertidal gastropod Littorina littorea [20], wandering albatrosses [21], sea
stars [19], calanoid copepod [22], Escherichia coli [23], etc. This kind of statistical analysis
method provides an effective tool to quantitatively describe the complexity or roughness
level of movements in response to the changes of the living environment, including the
physical environment (such as temperature, humidity, light, food abundance) and the
ecological system (such as interspecies’ influence, biological invasion, pray–predator inter-
actions) [24–30]. Recently, using the fractional tools, the real-life pray–predator interactions
were explored by various perspectives, including the difference of mature and immature
prey, social behavior and infection, net reproduction considering disease [25–28]. On other
hand, understanding the movement law of the species can help fill the gap in the field
of behavior.

Based on the large number of studies reporting in heavy tail distribution in diverse taxa
and the theoretical advantages of heavy tail distribution in environments, we hypothesized
that we would observe fat tails in the phytoplankton movement patterns and swimming
behavior, while the fat tails might also vary in response to changes in the environment. We
tested this hypothesis by fitting the movements of the phytoplankton O. marina to a heavy
tail distribution without and with positive (food supply) stimulations from existing data in
the previous studies.

2. Preminaries

Log-normal distribution can be regarded as heavy-tailed distribution, representing
complex attribute system. The basic log-normal probability distribution function can be
written as follows.

p(x) =
1

xσ
√

2π
e−

(ln x−µ)2

2σ2 (1)

where µ and σ denote location parameter and shape parameter, respectively. The larger
values of either µ or σ will lead to a heavier tail of the lognormal distribution curve.

Consider the expectation E(x) and the variance var(x) of the log-normal distribution
function (Equation (1)). The quantity E(x) can be written by

E(x) = eµ+ σ2
2 (2)

On the other hand, for var(x), we have

var(x) = e2µ+2σ2 − e2µ+σ2
(3)
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The above demonstrates that the expectation and variance of log-normal distribution
are larger than the normal distribution. For example, if σ2

2 is a constant, then the differ-
ence of the expectation value between log-normal distribution and normal distribution

becomes larger with increasing value of µ, E(x) = eµ+ σ2
2 >> µ; if µ is a constant, then the

difference of the variance value between log-normal distribution and normal distribution
becomes larger with increasing value of σ2, var(x) = e2µ+2σ2 − e2µ+σ2

>> σ2, see Figure 1.
Therefore, the log-normal distribution displays a heavy-tail characteristic.
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Figure 1. Comparison of the (a) expectation value and (b) variance between log-normal distribution
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3. Materials and Methods
3.1. Phytoplankton Movement Data Series Description

The phytoplankton swimming behavior were recorded by a stereo video camera and
extracted from videos in the literature [5]; and the probability (frequency) distributions of
movement pattern of a heterotrophic dinoflagellate O. marina in response to food supply
with either direct addition of the prey alga Isochrysis galbana (Experiment 1) or its cell-free
filtrate (Experiment 2, 3) were retrieved, including turning rates, swimming speed, peak
speed, run length and path curvature. Where the path curvature represents the changes in
the overall geometry of the swimming path. Specifically, the lower the curvature of a path,
the more it resembles a straight line.

3.2. Calculation of Movement Pattern and Parameter Estimation

In the current study, the probability density values of these five movement parameters
were obtained by dividing the group distance (in x-axis) of the histogram to the probabilities
(in y-axis). Further, log-normal distribution (Equation (2), more detailed information can
be found in Section 2) was employed to fit the five parameters. The two parameters (µ and
σ) in Equation (2) were estimated by the non-linear least square fitting method and the
fitting process was implemented by the MATLAB software (2019a, MathWorks, Natick,
MA, USA).

3.3. Goodness of Fit

The coefficient of determination (R2), mean absolute error (MAE) and root mean square
error (RMSE) were employed to evaluate the fitting performance. The three parameters
can be calculated as follows

R2 = 1− ∑N
i=1 (yi − ŷi)

2

∑N
i=1 (yi − y)2 (4)

MAE =
1
N

N

∑
i=1
|yi − ŷi| (5)
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RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2 (6)

where yi denotes the empirical value, ŷi denotes the fitted value and N denotes the total
number of data.

4. Results

The probability density values of five movement parameters were fitted to the log-
normal distribution and the results are shown in Table 1. The other parameter (i.e., vertical
velocities) in the literature [5] was also tested, but showed poor fitting performance with
the log-normal distribution. In addition, the Gamma distribution was also employed to
fit the probability density values of movement pattern, but it shows worse performance
in fitting them compared to the lognormal distributions. Moreover, the corresponding
expected values and variances were obtained by Equations (2) and (3), shown in Table 2.

Table 1. Parameter estimation of the fitted curves using the log-normal distribution based on the frequency distributions of
movement pattern of Oxyrrhis marina in response to food supply.

Parameter µ 1 σ 2

+ Prey Cells + Cell-Free Filtrate 3 + Prey Cells + Cell-Free Filtrate

turning rate before 3.6743 3.6600 ± 0.0060 1.0883 1.0862 ± 0.0233
after 3.9522 3.7450 ± 0.0094 1.1505 1.0978 ± 0.0261

swimming speed before −3.5349 −3.3756 ± 0.0071 0.3738 0.3666 ± 0.0061
after −3.4491 −3.3825 ± 0.0035 0.3896 0.3662 ± 0.0189

peak speed peak −3.4297 −3.3722 ± 0.0002 0.4050 0.3748 ± 0.0060
post-peak −3.5459 −3.4982 ± 0.0949 0.3851 0.3812 ± 0.0209

run length before −4.0249 −3.9421 ± 0.0082 0.6347 0.5847 ± 0.0075
after −4.0531 −3.9862 ± 0.0297 0.5585 0.5576 ± 0.0075

path curvature before 3.5458 3.6899 ± 0.0271 1.2895 1.5173 ± 0.0303
after 3.7050 3.7333 ± 0.0176 1.3763 1.5295 ± 0.0060

1: the location parameter of the variant log-normal distribution; 2: the shape parameter of the variant log-normal distribution; 3 values
(mean ± standard error) from the two experiments with cell-free filtrate.

Table 2. Expected values and variances based on the parameters in Table 1.

Parameter E(X) var(X)

+ Prey Cells + Cell-Free Filtrate 1 + Prey Cells + Cell-Free Filtrate

turning rate before 71.2775 70.1197 ± 1.3512 11,527.8962 11,115.1684 ± 1236.9613
after 100.8914 77.3377 ± 2.9383 28,065.6870 14,057.3602 ± 2208.8363

swimming speed before 0.03127 0.03658 ± 0.00018 0.00015 0.00019 ± 0.00000
after 0.03428 0.03632 ± 0.00013 0.00019 0.00019 ± 0.00002

peak speed peak 0.03517 0.03681 ± 0.00007 0.00022 0.00020 ± 0.00001
post-peak 0.03106 0.03260 ± 0.00283 0.00015 0.00017 ± 0.00001

run length before 0.02185 0.02303 ± 0.00029 0.00024 0.00022 ± 0.00001
after 0.02030 0.02170 ± 0.00055 0.00015 0.00017 ± 0.00000

path curvature before 79.6141 126.7970 ± 9.2541 27,089.9745 146,528.6200 ± 35,998.8028
after 104.8132 134.7220 ± 3.6178 62,047.0017 170,352.2146 ± 12,615.5869

1 values (mean ± standard error) from the two experiments with cell-free filtrate.

4.1. Turning Rates

The distribution of the turning rate was fitted to the heavy-tailed distribution, specif-
ically, the log-normal distribution (Figure 2). The fitting results showed extremely high
R2 ranging from 0.9789 to 0.9895, and low MAE ranging from 0.0003 to 0.0009 and RMSE
ranging from 0.0005 to 0.0010 (Figure 2). The average value of turning rate (µ) increased
after the addition of food source, for both the situations of adding prey cells and cell-free
filtrate (Table 1; Figure 2). The rate of increase is more than 3 times higher in the case of
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adding prey cells (7.56%), compared to that of adding the cell-free filtrate (2.32%). The
value σ in the equation of log-normal distribution represents the degree of randomness,
with higher σ value showing heavier tails in the distribution and higher randomness in
the parameter examined. After addition of food sources, the σ values for both situations
(adding prey cells or cell-free filtrate) were higher, reflecting the increased randomness
of turning rate in the dinoflagellate O. marina. Interestingly, similar to the average value
(µ), the increasing rate of σ value is also higher in the case of adding prey cells (5.72%) as
compared to adding cell-free filtrate (1.07%).
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4.2. Swimming Speed

The fat tail was then examined in the distribution of swimming speed, by fitting to
the log-normal distribution (Figure 3). The high R2 ranging from 0.8917 to 0.9380, and low
MAE ranging from 2.2895 to 3.0764 and RMSE ranging from 2.9270 to 3.8575 showed that
the fits are quite robust (Figure 3). Given that the values are negative, the expected values
and the variances were compared then (Table 2). The expected value E(X) of swimming
speed showed a difference in responses to the addition of prey cells and cell-free filtrate,
i.e., the expected value of swimming speed increased from 0.03127 to 0.03428 cm s−1 after
adding the prey cells, which is 109.63% of the original speed. However, insignificantly
decreasing was found for the case adding cell-free filtrate. Again, after the addition of food
sources (adding prey cells), the variance var(X) increased, reflecting higher randomness in
the swimming speed for O. marina. However, the variance remains stable after the addition
of cell-free filtrate.

4.3. Swimming Speeds during the Peak and Post-Peak Phases

In all three experiments, after introduction of food sources, a rapid peak aggregation
phase was found in relative abundance of the predator O. marina, followed by a post peak
aggregation phase. The swimming speeds were higher in the peak phase, comparing to
post-peak phase for both situations in terms of the expected values (Table 2, Figure 4). At
the same time, the randomness of speed distribution increased after adding food sources
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and remained high in the peak phase. However, in the post-peak phase it (variance value)
returned to normal, which is similar to the variance value before food addition.
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4.4. Run Lengths

Fat tails were found in the distribution of run lengths as showed in the fits to the
log-normal distribution (Figure 5), with high R2 ranging from 0.9706 to 0.9834, and low
MAE ranging from 1.4372 to 1.6524 and RMSE ranging from 1.8181 to 2.2128. The expected
values and variances both slightly decreased after the addition of prey cells and cell-free
filtrate (Table 2; Figure 5), reflecting better consistency in the run lengths of O. marina.
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4.5. Path Curvature

Extremely high R2 ranging from 0.9963 to 0.9996, and low MAE ranging from 0.0001
to 0.0003 and RMSE ranging from 0.0001 to 0.0003, showed clear existence of fat tails in
the distribution of path curvatures (Figure 6). The value µ and σ both increased after
the addition of prey cells and cell-free filtrate (Table 1), as well as the expected values
and variances (Table 2), reflecting less consistency and higher average value for the path
curvatures of O. marina.
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5. Discussion
5.1. The Known Knowns

Fat tails were observed to exist in the movement patterns of O. marina without and with
the positive stimulations (food supply). The heavy tail distribution has been previously
found in the movement patterns of a wide range of animal species [19], habituated in
diverse environment from terrestrial (i.e., wandering albatrosses [20]) to intertidal and
marine (i.e., gastropod [20], sea stars [19], calanoid copepod [22]). This scale-free random
movements are considered to benefit the adaption of entire population to scarcity in
fragmented ecosystems [24] and to enhance the predator’s encounter rate to prey [6].

The changes of movement patterns of O. marina to food supply were revealed by fitting
the probability density values of the movement parameters to log-normal distribution
formula. Results showed that after adding food resources, the turning angle increased after
food supplied, but its randomness also increased. At the same time, the swimming speed
became more disordered. The path curvature, therefore, increased in both the average
value and the degree of disorder. The phenomenon of changes in the expected values for
the indicators (turning rates, swimming speed and path curvature) were the same as the
findings by direct observation of the difference between the probability density values
before and after food supply [5]. Moreover, the analysis on the heavy tails indicated that the
phytoplankton cells were using a random strategy to search for food, which was consistent
with the theoretical calculations and numerical simulations [2,4,12]. In general, the changes
in the movement patterns are larger when supplied by the direct prey cells, comparing to
cell-free filtrate. Therefore, the adding of prey cells would trigger a stronger response in
the phytoplankton population strategy to food sources.

5.2. The Known Unknowns

Although fat tails may exist in the swimming behavior and movement patterns of
broader set of phytoplankton species, there are still many unknowns in this topic due
to the limited experimental observations and data availability. For example, Laboratory
observations on the well-known HABs forming species—Microsystis aeruginosa, which
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caused severe blooming all around the world [31–35], is still lacking. It will be interesting to
investigate these HABs forming species and dig into the mechanisms from the perspective
of movement-based ecological theories. Secondly, the actual phytoplankton movements
are happening in a three-dimensional environment. Therefore, the 3D digital video capture
system are needed to document the three-dimensional paths of phytoplankton [6,22].
Additionally, the following data process and analysis should also consider the three-
dimension for better unrevealing the movement patterns. Finally, an important issue is
how to link the randomness degree of movement patterns to the ecological behaviors of
phytoplankton. So far, we have already known that the scale-free random movements
support a sustainable balance between patch exploitation and regeneration over wide
ranges of demographic rates [24]. However, a knowledge gap remains in explanation for
the changes in movement patterns to various ecological and environmental factors in both
positive and negative manners, e.g., the movement pattern of H. akashiwo in response to
the turbulence [15,16].

5.3. The Unknown Unknowns

A major “unknown unknowns” concerns the movement patterns of small-size phyto-
plankton, although some of the picoplankton species (such as Prochlorococcus) are not motile.
These tiny photosynthetic microorganisms, so-called picoplankton (diameter: 0.3–3 µm)
and nanophytoplankton (3–20 µm), are at the base of the food web in many marine ecosys-
tems and raised up attention world widely [36,37]. They play a ubiquitous and principal
role in phytoplankton biomass and make an important contribution to primary production
in the oceanic and freshwater ecosystem [36,37]. However, due to the limited resolution of
the lens in a video camera system, the swimming behavior of small-size phytoplankton are
not possible to be documented. By now, the two investigated phytoplankton by the video
camera system are relatively big in diameter. For instance, the size of H. akashiwo is from 15
to 20 µm [38], which could be considered as a “giant” in the nanophytoplankton kingdom.
Additionally, the other phytoplankton with movement traces documented (Oxyrrhis marina)
ranges from 15 to 40 µm [39]. Since the picoplankton and nanophytoplankton are extremely
small particles, and the physical characters of particles in such a scale could vary a lot.
Unfortunately, we have no clear clue of how their swimming behavior and movement
patterns would be, and, whether these patterns will follow the heavy tail distribution or a
more complicated form. It is noteworthy that the 3D tracking method for E. coli to observe
its tactic behavior has been conducted by microscopy since the 1970s [40]. Therefore, this
“unknown unknown” will be better framed in the future, with the continuing development
and adoption of innovative experiments. With improved resolution and precision, we are
expected to make progress in our understanding by observing these small particles and
making measurements that would not previously have been possible.

5.4. Fractal and Fractional Characteristics of Movement Patterns of Phytoplankton

A major outcome of the current study is that the movement pattern of O. marina can
be fitted to log-normal distribution formula, a heavy-tailed distribution function described
in Section 2. With this heavy-tailed distribution characteristics, it can be concluded that
the movement series of O. marina can be also characterized by long-range dependence,
fractal dimension, self-similarities and fractal-order, more detailed theory information can
be found in Appendix A.

5.5. Prospect

As discussion in Section 5.4, future work could focus on exploring the fractal properties
of the phytoplankton movement patterns and it can help gain more knowledge of the
phytoplankton movement. Moreover, these theories can be also applied in exploring the
characteristics of chlorophyll a concentration (served as biomass of phytoplankton) in
waters [7,8,41].
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6. Conclusions

In this paper, we employed log-normal distribution formula to fit the movements of
the phytoplankton O. marina without and with positive (food supply) stimulations from
existing data in the literature [5]. Fat tails were observed in the movement patterns of
O. marina in terms of turning rates, swimming speed, peak speed, run length and path
curvature). Specifically, with food supply stimulations, the O. marina will behavior in larger
turning rate, swimming speed and path curvature, but smaller peak speed and run length,
which make up the searching strategy for food. Mathematically, phytoplankton movement
patterns have the property of long-range dependence, local self-similarity and a system of
fractional-order by following the heavy tail distribution of the probability density values of
the movement parameters.
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Appendix A Fractal Analysis of Time Series of Phytoplankton Movement Patterns

Denote by x(t) the time series data of phytoplankton movement patterns. Then,
the present results in Sections 3 and 4 exhibit that x(t) is well modeled with a variant
log-normal distribution, which is a key contribution. Since x(t) is with heavy-tailed
distribution, we shall show that there are other fractal properties of x(t) with respect to
phytoplankton movement patterns.

Appendix A.1 Long-Range Dependence (LRD) of Phytoplankton Movement Patterns

According to the Taqqu’s law, if x(t) is with heavy-tailed distribution, it is of LRD,
which is measured with the Hurst parameter H ∈ (0.5, 1), see, e.g., Samorodnitsky and
Taqqu [42], Adler et al. [43], Li [44], Fontugne et al. [45]. When revealing the property of
LRD of phytoplankton movement patterns, we use the autocorrelation function (ACF) of
x(t).

Let rxx(τ) be the autocorrelation function (ACF) of x(t). Due to LRD, we have

rxx(τ) ∼ cτ2H−2, τ −→ ∞, (A1)

where c is a constant. A widely used model of Equation (A1) is the ACF of the fractional
Gaussian noise ( fGn) introduced by Mandelbrot and van Ness [46].

Let G(t) be fGn. Let BH(t) be the fractional Brownian motion ( fBm for short). When
using the fractional derivative of the Weyl type, one has

BH(t)− BH(0) =
1

Γ(H + 1/2)

{∫ 0

−∞

[
(t− u)H−0.5 − (−u)H−0.5

]
dB(u) +

∫ t

0
(t− u)H−0.5dB(u)

}
(A2)
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where B(t) is the Brownian motion (Bm) and H ∈ (0, 1). G(t) is the increment process
of BH(t). Its ACF is given by

r fGn(τ) =
VHε2H

2

[(∣∣∣τ
ε

∣∣∣+ 1
)2H

+
∣∣∣∣∣∣τ

ε

∣∣∣− 1
∣∣∣2H
− 2
∣∣∣τ

ε

∣∣∣2H
]

, (A3)

where ε > 0 is the parameter utilized for smoothing BH(t) so that the smoothed one is
differentiable [45]. The parameter VH is the strength of BH(t) or G(t). It is given by

VH = Γ(1− 2H)
cosπH

πH
. (A4)

Without generality losing, one may let ε = 1 so that Equation (A1) is expressed by

r fGn(τ) =
VH
2

[
(|τ|+ 1)2H + ||τ| − 1|2H − 2|τ|2H

]
, (A5)

see, e.g., Mandelbrot [46]. The larger the value of H, the stronger the LRD. As is an even
function, we consider it for τ ≥ 0 in what follows. To be precise, we consider

r fGn(τ) =
VH
2

[
(τ + 1)2H + |τ − 1|2H − 2|τ|2H

]
, (A6)

unless otherwise stated. When taking into account the finite second-order difference of
0.5τ2H see Mandelbrot [47,48], Li [49], we have

r fGn(τ) ≈ VH H(2H − 1)τ2H−2. (A7)

A.2. Fractal Dimension and Local Self-Similarity of Phytoplankton Movement Patterns

Because of heavy-tailed behavior of phytoplankton movement patterns, as addressed
in Sections 3 and 4, Equation (A6) for 0.5 < H < 1 may yet be an ACF model of the time
series of phytoplankton movement patterns.

Denote by α the fractal index of x(t). Then, (Davis and Hall [50]), with probability
one, we have

rxx(0)− rxx(τ) ∼ c1|τ|α, (τ → 0), (A8)

where c1 > 0 is a constant and 0 < α ≤ 2. Since α is obtained under the case of τ→ 0, it is a
measure of local self-similarity or local irregularity of x(t). Usually, it is rewritten by the
fractal dimension D in the form

D = 2− α

2
. (A9)

Since 0 < α ≤ 2, we have 1 ≤ D < 2. In the case that phytoplankton movement patterns
are of fGn, due to Equations (A6) and (A7), we have

D = 2− H. (A10)

As 0.5 < H < 1, we infer that 1 < D < 1.5 for phytoplankton movement patterns.

A.3. Fractal Mechanism of Phytoplankton Movement Patterns

Let w(t) be the normalized white noise. By normalized, we mean that its power
spectrum density (PSD) Sww(ω) is in the form

Sww(ω) = 1. (A11)

The ACF of w(t) is given by

rww(τ) = δ(τ), (A12)
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where δ(·) is the Delta function. Following Li [44], we have

G(t) = w(t) ∗ h(t), (A13)

where ∗ stands for the convolution operation and h(t) is the impulse response function of
a fractional-order system that produces phytoplankton movement patterns. Since

h(t) = F−1

{√
F
[
r fGn(t)

]}
, (A14)

where F and F−1 are the operators of the Fourier transform and its inverse, respectively [51,52]
and the PSD of fGn is given by

S fGn(ω) = F
[
r fGn(t)

]
= VHsin(Hπ)Γ(2H + 1)|ω|1−2H , (A15)

we have

h(t) = −
√

VH sin(Hπ)Γ(2H + 1)

2sin
(
(H−3/2)π

2

)
Γ
(

H − 1
2

) 1

|t|
3
2−H

. (A16)

Note that h(t) is a solution to a fractional-order system (Li et al. [51,53]). We see
that a system that produces phytoplankton movement patterns in marine biology is of
fractional-order.

As a summary in this section, it is supposed that phytoplankton movement patterns
can have the properties as follows. (1) Heavy-tailed in probability distribution. (2) LRD in
correlation. (3) Resulting from a system of fractional order.
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