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Abstract: This paper is concerned with establishing novel expressions that express the derivative
of any order of the orthogonal polynomials, namely, Chebyshev polynomials of the sixth kind in
terms of Chebyshev polynomials themselves. We will prove that these expressions involve certain
terminating hypergeometric functions of the type 4F3(1) that can be reduced in some specific cases.
The derived expressions along with the linearization formula of Chebyshev polynomials of the sixth
kind serve in obtaining a numerical solution of the non-linear one-dimensional Burgers’ equation
based on the application of the spectral tau method. Convergence analysis of the proposed double
shifted Chebyshev expansion of the sixth kind is investigated. Numerical results are displayed
aiming to show the efficiency and applicability of the proposed algorithm.

Keywords: sixth kind Chebyshev polynomials; generalized hypergeometric functions; linearization
formulas; spectral methods; Burgers’ equation

1. Introduction

Orthogonal polynomials are successfully employed for the numerical solutions of
various differential equations. For example, Jacobi polynomials and their special cases
are extensively utilized in a variety of papers. Four kinds of Chebyshev polynomials
are specific polynomials of the family of Jacobi polynomials. The first and second kinds
are ultraspherical polynomials, while the third and fourth kinds are two types of non-
symmetric Jacobi polynomials. All four kinds of Chebyshev polynomials have their roles
and applications. They are widely investigated from both theoretical and numerical points
of view. For example, Kim et al. in [1] established some sums of finite products of the
second, third, and fourth kinds. From a practical point of view, a new class of dual-band
waveguide filters is introduced based on Chebyshev polynomials of the second kind
in [2]. Oloniiju et al. in [3] utilized Chebyshev polynomials of the first kind to obtain a
pseudo-spectral solution to a certain multi-dimensional fractional problem.

Among the important orthogonal polynomials are the so-called “generalized ultras-
pherical polynomials”. These polynomials were investigated by Lashenov in [4]. The gen-
eralized ultraspherical polynomials involve two parameters. For specific choices of these
parameters, one obtains the standard ultraspherical polynomials. In addition, there are
other two special classes of the generalized ultraspherical polynomials, namely, Cheby-
shev polynomials of the fifth and sixth kinds. These two classes of polynomials were
also introduced in the Ph. D. thesis of Jamei [5]. In fact, Jamei, called these polynomials
“Chebyshev polynomials” since he could represent them by half-trigonometric expressions.
The authors in [6,7] found full trigonometric expressions for these polynomials, so these
two kinds of polynomials may be classified as “Chebyshev polynomials” because of their
trigonometric expressions, such as the well-known four kinds of Chebyshev polynomials.
Recently, fifth and sixth kinds Chebyshev polynomials have been studied theoretically
and practically. For example, Abd-Elhameed and Youssri developed new moments and
linearization formulas of the sixth kind Chebyshev polynomials in [8]. Moreover, the same
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authors in [6,7] utilized the fifth and sixth kinds Chebyshev polynomials in handling some
types of fractional differential equations. Jafari et al. in [9] utilized a sixth kind collocation
algorithm to treat an inverse reaction-diffusion-convection problem. Moreover, in [10],
the authors solved a class of non-linear variable-order fractional reaction-diffusion equation
based on using the shifted Chebyshev polynomials of the fifth kind. For some other articles
concerned with the different kinds of Chebyshev polynomials, see for example [11–14].

From a numerical point of view, spectral methods have been extensively utilized for
obtaining numerical solutions of various differential equations. The fundamental principle
behind the implementation of spectral methods is built on expressing the numerical solu-
tion as a suitable combination of certain selected polynomials. Extensive attention has been
appointed to various types of spectral methods because of their roles in numerical analysis
in general, and in the scope of numerical solutions of differential and integral equations in
particular. One can consult [15–17] for the different applications of spectral methods in var-
ious disciplines. There are three celebrated kinds of spectral methods, namely, the Galerkin,
tau and collocation methods. Galerkin method is productively applied to some types of
differential equations, see for example [18–21]. Tau method is advantageous in use due to
its flexibility, since no need for choosing the basis functions satisfying the underlying initial
and boundary conditions unlike the Galerkin method, see for example [22–26]. The colloca-
tion method is the most common method in use. It can be applied to all types of differential
equations. For some articles that employ collocation methods in the numerical solutions of
different types of differential equations, one can be referred to [27–32].

The hypergeometric functions are crucial in mathematical analysis and its applications.
In fact, they arise in the area of special functions and their applications. Various important
formulas of different orthogonal polynomials and special functions may be given in explicit
formulas involve hypergeometric functions or generalized hypergeometric functions. It
is worthwhile to mention that the duplication, connection and linearization coefficients
of Jacobi polynomials and their particular polynomials are expressed in terms of different
hypergeometric functions of unit argument. These hypergeometric functions may be reduced
in some cases by either standard formulas or through some suitable symbolic algorithms
such as Zielberger’s algorithm, see for example [33–35].

The problem of determining the coefficients linking the high-order derivatives and
repeated integrals of special functions with their original polynomials is of great interest.
These coefficients play important parts in spectral methods. They serve in the numerical
solutions of linear and non-linear differential equations. These coefficients are often ex-
pressed in terms of hypergeometric functions of unit argument which can be summed in
particular cases. For example, the authors in [36] established expressions of the derivatives
of the fifth kind Chebyshev polynomials and they proved that these expressions involve
hypergeometric functions of the type 4F3(1). Furthermore, in the two papers [18,37], the au-
thors developed new formulas for the high-order derivatives and repeated integrals of
Chebyshev polynomials of the third and fourth kinds and utilized the developed formulas
for treating some special types of differential equations. Additionally, the linearization
problems of different special functions are of fundamental interest in mathematical physics.
For some important articles in this direction, one can consult [38–40].

The non-linear Burgers’ equation and its modified equations are of interest. There are
several authors who treated these types of equations using different numerical algorithms.
Some of these methods are: operational matrix method [41], collocation method based on
B-splines [42], reproducing kernel function [43], finite difference method [44], modified
cubic B-spline differential quadrature method [45], modified cubic B-spline collocation
method [46], cubic B-spline differential quadrature methods [47], improvised cubic B-spline
collocation method in [48]. On the other hand, some other methods were followed for
treating Burgers-type equations. For example, the authors in [49] obtained exact travelling
wave solutions for the local fractional two-dimensional Burgers-type equations.

One of the principal goals of this article is to establish new expressions of the high-
order derivatives of the sixth kind Chebyshev polynomials. It will be shown that these
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derivatives can be expressed in terms of hypergeometric functions of the type 4F3(1) that
can be reduced in some specific cases. Another principal goal of this article is to utilize
these formulas for obtaining numerical solutions of the non-linear one dimensional Burgers’
equation with the aid of the spectral tau method.

The main reasons for our attention to investigate and employ the class of the Cheby-
shev polynomials of the sixth kind which is a special class of the generalized ultraspherical
polynomials are due to the following reasons:

• Some of the fundamental formulas concerned with the Chebyshev polynomials of the
sixth kind such as the power form representation, inversion formula and the moments
formula are not difficult in deriving;

• Chebyshev polynomials of the sixth kind have a trigonometric representation which
simplifies the derivation of some formulas concerned with them;

• The linearization coefficients of these polynomials were derived before in Reference
[8] in an explicit simple expression. These coefficients are crucial in the implementation
of our proposed numerical algorithm in the current paper.

The rest of the paper is arranged as follows. In Section 2, an overview on the gen-
eralized ultraspherical polynomials and the sixth kind Chebyshev polynomials is given.
Section 3 is interested in establishing new expressions of the high-order derivatives of
sixth kind Chebyshev polynomials in terms of their original ones. Section 4 is devoted to
presenting and analyzing a spectral algorithm for treating the one-dimensional Burgers’
equation based on the application of the spectral tau method. The convergence analysis
of the double shifted Chebyshev expansion is investigated in Section 5. Section 6 is con-
cerned with displaying some illustrative examples. At the end of the paper, we give some
concluding remarks in Section 7.

2. An Overview on the Generalized Ultraspherical Polynomials and Chebyshev
Polynomials of the Sixth Kind

This section is dedicated to presenting an overview on the symmetric polynomials,
namely, the generalized ultraspherical polynomials. In addition, we will give some relations
and identities concerned with a special class of these polynomials, namely Chebyshev
polynomials of the sixth kind.

2.1. An Overview on the Generalized Ultraspherical Polynomials

The generalized monic ultraspherical polynomials are symmetric polynomials that
generalize the standard monic ultraspherical polynomials [4]. These polynomials are linked
with Jacobi polynomials by the following relation:

R(λ,µ)
k (x) =



( k
2 )!
(

λ+
µ+1

2

)
k
2(

λ+
µ+1

2

)
k

P

(
λ, µ−1

2

)
k
2

(
2x2 − 1

)
, k even,

x
( k−1

2 )!
(

λ+
µ+1

2

)
k+1

2(
λ+

µ+1
2

)
k

P

(
λ, µ+1

2

)
k−1

2

(
2x2 − 1

)
, k odd,

(1)

where P(λ,µ)
k is the standard Jacobi polynomial of degree k.

The generalized ultraspherical polynomials R(λ,µ)
k (x) are orthogonal polynomials on

[−1, 1] with respect to the weight function w(x) = (1− x2)λ |x|µ. Therefore, it is clear that
the standard ultraspherical polynomials can be obtained as special ones of the generalized
polynomials R(λ,µ)

k (x) for the case corresponding to µ = 0.
In this paper, we will employ a specific kind of the generalized ultraspherical poly-

nomials R(λ,µ)
k (x). More precisely, we will consider the case corresponding to λ = 1

2 and
µ = 2. These polynomials are called Chebyshev polynomials of the sixth kind.
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2.2. Some Fundamental Properties of Sixth Kind Chebyshev Polynomials

This subsection concentrates on displaying some fundamental properties and relations

of Chebyshev polynomials of the sixth kind Ym(x) = R( 1
2 ,2)

m (x), m ≥ 0. These polynomials
are orthogonal on [−1, 1] with respect to w(x) = x2

√
1− x2. More precisely, we have

(see [7]) ∫ 1

−1
x2
√

1− x2 Ym(x) Yn(x) dx =

gm, if m = n,

0, if m 6= n,
(2)

and

gm =
π

22m+3

1, m even,
m + 3
m + 1

, m odd.

The polynomials Yk(x) can be generated via the following recurrence relation:

Yk(x) = x Yk−1(x)− k(k + 1) + (−1)k (2k + 1) + 1
4 k (k + 1)

Yk−2(x), Y0(x) = 1, Y1(x) = x, k ≥ 2. (3)

Abd-Elhameed and Youssri in [7] proved that Chebyshev polynomials of the sixth kind
have the following trigonometric representation:

Yj(cos θ) =


sin((j + 2)θ)

2j sin(2 θ)
, j even,

sin((j + 1)θ) + (j + 1) cos(θ) sin((j + 2)θ)
2j+1(j + 1) cos2(θ) sin(θ)

, j odd.
(4)

The following two lemmas display the power form representations of Chebyshev
polynomials of the sixth kind and their inversion formulae.

Lemma 1 ([8]). If n is a non-negative integer, then the power form representations of Chebyshev
polynomials of the sixth kind are given by

Y2n(x) =
Γ
(
n + 3

2
)

(2n + 1)!

n

∑
k=0

(−1)k (n
k) (−k + 2n + 1)!

Γ
(
−k + n + 3

2
) x2n−2k, (5)

Y2n+1(x) =
Γ
(
n + 5

2
)

(2n + 2)!

n

∑
k=0

(−1)k (n
k) (−k + 2n + 2)!

Γ
(
−k + n + 5

2
) x2n−2k+1. (6)

Lemma 2 ([8]). If n is a non-negative integer, then the inversion formulae of Chebyshev polynomials
of the sixth kind are given by

x2n =(2n + 1)!
n

∑
k=0

21−2k (−k + n + 1)
k! (−k + 2n + 2)!

Y2n−2k(x), (7)

x2n+1 =(2n + 1)! (2n + 3)
n

∑
k=0

21−2k (−k + n + 1)
k! (−k + 2n + 3)!

Y2n−2k+1(x). (8)

Now, the shifted Chebyshev polynomials of the fifth kind on [0, L] can be defined as:

Cj,L(x) = Yj

(
2 x
L
− 1
)

. (9)

These polynomials are orthogonal on [0, L] with respect to wL(x) = (L− 2x)2
√

x(L− x)
in the sense that ∫ L

0
wL(x) Ci,L(x) Cj,L(x) dx =

hi,L, if i = j,

0, if i 6= j,
(10)



Fractal Fract. 2021, 5, 53 5 of 20

with

hi,L =
L4π

22i+5

1, i even,
i + 3
i + 1

, i odd.
(11)

Remark 1. It is to be noted here that if one obtains a formula concerned with the Chebyshev
polynomials of the sixth kind, it is easy to find the corresponding formula for the shifted Chebyshev
polynomials of the sixth kind on [0, L].

The following special values are important:

Cj,L(0) =
1

2i+1

{
i + 2, i even,
−(i + 3), i odd,

(12)

and

Cj,L(L) =
1

2i+1

{
i + 2, i even,
i + 3, i odd.

(13)

The next lemma would also be helpful in the following.

Lemma 3. For all non-negative integers m and r, the following reduction formula holds:

4F3

(
−m,−r− 3

2 , 1
2 − r,−2r + m− 2

−2r− 2,−r− 1
2 ,−r− 1

2

∣∣∣∣1)

=
m!(2r−m + 2)!

(2r + 2)!


1, m even,

2r + 5
2r + 1

, m odd.

(14)

Proof. First, set

Am,r = 4F3

(
−m,−r− 3

2 , 1
2 − r,−2r + m− 2

−2r− 2,−r− 1
2 ,−r− 1

2

∣∣∣∣1).

In virtue of Zeilberger’s algorithm, it is possible to demonstrate that Am,r satisfies the
following recurrence relation of order two:

(−2r + m− 2)(−2r + m− 1) Am+2,r − (m + 1)(m + 2) Am,r = 0,

A0,r = 1, A1,r =
2r + 5

2(r + 1)(2r + 1)
,

whose exact solution is explicitly given by

Am,r =
m!(2r−m + 2)!

(2r + 2)!


1, m even,

2r + 5
2r + 1

, m odd.

This proves Lemma 3.

3. Derivatives Expressions of Sixth Kind Chebyshev Polynomials

This section is interested in establishing new expressions for the high-order deriva-
tives of Chebyshev polynomials of the sixth kind in terms of their original polynomials.
The following theorems and corollaries give the main results.
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Theorem 1. Let r be any non-negative integer, and let p be any integer with r ≥ p ≥ 1. For (r+ p)
even, the following formula is valid

DpYr(x) =r! (r− p + 1)

r−p
2

∑
m=0

2−2m(r− 2m− p + 2)
m!(r−m− p + 2)!

× 4F3

 −m, −r+p+1
2 ,−r + m + p− 2,−

⌊
r+1

2

⌋
− 1

2

−r− 1, −r+p−1
2 , 1

2 −
⌊

r+1
2

⌋ ∣∣∣∣∣∣1
Yr−p−2 m(x),

(15)

and b`c represents the greatest integer less than or equal to `.

Proof. To prove relation (15), it suffices to show that the following two formulae hold:

D2pY2r(x) =
√

π (2r)! 22p−2r

Γ
(

r− p + 1
2

) r−p

∑
m=0

(
−r + p− 1

2

)
m

m! (r−m− p)! (−2r + m + 2p− 2)m

× 4F3

(
−m,−r− 1

2 ,−r + p + 1
2 ,−2r + m + 2p− 2

−2r− 1, 1
2 − r,−r + p− 1

2

∣∣∣∣1)Y2r−2 m−2 p(x), p ≥ 1,

(16)

and

D2p+1Y2r+1(x) =
√

π (2r + 1)! 22p−2r

Γ
(

r− p + 1
2

) r−p

∑
m=0

(
−r + p− 1

2

)
m

m! (r−m− p)! (−2r + m + 2p− 2)m

× 4F3

(
−m,−r− 3

2 ,−r + p + 1
2 ,−2r + m + 2p− 2

−2r− 2,− 1
2 − r,−r + p− 1

2

∣∣∣∣1)Y2r−2 m−2 p(x), p ≥ 0.

(17)

First, we prove relation (16). Based on the analytic formula of Y2r(x) in (5), we can express
D2pY2r(x) as

D2pY2r(x) =
r−p

∑
k=0

(−1)k2−2k(2r− k + 1)!
k!(2r− 2k + 1)(2r− 2p− 2k)!

x2r−2p−2k. (18)

If we insert the inversion formula of x2r−2p−2k from (7) into the last relation, then we get

D2pY2r(x) =
r−p

∑
k=0

(−1)k 2−2k (2r− k + 1)!
k! (2r− 2k + 1) (2r− 2p− 2k)!

×
r−k−p

∑
m=0

21−2m (2r− 2p− 2k + 1)! (r−m− p− k + 1)
m! (2r−m− 2(p + k− 1))!

Y2r−2m−2p−2k(x).

(19)

After some lengthy manipulation, relation (19) may be written alternatively as:

D2pY2r(x) =
r−p

∑
m=0

{
21−2m(−r + m + p− 1)

×
m

∑
k=0

(−1)k (2r− k + 1)! (−2r + 2k + 2p− 1)
k! (2r− 2k + 1) (m− k)! (2r−m− k− 2p + 2)!

}
Y2r−2m−2p(x).

(20)
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Now, we can show that the interior sum that appears in the right-hand side of relation (20)
can be written in terms of hypergeometric form as:

m

∑
k=0

(−1)k (2r− k + 1)! (−2r + 2k + 2p− 1)
k! (2r− 2k + 1) (m− k)! (2r−m− k− 2p + 2)!

=

√
π 2−2r+2m+2p−1(2r)!

(
−r + p− 1

2

)
m

m! (−r + m + p− 1) Γ
(

r− p + 1
2

)
(r−m− p)! (−2r + m + 2p− 2)m

× 4F3

(
−r− 1

2 ,−m,−r + p + 1
2 ,−2r + m + 2p− 2

−2r− 1, 1
2 − r,−r + p− 1

2

∣∣∣∣1).

(21)

The last identity along with relation (20) yields relation (16).
To prove formula (17), we make use of relation (6) to write

D2p+1Y2r+1(x) =
2r + 3
r + 1

r−p

∑
k=0

(−1)k2−2k−1(2r− k + 2)!
k!(2r− 2k + 3)(2r− 2p− 2k)!

x2r−2p−2k. (22)

Making use of relation (7), the last relation can be converted into

D2p+1Y2r+1(x) =
2r + 3
r + 1

r−p

∑
k=0

(−1)k2−2k−1(2r− k + 2)!
k!(2r− 2k + 3)(2r− 2p− 2k)!

×
r−k−p

∑
m=0

21−2m(2r− 2p− 2k + 1)!(r−m− p− k + 1)
m! (2r−m− 2(p + k− 1))!

Y2r−2m−2p−2k(x),

(23)

which can be transformed again into

D2p+1Y2r+1(x) =
2r + 3
r + 1

r−p

∑
m=0

{
2−2m(r−m− p + 1)

×
m

∑
k=0

(−1)k (2r− k + 2)! (2r− 2k− 2p + 1)
k! (m− k)! (2r− 2k + 3) (2r−m− k− 2p + 2)!

Y2r−2m−2p(x)

}
.

(24)

If we note the identity:

m

∑
k=0

(−1)k (2r− k + 2)! (2r− 2k− 2p + 1)
k! (m− k)! (2r− 2k + 3) (2r−m− k− 2p + 2)!

=

√
π(r + 1) (2r + 1)! 4−r+m+p

(
−r + p− 1

2

)
m

(2r + 3)m! (r−m− p + 1) Γ
(

r− p + 1
2

)
(r−m− p)! (−2r + m + 2p− 2)m

× 4F3

(
−m,−r− 3

2 ,−r + p + 1
2 ,−2r + m + 2p− 2

−2r− 2,−r− 1
2 ,−r + p− 1

2

∣∣∣∣1),

(25)

then relation (24) along with (25), yields formula (17).
The proof of Theorem 1 is now complete.

Theorem 2. Let r be any non-negative integer, and let p be any integer, with r ≥ p ≥ 1. For (r + p)
odd, the following formula is valid

DpYr(x) =r! (r− p + 2)

r−p−1
2

∑
m=0

2−2m (r− 2m− p + 1)
m! (r−m− p + 2)!

× 4F3

 −m, p−r
2 ,−r + m + p− 2,−

⌊
r+1

2

⌋
− 1

2

−r− 1, −r+p
2 − 1, 1

2 −
⌊

r+1
2

⌋ ∣∣∣∣∣∣1
Yr−p−2 m(x).

(26)
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Proof. Formula (26) can be split into the following two formulae:

D2pY2r+1(x) =(2r + 1)!
r−p

∑
m=0

21−2m(2r− 2p + 3)(r−m− p + 1)
m! (2r−m− 2p + 3)!

× 4F3

(
−m,−r− 3

2 ,−r + p− 1
2 ,−2r + m + 2p− 3

−2r− 2,−r− 1
2 ,−r + p− 3

2

∣∣∣∣∣1
)

Y2r−2 m−2 p+1(x),

(27)

and

D2p+1Y2r(x) =(2r− 2p + 1)
r−p−1

∑
m=0

21−2m (2r)! (r−m− p)
m! (2r−m− 2p + 1)!

× 4F3

(
−m,−r− 1

2 ,−r + p + 1
2 ,−2r + m + 2p− 1

−2r− 1,−r + 1
2 ,−r + p− 1

2

∣∣∣∣∣1
)

Y2r−2 m−2 p−1(x).

(28)

Relations (27) and (28) can be proved using similar procedures followed in the proof of
Theorem 1.

Now, and based on the results of Theorems 1 and 2, we present a single formula that
expresses the pth-derivative of the polynomials Yr(x) in terms of their original polynomials.
The next theorem displays this important formula.

Theorem 3. Let r, p be any non-negative integers with r ≥ p ≥ 1. The following formula for the
high-order derivatives of sixth kind Chebyshev polynomials holds

DpYr(x) =
b r−p

2 c
∑

m=0
Am,r,p Yr−p−2 m(x), (29)

where the coefficients Am,r,p are explicitly given in the following form:

Am,r,p =
r!

22mm!(r−m− p + 2)!
×

(r− p + 1)(2 + r− 2m− p) × 4F3

 −m, −r+p+1
2 ,−r + m + p− 2,−

⌊
r+1

2

⌋
− 1

2

−r− 1, −r+p−1
2 , 1

2 −
⌊

r+1
2

⌋ ∣∣∣∣∣∣1
, (r + p) even,

(r− p + 2)(1 + r− 2m− p) × 4F3

 −m, p−r
2 ,−r + m + p− 2,−

⌊
r+1

2

⌋
− 1

2

−r− 1, −r+p
2 − 1, 1

2 −
⌊

r+1
2

⌋ ∣∣∣∣∣∣1
, (r + p) odd.

(30)

Remark 2. The first-order derivative of Yr(x), r ≥ 1, can be expressed in terms of their original
polynomials by two expressions free of any hypergeometric functions. The following two corollaries
display these formulas.

Corollary 1. Let r ≥ 1. The first-derivative of Y2r(x) has the following expression:

DY2r(x) =
r−1

∑
m=0

21−2 m (r−m)Y2r−2m−1(x). (31)

Proof. Setting q = 0 in formula (28) yields the following formula

DY2r(x) =(2r + 1)!
r−1

∑
m=0

21−2m(r−m)

m!(2r−m + 1)!

× 2F1

(
−m, m− 2r− 1
−2r− 1

∣∣∣∣1)Y2r−2m−1(x).

(32)
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In virtue of the well-known identity of Chu-Vandermonde, the above 2F1(1) can be reduced
to give

2F1

(
−m, m− 2r− 1
−2r− 1

∣∣∣∣1) =
m!

(2r−m + 2)m
, (33)

and, therefore, relation (31) can be obtained.

Corollary 2. Let r ≥ 0. The following identity holds

DY2r+1(x) =
√

π 2−2r−1

(r + 1)Γ
(

r + 1
2

) b r
2c

∑
m=0

(2r− 2m + 2)!
(
−r− 1

2

)
2m

(r− 2m)!(−2r + 2m− 2)2m
Y2r−4m(x)

+

√
π 2−2r−1(2r + 5)

(r + 1)(2r + 1)Γ
(

r + 1
2

) b r−1
2 c

∑
m=0

(2r− 2m + 1)!
(
−r− 1

2

)
2m+1

(r− 2m− 1)!(−2r + 2m− 1)2m+1
Y2r−4m−2(x).

(34)

Proof. Setting q = 0 in formula (17) yields the following formula

DY2r+1(x) =
√

π 2−2r (2r + 1)!

Γ
(

r + 1
2

) r

∑
m=0

(
−r− 1

2

)
m

m!(r−m)!(−2r + m− 2)m

× 4F3

(
−m,−r− 3

2 , 1
2 − r,−2r + m− 2

−2r− 2,−r− 1
2 ,−r− 1

2

∣∣∣∣1)Y2r−2m(x).

(35)

Based on the result of Lemma 3, some manipulations lead to formula (35).

Now, it is easy to deduce the high-order derivatives formula of the shifted Chebyshev
polynomials of the sixth kind in terms of their original shifted ones only by replacing x by( 2 x

L − 1
)

in formula (29). The following theorem exhibits this result.

Theorem 4. Let r, p be any non-negative integers with r ≥ p ≥ 1. The following formula for the
high-order derivatives of sixth kind Chebyshev polynomials holds

DpCr,L(x) =
b r−p

2 c
∑

m=0
Ām,r,p Cr−p−2 m,L(x), (36)

where the coefficients Ām,r,p are given explicitly in the following form:

Ām,r,p =
r!

22m−p Lp m!(r−m− p + 2)!
×

(r− p + 1)(2 + r− 2m− p) × 4F3

 −m, −r+p+1
2 ,−r + m + p− 2,−

⌊
r+1

2

⌋
− 1

2

−r− 1, −r+p−1
2 , 1

2 −
⌊

r+1
2

⌋ ∣∣∣∣∣∣1
, (r + p) even,

(r− p + 2)(1 + r− 2m− p) × 4F3

 −m, p−r
2 ,−r + m + p− 2,−

⌊
r+1

2

⌋
− 1

2

−r− 1, −r+p
2 − 1, 1

2 −
⌊

r+1
2

⌋ ∣∣∣∣∣∣1
, (r + p) odd.

(37)

Remark 3. For upcoming purposes, it is convenient to write the derivatives formula (4) in the
following alternative form:

DpCr,L(x) =
r−p

∑
m=0

(m+r+p) even

dm,r,L,p Cm,L(x), (38)
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where the coefficients dm,r,p are explicitly given as:

dm,r,L,p =
−2m+2p−rr!

Lp
(

1
2 (−m− p + r)

)
!
(

1
2 (−m− p + r) + 2

)
!
×



4F3

 1
2 + p

2 −
r
2 ,−2− m

2 + p
2 −

r
2 , m

2 + p
2 −

r
2 ,− 1

2 −
⌊

1+r
2

⌋
−1− r,− 1

2 + p
2 −

r
2 , 1

2 −
⌊

1+r
2

⌋ ∣∣∣∣∣∣1
, m even,

(1 + m)(−2 + p− r) × 4F3

 p
2 −

r
2 ,−2− m

2 + p
2 −

r
2 , m

2 + p
2 −

r
2 ,− 1

2 −
⌊

1+r
2

⌋
−1− r,−1 + p

2 −
r
2 , 1

2 −
⌊

1+r
2

⌋
∣∣∣∣∣∣∣1
, m odd.

(39)

4. Spectral Tau Algorithm for One-Dimensional Burgers’ Equation

In this section, we are interested in obtaining a numerical solution for the non-linear
one dimensional Burgers’ equation. Some theoretical results serve in deriving the proposed
algorithm. More precisely, the expression of the high-order derivatives of the shifted
Chebyshev polynomials along with the linearization formula of these polynomials is
employed. In addition, the spectral tau method is utilized to discretize the one-dimensional
non-linear Burgers’ partial differential equation. In order to proceed in our proposed
algorithm, the following linearization formula is essential in the sequel.

Theorem 5. For all non-negative integers m and n, the following linearization formula for the
shifted Chebyshev polynomials of the sixth kind is valid

Cm,L(x)Cn,L(x) =
m+n

∑
s=|m−n|

Bs,m,n CL,s(x), (40)

where the linearization coefficients Bs,m,n are given by

Bs,m,n = 2−1+s−m−n×

1 + (−1)
1
2 (−s+m+n), both s, m and n are even,

(2 + m)(2 + n) + 1
2 (−1)

1
2 (−s+m+n) (s(4 + s)−m(4 + m)− (2 + n)2)
(1 + m)(1 + n)

, s even, m odd, n odd,

(2 + s)(2 + n) + 1
2 (−1)

1
2 (−s+m+n) (s(4 + s)−m(4 + m) + (2 + n)2)

(3 + s)(1 + n)
, s odd, m even, n odd,

(2 + s)(2 + m) + 1
2 (−1)

1
2 (−s+m+n) (4 + s(4 + s) + m(4 + m)− n(4 + n))

(3 + s)(1 + m)
, s odd, m odd, n even,

0, (s + m + n) odd.

(41)

Proof. The linearization formula of Chebyshev polynomials of the sixth kind that derived
in [8] lead to formula (40), only if x is replaced by

( 2 x
L − 1

)
.

Now, consider the following one-dimensional non-linear Burgers’ partial differential
equation:

∂U
∂t

+ U ∂U
∂x

= ν
∂2U
∂x2 , (x, t) ∈ Ω = (0, L)× (0, τ), (42)

subject to the initial condition:

U (x, 0) = η(x), x ∈ (0, L), (43)

and the boundary conditions:

U (0, t) = ξ0(t), U (L, t) = ξ1(t), t ∈ (0, τ), (44)
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where, ν is the positive coefficient of kinematic viscosity, η, ξ0 and ξ1 are prescribed known
continuous functions.

Our strategy to solve (42) governed by the initial condition (43) and the boundary
conditions (44) is based on applying the spectral tau method. So first, consider the two
following basis functions sets:

φm(x) = Cm,L(x), ψn(t) = Cn,τ(t).

Let U = U (x, t) ∈ L2(Ω), and assume that U can be expanded in the following double expansion:

U =
∞

∑
n=0

∞

∑
m=0

umn φm(x)ψn(t), (45)

and consider the following approximation of U :

U ' UK =
K

∑
n=0

K

∑
m=0

umn φm(x)ψn(t). (46)

Thanks to the derivatives formula in (38), we have the following expressions:

∂UK
∂t

=
K

∑
n=1

K

∑
m=0

n−1

∑
j=0,

(j+n) odd

dj,n,τ,1 umnφm(x)ψj(t), (47)

∂UK
∂x

=
K

∑
n=0

K

∑
m=1

m−1

∑
j=0,

(j+m) odd

dj,m,L,1 umnφj(x)ψn(t), (48)

∂2UK

∂x2 =
K

∑
n=0

K

∑
m=2

m−2

∑
j=0,

(j+m) even

dj,m,L,2 umnφj(x)ψn(t). (49)

Now, the linearization formula (40) enables one to write the product UK
∂UK
∂x

as:

UK
∂UK
∂x

=
K

∑̄
n=0

K

∑̄
m=0

K

∑
n=0

K

∑
m=1

m−1

∑
j=0,

(j+m) odd

m̄+j

∑
ν̄=|m̄−j|

n̄+n

∑
ν=|n̄−n|

dj,m,L,1 Bν̄,m̄,j Bν,n̄,n um̄n̄ umnφν̄(x)ψν(t).

Now, we are in a position to get the residual of Equation (42). It can be written in the form

Res(x, t) =
∂UK
∂t

+ UK
∂UK
∂x
− ν

∂2UK
∂x2

=
K

∑
n=1

K

∑
m=0

n−1

∑
j=0,

(j+n) odd

dj,n,τ,1 umnφm(x)ψj(t)− ν
K

∑
n=0

K

∑
m=2

m−2

∑
j=0,

(j+m) even

dj,m,L,2 umnφj(x)ψn(t)

+
K

∑̄
n=0

K

∑̄
m=0

K

∑
n=0

K

∑
m=1

m−1

∑
j=0,

(j+m) odd

m̄+j

∑̄
ν=0

n̄+n

∑
ν=0

dj,m,L,1 Bν̄,m̄,j Bν,n̄,n um̄n̄ umnφν̄(x)ψν(t).

(50)

The residual of the initial condition (43) is given by:

R(x) = UK(x, 0)− η(x) =
K

∑
n=0

K

∑
m=0

umnφm(x)ψn(0)− η(x), (51)
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while the residuals of the boundary conditions (44) are given by:

R0(t) = UK(0, t)− ξ0(t) =
K

∑
n=0

K

∑
m=0

umnφm(0)ψn(t)− ξ0(t), (52)

R1(t) = UK(L, t)− ξ1(t) =
K

∑
n=0

K

∑
m=0

umnφm(L)ψn(t)− ξ1(t). (53)

We apply the typical tau method to get∫ τ

0

∫ L

0
Res(x, t)φr(x)ψs(t)wL(x)wτ(t) dx dt = 0, 0 ≤ r ≤ K− 1, 0 ≤ s ≤ K− 1, (54)∫ L

0
R(x)φ0(x)wL(x) dx = 0, (55)∫ τ

0
R0(t)ψr(t)wτ(t) dt = 0, 0 ≤ r ≤ K− 1, (56)∫ τ

0
R1(t)ψr(t)wτ(t) dt = 0, 0 ≤ r ≤ K− 1. (57)

Based on Equations (50)–(53) together with Equations (54)–(57) lead to the following equations

K

∑
n=1

ds,n,τ,1 urn hr,L hs,τ − ν
K

∑
m=2

dr,m,L,2 ums hr,L hs,τ

+
K

∑̄
n=0

K

∑̄
m=0

K

∑
n=0

K

∑
m=1

m−1

∑
j=0,

(j+m) odd

dj,m,L,1 Br,m̄,j,L Bs,n̄,n,τ um̄n̄ umn hr,L hs,τ = 0, 0 ≤ r, s,≤ K− 1,
(58)

h0,L

K

∑
n=0

u0nψn(0) =
∫ L

0
η(x)φ0(x)wL(x) dx, (59)

hr,τ

K

∑
m=0

umrφm(0) =
∫ τ

0
ξ0(t)ψr(t)wτ(t) dt, 0 ≤ r ≤ K− 1, (60)

hr,τ

K

∑
m=0

umrφm(L) =
∫ τ

0
ξ1(t)ψr(t)wτ(t) dt, 0 ≤ r ≤ K− 1. (61)

Equations (58)–(61), generate a system of non-linear algebraic equations with quadratic
non-linearity in the unknown expansion coefficients {umn} of dimension K2, we use the
efficient Newtons’ iterative technique with zero initial approximations and consequently, it
is possible to achieve an approximation of the solution..

5. Convergence of the Double Chebyshev Expansion

This section is confined to discuss the convergence analysis of the double shifted
Chebyshev expansion that is used to find the approximate solution of the the non-linear
one-dimensional Burgers’ equation.

Theorem 6 ([7]). The following inequality holds

|Cj,L(z)| <
j2

2j , ∀ z ∈ [0, L].

Let f (z) ∈ L2
w[0, L] provided with | f (3)(z)| ≤ A. In addition, assume that f (z) has the following

expansion

f (z) =
∞

∑
j=0

aj Cj,L(z). (62)
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The series in (62) is uniformly convergent to f (z), and the following estimation holds for the
expansion coefficients

|aj| <
A

2 j3
, ∀j > 3. (63)

Theorem 7 ([7]). Let f (z) satisfy the assumptions of Theorem 6, and let eN(z) =
∞

∑
j=N+1

aj Cj,L(z)

be the global error. The following inequality is valid

|eN(z)| <
A

2N .

The following Theorem is concerned with the convergence of the double shifted sixth
kind Chebyshev expansion.

Theorem 8. Let U and UK, be the exact and approximate solutions given in (45) and (46), respec-
tively, and assume that U = f (x)g(t), where both f and g satisfy the hypothesis of Theorem 6. We
have the following two estimates:

• The expansion coefficients umn, satisfy, |umn| = O
(
(m n)−3);

• The trunction error estimate is dominated by the following estimate |U − UK| = O(4−K).

Proof. Following similar procedures to those followed in Abd-Elhameed et al. in [21] along
with Theorems 6 and 7, we get the desired result.

6. Numerical Experiments and Comparisons

This section is confined to displaying some numerical examples to show the applicabil-
ity and efficiency of our shifted Chebyshev sixth kind tau method (SC6TM). Furthermore,
comparisons with some other methods in the literature are presented.

Example 1 ([41]). Consider the following non-linear Burgers’ equation

∂U
∂t

+ U ∂U
∂x

= ν
∂2U
∂x2 , (x, t) ∈ Ω = (0, 1)× (0, τ), (64)

governed by the initial condition:

U (x, 0) = sin(πx), x ∈ (0, 1), (65)

and by the homogeneous boundary conditions:

U (0, t) = U (1, t) = 0, t ∈ (0, τ). (66)

The analytic solution of (64)–(66) can be obtained with the aid of Hopf–Cole method ([50]). This
solution is obtained in [41]. It is given by

U (x, t) =

2 π ν
∞

∑
k=1

ak e−k2π2ν t sin(kπ x)

a0 +
∞

∑
k=1

ak e−k2π2ν t cos(kπ x)
, (67)

with the following Fourier coefficients

a0 =
∫ 1

0
exp{−(2πν)−1(1− cos(π x))}dx,

ak = 2
∫ 1

0
exp{−(2πν)−1(1− cos(π x))} cos(k π x)dx, k > 1.
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In Table 1, we report a comparison between the exact solution, our proposed method and Cheby-
shev wavelets Picard method (CWPM) that developed in [41] for solving Example 1, while in
Figures 1 and 2, we illustrate the behavior of the resulting approximate solutions for different values
of t and for N = 5.

Table 1. Comparison between the exact solution, CWPM solution and SC6TM solution of Example 1.

x = 0.25 x = 0.5 x = 0.75

t SC6TM CWPM [41] Exact SC6TM CWPM [41] Exact SC6TM CWPM [41] Exact

0.1 0.26148 0.26147 0.26148 0.38342 0.3834 0.38342 0.28157 0.28156 0.28157
0.15 0.16148 0.16146 0.16148 0.23406 0.23404 0.23406 0.16974 0.16973 0.16974
0.2 0.09947 0.09946 0.09947 0.14289 0.14288 0.14289 0.10266 0.10265 0.10266

0.25 0.06108 0.06107 0.06108 0.08723 0.08721 0.08723 0.06229 0.06229 0.06229

x

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

t=0.1

t=0.2

t=0.3

t=0.4

Figure 1. The approximate solutions of Example 1 at different times.

x

0.0 0.2 0.4 0.6 0.8 1.0

0.000

0.002

0.004

0.006

0.008

t=0.5

t=0.6

t=0.7

t=0.8

Figure 2. The approximate solutions of Example 1 at different times.

Example 2 ([41]). Consider Equation (64) governed by the same boundary conditions (66) but
with the following initial condition:

U (x, 0) = sin(2πx), x ∈ (0, 1), (68)

In this case, the Fourier coefficients are given by

a0 =
∫ 1

0
exp{−(4πν)−1(1− cos(2π x))}dx,

ak =2
∫ 1

0
exp{−(4πν)−1(1− cos(2π x))} cos(k π x)dx, k > 1.
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In Table 2, we report the errors resulted from the application of SC6TM for Example 2, while
in Figures 3 and 4, we illustrate the behavior of the resulting approximate solutions for different
values of t when N = 6.

Table 2. Errors of Example 2, when ν = 1 and N = 6.

x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

t = 0.2 1.2 × 10−6 2.4 × 10−6 3.4 × 10−6 5.7 × 10−6 5.2 × 10−6 6.1 × 10−6 6.7 × 10−6 8.1 × 10−6 1.9 × 10−5

t = 0.4 1.2 × 10−6 3.2 × 10−6 5.4 × 10−6 6.3 × 10−6 8.2 × 10−6 7.2 × 10−6 7.8 × 10−6 8.3 × 10−6 1.4 × 10−5

t = 0.6 1.2 × 10−6 3.2 × 10−6 3.6 × 10−6 5.4 × 10−6 5.5 × 10−6 5.5 × 10−6 6.8 × 10−6 7.1 × 10−6 1.9 × 10−5

t = 0.8 3.2 × 10−6 4.2 × 10−6 7.4 × 10−5 6.8 × 10−5 7.3 × 10−5 4.4 × 10−5 7.6 × 10−5 8.6 × 10−5 2.2 × 10−5

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t=0.1

t=0.2

t=0.3

t=0.4

Figure 3. The approximate solutions of Example 2 at different times.

0.0 0.2 0.4 0.6 0.8 1.0

0.000

0.002

0.004

0.006

0.008

0.010

0.012

t=0.5

t=0.6

t=0.7

t=0.8

Figure 4. The approximate solutions of Example 2 at different times.

Example 3 ([41]). We consider Equation (64) governed by the same boundary conditions (66) but
subject to the initial condition:

U (x, 0) = 4x(1− x), x ∈ (0, 1). (69)

In this case the Fourier coefficients are given by

a0 =
∫ 1

0
exp{−(3ν)−1(3x2 − 2x3)}dx,

ak =2
∫ 1

0
exp{−(3ν)−1(3x2 − 2x3)} cos(k π x)dx, k > 1.
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In Figures 5 and 6, the behavior of the approximate solutions resulted from the application
of SC6TM for different values of t and for N = 10 is illustrated. Furthermore, in Figure 7, we
illustrate the Log-error plot for different values of N.

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.02

0.04

0.06

0.08

0.10

t=1

t=2

t=3

t=4

Figure 5. The approximate solutions of Example 3 at different times.

0.0 0.2 0.4 0.6 0.8 1.0

0.00
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0.04

0.06

0.08

t=5

t=6

t=7

t=8

Figure 6. The approximate solutions of Example 3 at different times.
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Figure 7. Log-errors of Example 3 for different values of ν and N.
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Example 4 ([45,47]). Consider Equation (64) subject to the initial condition:

U (x, 1) =
x√

e−
1

8ν e
x2
4ν + 1

, x ∈ (0, 1.2), (70)

and the boundary conditions:
U (0, t) = U (1.2, t) = 0,

in this case the exact solution for this problem for t > 1 is given by

U (x, t) =
x

t
(√

e−
1

8ν te
x2
4νt + 1

) .

We apply our proposed algorithm for the case corresponding to ν = 0.005, N = 10, and T = 3.6.
In Table 3, we report a comparison between the maximum absolute errors of Example 4 resulted
from the application of our proposed method, the method developed in [45], and the three methods
in [47]. In addition, Figure 8 displays the approximate solutions of Example 4 for different values of
t, while Figure 9 illustrates the behavior of the errors resulted form the application of our proposed
method for different values of t.

Table 3. Comparison between different errors of Example 4, when t = 3.6.

Method [45] [47]-I [47]-II [47]-III SC6TM

L∞ − Error 7.0 × 10−5 4.6 × 10−4 5.2 × 10−4 5.4 × 10−4 2.2 × 10−6

x

approximate(x, t)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.00

0.05

0.10

0.15

0.20

0.25

0.30

t=1.7

t=2.5

t=3

t=3.5

Figure 8. The approximate solutions of Example 4 for different values of t.

x

error(x,t)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0

5.×10-7

1.×10-6

1.5×10-6

t=1.7

t=2.5

t=3

t=3.5

Figure 9. Errors of Example 4 for different values of t.
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7. Conclusions

In this work, we developed new expressions for the high-order derivatives of Cheby-
shev polynomials of the sixth kind in terms of their original ones. We proved that these
derivatives can be expressed in terms of certain terminating hypergeometric functions
of unit argument that can be summed in some specific cases. These expressions along
with some other formulas concerned with the sixth kind Chebyshev polynomials are em-
ployed to solve the one dimensional Burgers’ differential equation via the application of the
spectral tau method. The proposed method transforms the non-linear Burgers’ equation
governed by its initial and boundary conditions into a non-linear algebraic system that can
be solved through any suitable numerical solver. The presented numerical examples show
that our proposed algorithm is applicable and efficient. We do believe that our derived
theoretical formulas are new and useful. Furthermore, they can be utilized to solve several
types of linear and non-linear differential equations. In addition, it is worthy to point out
here that the investigation of the generalized ultraspherical polynomials theoretically and
practically needs extensive work, and we plan to investigate them as future work.
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