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1. Introduction

The main purpose of this paper is to study the existence of solutions for the follow-
ing Hadamard-type neutral fractional integro-differential equation with infinite delay
written by H Dα

1+ [u(t)−
m
∑

i=1

H Jβi
1+ ei(t, ut)] = a(t) f (t, ut,

∫ t
1 g(t, s, us)ds), t ∈ J = [1, T],

u(t) = φ(t), t ∈ (−∞, 1],
(1)

where T > 1, 0 < α ≤ 1 and βi > 0(i = 1, 2, . . . , m) are some given real constants. H Dα
1+

denotes the Hadamard-type fractional derivative of order α, H Jβi
1+ stands the Hadamard

fractional integral of order βi. ei : J ×Bh → R, f : J ×Bh ×R→ R and g : J × J ×Bh → R
are given continuous functions satisfying some assumptions that will be introduced later.
The function a(t) ∈ C[J,R] and it is not identically zero on any subinterval of [1, T]. We
also assume that ut : (−∞, 0] → Bh with ut(θ) = u(t + θ) (θ ≤ 0) belongs to an abstract
phase space Bh which is defined in Preliminaries. φ(t) : (−∞, 1]→ R is a given continuous
initial function with φ(1) = 0.

Fractional calculus, especially fractional differential equation is an advantageous math-
ematical model used to describe properties of various processes and applications in lots of
fields. Therefore, the fractional differential equations are widely concerned and studied by
many people. There have been many papers dealing with fractional differential equations
with different conditions such as impulses [1–6], time delays [1,3,4,7,8], implicit conditions [9],
algebraic conditions [10], stochastic conditions [4], neutral conditions [1,2,6,10,11], boundary
value conditions [5,7–9,12], and so on. In 1892, Hadamard [13] proposed a new kind of
fractional calculus. The definition of this fractional calculus contains the logarithmic function
of any index in the integral kernel. This kind of fractional calculus is later called Hadamard
fractional calculus. Hadamard fractional calculus has been widely concerned and studied
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by many scholars since it was put forward. In the monographs [14,15], the authors intro-
duced the basic knowledge and results of Hadamard’s fractional calculus and differential
equation in detail. Some researchers have studied and explored the dynamic properties
of Hadamard fractional calculus and differential equations. For example, the Hadamard
fractional integration operators and the semigroup property were discussed in [16]. The
Mellin’s transformation of Hadamard fractional calculus was investigated in [17]. Some
papers on Hadamard fractional differential boundary value problems [5,18–23], integro-
differential equations [5,18,24], neutral equations [24] and coupled systems [5,25] have
been published. Compared with the research results of Riemann–Liouville and Caputo
fractional differential equations, the study on Hadamard fractional differential equation are
relatively rare. Therefore, it is valuable and challenging to study the dynamic properties of
Hadamard fractional differential equations.

In addition, the research on system (1) is also inspired by the literature [24]. The
author studied the existence and uniqueness results of solutions for the following system H Dα[u(t)−

m
∑

i=1
Iβi hi(t, ut)] = f (t, ut), t ∈ J = [1, T],

u(t) = ϕ(t), t ∈ [1− r, 1], r > 0,

where T > 1, 0 < α ≤ 1 and βi > 0(i = 1, 2, . . . , m) are some given real constants. H Dα

denotes the left-side Hadamard fractional derivative of order α, Iβi stands the Riemann–
Liouville fractional integral of order βi > 0. f , hi : J × C([−r, 0],R) → R are given
continuous functions, ϕ ∈ C([1− r, 1],R) with ϕ(1) = 0. For any u, it is a function defined
on [1− r, T] and for any t ∈ J, ut(θ) = u(t + θ) ∈ C([−r, 0],R), θ ∈ [−r, 0]. The author
established the uniqueness of solutions by the Banach contraction principle and derived
the existence of solutions by the Leray–Schauder alternative.

The rest of the paper is organized as follows. In Section 2, we recall some useful
definitions, notations and lemmas. The main results are proved in Section 3. In Section 4,
an example is given to demonstrate the application of our main results. Finally, we conclude
the importance of studying problem (1) and our obtained results in Section 5.

2. Preliminaries

In this section, we introduce some necessary definitions, notations, lemmas and
preliminary facts, which are required in the sequel.

First of all, we present the abstract phase Bh similar to [26]. Here we assume that
h : (−∞, 0]→ (0,+∞) is a continuous function with l =

∫ 0
−∞ h(t)dt < +∞. For any c > 0,

we define B = C([−c, 0],R) equipped with the norm ‖ψ‖[−c,0] = sups∈[−c,0]|ψ(s)|, ∀ψ ∈
B. Define

Bh =

{
ψ | ψ ∈ C(−∞, 0],R) such that f or any b > 0, ψ |[−b,0]∈ B and

∫ 0

−∞
h(s)‖ψ‖[s,0]ds < +∞

}
.

Clearly, (Bh, ‖ · ‖Bh) is a Banach space equipped with the norm

‖ψ‖Bh =
∫ 0

−∞
h(s)‖ψ‖[s,0]ds, ∀ψ ∈ Bh.

Define

B′h =

{
w | w ∈ C(−∞, T],R) such that w(1) = φ(1) = 0

}
,

equipped with ‖w‖B′h = max{‖φ‖∞, ‖w‖T}, where ‖φ‖∞ = max{‖φ‖Bh , supt∈[0,1] |φ(t)|},
‖w‖T = sups∈[1,T] |w(s)|. Let X = B′h, for any u ∈ X, define ‖u‖ = ‖u‖B′h , it is easy to
verify that X is a Banach space.
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Definition 1 ([14]). The left-sided Hadamard fractional integral of order α > 0 for a function
u : [1, ∞)→ R is defined by

H Jα
1+u(t) =

1
Γ(α)

∫ t

1

(
ln

t
s

)α−1
u(s)

ds
s

,

provided the integral exists.

Definition 2 ([14]). Let u ∈ Cn([1, ∞)). Then the Hadamard type fractional derivative of order
α > 0 for a function u : [1, ∞)→ R is defined by

H Dα
1+u(t) =

1
Γ(n− α)

(
t

d
dt

)n ∫ t

1

(
ln

t
s

)n−α−1
u(s)

ds
s

, n− 1 < α ≤ n, n = [α] + 1,

where [α] denotes the integer part of the real number α > 0, and Γ(·) is the Gamma function.

Lemma 1 ([14]). Assume that u ∈ Cn(1, T)
⋂

L1(1, T) with a Hadamard type fractional deriva-
tive of order α > 0. Then

H Jα
1+

H Dα
1+u(t) = u(t) + c1(ln t)α−1 + c2(ln t)α−2 + ... + cn(ln t)α−n,

where ci ∈ R, i = 1, 2, . . . , n− 1, n and n = [α] + 1.

Lemma 2 ([14]). If α > 0, β > 0, then the following properties hold:

H Dα
1+(ln t)β−1 =

Γ(β)

Γ(β− α)
(ln t)β−α−1,

H Jα
1+(ln t)β−1 =

Γ(β)

Γ(β + α)
(ln t)β+α−1,

H Jα
1+

H Dα
1+u(t) = u(t),

in particular, H Dα
1+(ln t)α−j = 0, j = 1, 2, . . . , [α] + 1.

Lemma 3 (Banach contraction principle [27]). If E is a real Banach space and F : E→ E is a
contraction mapping, then F has a unique fixed point in E.

Lemma 4 (Krasnoselskii’s fixed point theorem [28]). Let X1 be a nonempty closed convex
subset of a Banach space (X, ‖ · ‖). Let P, Q be two operators such that

(i) Px + Qy ∈ X1 for any x, y ∈ X1;
(ii) P is a contraction mapping;
(iii) Q is continuous and compact.

Then there exists a z ∈ X1 such that z = Pz + Qz.

Lemma 5. Let ξ(t), η(t) ∈ C(J,R) and φ(t) ∈ ((−∞, 1],R) with φ(1) = 0 be some given
functions, and 0 < α ≤ 1, β > 0 and T > 1 be some constants. Then a function u(t) ∈ X is a
solution of the following linear system{

H Dα
1+ [u(t)−

H Jβ
1+η(t)] = ξ(t), t ∈ J = [1, T],

u(t) = φ(t), t ∈ (−∞, 1],
(2)
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if and only if u(t) ∈ X is a solution of the integral equation as follows:

u(t) =

{
1

Γ(α)

∫ t
1 (ln

t
s )

α−1ξ(s) ds
s + H Jβ

1+η(t), t ∈ J = [1, T],
φ(t), t ∈ (−∞, 1].

(3)

Proof. Assume that u(t) ∈ X is a solution of (2). When t ∈ J = [1, T], according to the first
equation of (2) and Lemma 1, we have

u(t)− H Jβ
1+η(t) =

1
Γ(α)

∫ t

1

(
ln

t
s

)α−1
ξ(s)

ds
s
+ c1(ln t)α−1.

In the light of the existence of u(1) = 0, we have c1 = 0. When t ∈ (−∞, 1], then
u(t) = φ(t). Thus, we derive

u(t) =

{
1

Γ(α)

∫ t
1 (ln

t
s )

α−1ξ(s) ds
s + H Jβ

1+η(t), t ∈ J = [1, T],
φ(t), t ∈ (−∞, 1],

which indicates that u(t) ∈ X is also a solution of (3). Conversely, if u(t) ∈ X is a solution
of (3), noting that the above process is completely reversible, then we know that u(t) ∈ X
is also a solution of (2). The proof is completed.

3. Main Results

For any t ∈ (−∞, T], ei : J ×Bh → R, f : J ×Bh ×R→ R, g : J2 ×Bh → R, u(t) ∈ X,
it follows from Lemma 5 that an operator F : X→ X defined by

(Fu)(t) =


1

Γ(α)

∫ t
1 (ln

t
s )

α−1a(s) f (s, us,
∫ s

1 g(s, τ, uτ)dτ) ds
s +

m
∑

i=1

H Jβi
1+ ei(t, ut), t ∈ J,

φ(t), t ∈ (−∞, 1].

(4)

Then solving the problem (1) is equivalent to finding the fixed point of the operator F
defined by (4). Next we shall present and prove our main results. To this end, the following
assumptions are needed later.

(H1)The functions ei : J × Bh → R(i = 1, 2, . . . , m) are continuous, and there exist some
constants ki > 0 such that

|ei(t, u)− ei(t, u)| ≤ ki‖u− u‖Bh , t ∈ J, u, u ∈ Bh.

(H2)The function a(t) ∈ C(J,R) is not identically zero on any subinterval of [1, T], and
there exists a constant M > 0 such that for any t ∈ J, |a(t)| ≤ M.

(H3)The function f : J × Bh × R → R is continuous, and there exist some constants
n1, n2 > 0 such that

| f (t, u, x)− f (t, u, y)| ≤ n1‖u− u‖Bh + n2|x− y|, t ∈ J, u, u ∈ Bh, x, y ∈ R.

(H4)The function g : J × J × Bh → R is continuous, and there exists a constant q > 0
such that

|g(t, s, u)− g(t, s, u)| ≤ q‖u− u‖Bh , t, s ∈ J, u, u ∈ Bh.

(H5)0 < $1 < 1, where

$1 = l
[

M(ln T)α

Γ(α + 1)
(n1 + n2qT) +

m

∑
i=1

ki(ln T)βi

Γ(βi + 1)

]
, l =

∫ 0

−∞
h(s)ds.

Theorem 1. Assume that (H1)–(H5) hold. Then the problem (1) has a unique solution u∗ ∈ X.
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Proof. Now we are applying Lemma 3 to prove that F : X→ X defined by (4) has a unique
fixed point. Actually, for all t ∈ (−∞, T], u, u ∈ X , when t ∈ (−∞, 1], we have

(Fu)(t)− (Fu)(t) = φ(t)− φ(t) = 0, (5)

which implies that

‖(Fu)(t)− (Fu)(t)‖ = 0. (6)

When t ∈ [1, T], it follows from (4) and (H1)–(H5) that

‖(Fu)(t)− (Fu)(t)‖

=

∥∥∥∥ 1
Γ(α)

∫ t

1

(
ln

t
s

)α−1
a(s)

[
f (s, us,

∫ s

1
g(s, τ, uτ)dτ)

− f (s, us,
∫ s

1
g(s, τ, uτ)dτ)

]
ds
s
+

m

∑
i=1

H Jβi
1+ [ei(t, ut)− ei(t, ut)]

∥∥∥∥
≤ 1

Γ(α)

∫ t

1

(
ln

t
s

)α−1
|a(s)|

(
n1‖us − us‖Bh + n2

∣∣∣∣ ∫ s

1
g(s, τ, uτ)dτ

−
∫ s

1
g(s, τ, uτ)dτ

∣∣∣∣)ds
s
+

m

∑
i=1

1
Γ(βi)

∫ t

1

(
ln

t
s

)βi−1∣∣ei(s, us)− ei(s, us)
∣∣ds

s

≤ 1
Γ(α)

∫ t

1

(
ln

t
s

)α−1
|a(s)|

(
n1‖us − us‖Bh + n2

∣∣∣∣ ∫ s

1

[
g(s, τ, uτ)

− g(s, τ, uτ)
]
dτ

∣∣∣∣)ds
s
+

m

∑
i=1

1
Γ(βi)

∫ t

1
(ln

t
s
)βi−1ki‖us − us‖Bh

ds
s

≤ M
Γ(α)

∫ t

1

(
ln

t
s

)α−1(
n1‖us − us‖Bh + n2

∫ s

1
q‖uτ − uτ‖Bh dτ

)
ds
s

+
m

∑
i=1

ki
Γ(βi)

∫ t

1

(
ln

t
s

)βi−1
‖us − us‖Bh

ds
s

≤ M
Γ(α)

∫ t

1

(
ln

t
s

)α−1(
n1l‖u− u‖T + n2

∫ s

1
ql‖u− u‖T dτ

)
ds
s

+
m

∑
i=1

ki
Γ(βi)

∫ t

1

(
ln

t
s

)βi−1
l‖u− u‖T

ds
s

≤ M
Γ(α)

(
n1l‖u− u‖T + n2qlT‖u− u‖T

) ∫ t
1

(
ln t

s
)α−1 ds

s

+∑m
i=1

ki
Γ(βi)

l‖u− u‖T
∫ t

1

(
ln t

s
)βi−1 ds

s

≤ l
[

M(ln T)α

Γ(α+1) (n1 + n2qT) + ∑m
i=1

ki(ln T)βi

Γ(βi+1)

]
‖u− u‖

= $1‖u− u‖ < ‖u− u‖.

(7)

In view of (H5), (6) and (7), we conclude that F defined as (4) is a contraction mapping.
Thus, F has a unique fixed point u∗(t) ∈ X. Consequently, the problem (1) has a unique
solution u∗(t) ∈ X. The proof of Theorem 1 is completed.

Theorem 2. Assume that (H1)–(H2) hold. If the following conditions (H6)–(H9) also hold, then
the problem (1) has at least a solution u∗(t) ∈ X.

(H6)The functions ei : J × Bh → R(i = 1, 2, . . . , m) are continuous functions, and there
exist some positive constants Ki such that

|ei(t, ut)| ≤ Ki‖ut‖Bh , t ∈ J, ut ∈ Bh.
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(H7)The function f : J×Bh ×R→ R is a continuous function, and there exist two positive
constants N1, N2 such that

| f (t, ut, x)| ≤ N1‖ut‖Bh + N2|x|, t ∈ J, ut ∈ Bh, x ∈ R.

(H8)The function g : J2 × Bh → R is a continuous function, and there exists a positive
constant Q such that

|g(t, s, ut)| ≤ Q‖ut‖Bh , t, s ∈ J, ut ∈ Bh.

(H9)0 < $2 < 1, where

$2 = l
[

M(ln T)α

Γ(α + 1)
(N1 + N2QT) +

m

∑
i=1

Ki(ln T)βi

Γ(βi + 1)

]
, l =

∫ 0

−∞
h(s)ds.

Proof. Given a constant r > 0, define Ω = {u ∈ X : ‖u‖ ≤ r}, where ‖u‖ = ‖u‖B′h . It is

clear that Ω is a nonempty closed convex subset of the Banach space X. We also define the
operator F : X→ X as (4). Here we split F = F1 + F2 such that, for any t ∈ (−∞, T], u ∈ X,

(F1u)(t) =


1

Γ(α)

∫ t
1 (ln

t
s )

α−1a(s) f (s, us,
∫ s

1 g(s, τ, uτ)dτ) ds
s , t ∈ J,

0, t ∈ (−∞, 1],
(8)

(F2u)(t) =


m
∑

i=1

H Jβi
1+ ei(t, ut), t ∈ J,

φ(t), t ∈ (−∞, 1].

(9)

When t ∈ (−∞, 1], for all u ∈ Ω, we have

‖(Fu)(t)‖ = ‖φ(t)‖ = max{‖φ(t)‖∞} ≤ ‖u‖ ≤ r, (10)

When t ∈ [1, T], for all u ∈ Ω, it follows from (4), (H2) and (H6)–(H9) that
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cc‖(Fu)(t)‖ =
∥∥∥∥ 1

Γ(α)

∫ t

1

(
ln

t
s

)α−1
a(s) f (s, us,

∫ s

1
g(s, τ, uτ)dτ)

ds
s
+

m

∑
i=1

H Jβi
1+ ei(t, ut)

∥∥∥∥
≤ M

Γ(α)

∫ t

1

(
ln

t
s

)α−1
(N1‖us‖Bh + N2

∣∣ ∫ s

1
g(s, τ, uτ)dτ

∣∣)ds
s

+
m

∑
i=1

1
Γ(βi)

∫ t

1

(
ln

t
s

)βi−1
|ei(s, us)|

ds
s

≤ M
Γ(α)

∫ t

1

(
ln

t
s

)α−1
(N1‖us‖Bh + N2Q

∫ s

1
‖uτ‖Bh)dτ

ds
s

+
m

∑
i=1

1
Γ(βi)

∫ t

1

(
ln

t
s

)βi−1
Ki‖us‖Bh

ds
s

≤ M
Γ(α)

(N1l‖u‖T + N2QTl‖u‖T)
∫ t

1

(
ln

t
s

)α−1 ds
s

+
m

∑
i=1

1
Γ(βi)

Kil‖u‖T

∫ t

1

(
ln

t
s

)βi−1 ds
s

≤l
[

M(ln T)α

Γ(α + 1)
(N1 + N2QT) +

m

∑
i=1

Ki(ln T)βi

Γ(βi + 1)

]
‖u‖T

≤$2‖u‖ < ‖u‖ ≤ r.

(11)

We derive that Fu = F1u + F2u ∈ Ω from (10) and (11), that is, the condition (i) of Lemma 4
holds. Similarly, we can also prove that F1, F2 : Ω→ Ω ⊂ X, and F1 is uniformly bounded.

Next we only need to prove that F1 is equicontinuous, and F2 is a contraction mapping.
In fact, for all u, u ∈ Ω, when t ∈ (−∞, 1],

(F2u)(t)− (F2u)(t) = φ(t)− φ(t) = 0, (12)

which implies that

‖(F2u)(t)− (F2u)(t)‖ = 0. (13)

When t ∈ [1, T], it follows from (9), (H1) and (H5) that

cc ‖(F2u)(t)− (F2u)(t)‖ =
∥∥ m

∑
i=1

H Jβi
1+ [ei(t, ut)− ei(t, ut)]

∥∥
≤

m

∑
i=1

1
Γ(βi)

∫ t

1

(
ln

t
s

)βi−1∣∣ei(s, us)− ei(s, us)
∣∣ds

s

≤
m

∑
i=1

1
Γ(βi)

∫ t

1

(
ln

t
s

)βi−1
ki‖us − us‖Bh

ds
s

≤
m

∑
i=1

ki
Γ(βi)

∫ t

1

(
ln

t
s

)βi−1
l‖u− u‖T

ds
s

≤
m

∑
i=1

ki
Γ(βi)

l‖u− u‖T

∫ t

1

(
ln

t
s

)βi−1 ds
s

≤
m

∑
i=1

kil(ln T)βi

Γ(βi + 1)
‖u− u‖ < $1‖u− u‖ < ‖u− u‖.

(14)
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(13) and (14) means that F2 is a contraction mapping. Therefore, the condition (ii) of
Lemma 4 holds. Finally, we show that F1 is equicontinuous. For all u ∈ Ω, t1, t2 ∈ (−∞, T]
with t1 < t2, when −∞ < t1 < t2 ≤ 1, from (8),

‖(F1u)(t2)− (F1u)(t1)‖ = 0→ 0, as t2 → t1. (15)

When 1 ≤ t1 < t2 ≤ T, from (8),

cc ‖(F1u)(t2)− (F1u)(t1)‖

=

∥∥∥∥ 1
Γ(α)

∫ t2

1

(
ln

t2

s

)α−1
a(s) f (s, us,

∫ s

1
g(s, τ, uτ)dτ)

ds
s

− 1
Γ(α)

∫ t1

1

(
ln

t1

s

)α−1
a(s) f (s, us,

∫ s

1
g(s, τ, uτ)dτ)

ds
s

∥∥∥∥
=

∥∥∥∥ 1
Γ(α)

∫ t1

1

[(
ln

t2

s

)α−1
−
(

ln
t1

s

)α−1]
a(s) f (s, us,

∫ s

1
g(s, τ, uτ)dτ)

ds
s

+
1

Γ(α)

∫ t2

t1

(
ln

t2

s

)α−1
a(s) f (s, us,

∫ s

1
g(s, τ, uτ)dτ)

ds
s

∥∥∥∥
≤ M

Γ(α)

∫ t1

1

[(
ln

t2

s

)α−1
−
(

ln
t1

s

)α−1]
(N1‖us‖Bh + N2

∣∣ ∫ s

1
g(s, τ, uτ)dτ

∣∣)ds
s

+
M

Γ(α)

∫ t2

t1

(
ln

t2

s

)α−1
(N1‖us‖Bh + N2

∣∣ ∫ s

1
g(s, τ, uτ)dτ

∣∣)ds
s

≤ M
Γ(α)

∫ t1

1

[(
ln

t2

s

)α−1
−
(

ln
t1

s

)α−1]
(N1‖us‖Bh + N2Q

∫ s

1
‖uτ‖Bh dτ)

ds
s

+
M

Γ(α)

∫ t2

t1

(
ln

t2

s

)α−1
(N1‖us‖Bh + N2Q

∫ s

1
‖uτ‖Bh dτ)

ds
s

≤ M
Γ(α)

∫ t1

1

[(
ln

t2

s

)α−1
−
(

ln
t1

s

)α−1]
(N1‖us‖Bh + N2QT‖uτ‖Bh)

ds
s

+
M

Γ(α)

∫ t2

t1

(
ln

t2

s

)α−1
(N1‖us‖Bh + N2QT‖uτ‖Bh)

ds
s

≤ Ml
Γ(α)

(N1 + N2QT)‖u‖T

∫ t1

1

[(
ln

t2

s

)α−1
−
(

ln
t1

s

)α−1]ds
s

+
Ml

Γ(α)
(N1 + N2QT)‖u‖T

∫ t2

t1

(
ln

t2

s

)α−1 ds
s

≤ Ml
Γ(α)

(N1 + N2QT)‖u‖
∫ t1

1

[(
ln

t2

s

)α−1
−
(

ln
t1

s

)α−1]ds
s

+
Ml

Γ(α + 1)
(N1 + N2QT)‖u‖

(
ln

t2

t1

)α

→ 0, as t2 → t1.

(16)

When −∞ < t1 < 1 < t2 ≤ T, then t2 → t1 means that t1 → 1− and t2 → 1+. We can
obtain that

‖(F1u)(t2)− (F1u)(t1)‖ → ‖0− 0‖ = 0, as t2 → t1. (17)

(15)–(17) implies that F1 is equicontinuous. By the Arzelá-Ascoli theorem, we conclude
that F1 : Ω → Ω is completely continuous, that is, the condition (iii) of Lemma 4 holds.
According to Lemma 4, we derive that the problem (1) has at least a solution u∗(t) ∈ X.
The proof is completed.
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4. Illustrative Example

Consider the following nonlinear neutral Hadamard fractional integro-differential
equation with infinite delay of the form H D

1
2
1+ [u(t)−

2
∑

i=1

H J
2i+1

2
1+ ei(t, ut)] = a(t) f (t, ut,

∫ t
1 g(t, s, us)ds), t ∈ J = [1, e],

u(t) = φ(t), t ∈ (−∞, 1],
(18)

where α = 1
2 , βi =

2i+1
2 , i = 1, 2, m = 2, ut(θ) = u(t + θ), θ ≤ 0, H Dα

1+ is the Hadamard

fractional derivative of order α and H Jβi
1+ is the Hadamard fractional integral of order βi.

Let h(s) = e2s, s < 0, then l =
∫ 0
−∞ h(s)ds = 1

2 < ∞. Thus, we easily obtain B, Bh,
B′h = X and their norms from the definitions of B, Bh, B′h. Take ei(t, ut) =

ut sin t
50i (i = 1, 2),

a(t) = t(3−t)
10 , f (t, ut, x) =

u2
t cos 2t+x

180 , g(t, s, us) = e−(t+s)us
150 and φ(t) = sin t. By a simple

calculation, for t ∈ J, ut, ut ∈ Bh, x, y ∈ R, we have

|ei(t, ut)− ei(t, ut)| ≤
1

50i
‖ut − ut‖Bh , i = 1, 2,

| f (t, ut, x)− f (t, ut, y)| ≤ 1
90
‖ut − ut‖Bh +

1
180
|x− y|,

|g(t, s, ut)− g(t, s, ut)| ≤
1

150
‖ut − ut‖Bh .

We can easily obtain |a(t)| ≤ 9
40 . Hence, from the above calculations, we know l = 1

2 ,
T = e, k1 = 1

50 , k2 = 1
100 , M = 9

40 , n1 = 1
90 , n2 = 1

180 , q = 1
150 . Noticing that Γ( 1

2 ) =
√

π,
then we derive

0 < $1 = l
[

M(ln T)α

Γ(α + 1)
(n1 + n2qT) +

m

∑
i=1

ki(ln T)βi

Γ(βi + 1)

]
≈ 0.0165 < 1.

Thus the assumptions (H1)–(H5) of Theorem (1) hold. According to Theorem (1), We know
that the problem (18) has a unique solution u∗ ∈ X.

5. Conclusions

As a useful mathematical model, fractional-order differential calculus is used to de-
scribe properties of various processes and applications in lots of fields such as blood flow
problems, chemical engineering, porous medium, aerodynamics, polymer rheology, popu-
lation dynamics, and so on. Compared with Caputo or Riemann–Liouville type fractional
differential equations, the study on Hadamard-type fractional differential equations is
more difficult and complicated. The study on Hadamard-type fractional differential equa-
tions involving the time delays will be more challenging. Therefore, we mainly study the
existence of solutions of the problem (1) in this paper. By applying the Banach contraction
principle and Krasnoselskii’s fixed point theorem, some new existence criteria of solutions
are obtained.
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