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Abstract: In this paper, a novel escape-time algorithm is proposed to calculate the connectivity’s
degree of Julia sets generated from polynomial maps. The proposed algorithm contains both quan-
titative analysis and visual display to measure the connectivity of Julia sets. For the quantitative
part, a connectivity criterion method is designed by exploring the distribution rule of the connected
regions, with an output value Co in the range of [0,1]. The smaller the Co value outputs, the better
the connectivity is. For the visual part, we modify the classical escape-time algorithm by highlighting
and separating the initial point of each connected area. Finally, the Julia set is drawn into different
brightnesses according to different Co values. The darker the color, the better the connectivity of the
Julia set. Numerical results are included to assess the efficiency of the algorithm.

Keywords: fractals; Julia sets; escape-time algorithm; connectivity

1. Introduction

Since the concept of fractals was proposed in the mid-1970s [1,2], it has gradually
become an active research hotspot of nonlinear science. In recent years, the theoretical
framework of fractals has become more and more mature [3-5]. At the same time, in order
to explore the application of fractals in biology [6,7], physics [8,9], cryptography [10,11],
and other fields, a lot of research and review have been carried out. As one of the important
branches of fractal, the research on Julia sets can be traced back to the early 20th century,
when French mathematician Gaston Julia [12] considered the characteristics of a simple
complex map z, 11 = z2 +¢, z,¢ € C in the case n — co. Due to the limitation of computer
technology, the researchers at that time could not fully realize the complexity of the topology
under such a simple iteration [13,14]. With the development of computer science, the two
systematic works proposed by Mandelbrot have caused a new wave of research on the
Mandelbrot set and the Julia set (M-] set for short). The study on algorithms to calculate the
M-] sets provides visualization assistance for researchers to explore the internal structures
and the dynamical behaviours. Among these algorithms, the escape-time algorithm [15],
including the escape radius R and the maximum number of iterations N, is one of the most
commonly used methods. Nowadays, a lot of research has been done on the improvement
of ETA and proposal of other algorithms. In [16], the Mandelbrot set was displayed by
a variety of colours to reveal patterns of finite attracting orbits. Liu et al. [17] proposed
a new escape-time algorithm that could accelerate the construction process. Analogous
study that reduces the iteration times can be seen in [9], which defined a kind of point
as a no-escape point. Some follow-up studies are proposed for the Julia set construction
algorithm of generalized polynomial mapping, z,+1 = z& + ¢, k € N+ [18,19]. Jovanovic
presented a method to illustrate the Mandelbrot sets by analyzing the statistical information
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of the points’ calculation-paths [20]. By distinguishing the points with different colors
according to the different strike frequency, the reference [21] presented an equipotential
point algorithm to construct the Julia sets. Moreover, some research has been done to
investigate the algorithm for constructing 3D M-]J sets [22-24]. With the help of the ETA,
some other related problems about the fractal have also been effectively analyzed and
addressed. For instance, the ETA was well-adopted in an investigation on the computation
of the Julia set’s dimension [25]. Based on the Julia set’s image generated by ETA, the
authors proposed a novel image with visually meaningful cryptography, which has stronger
anti-interference ability [26]. In [27], the dynamic behaviors of the network whose nodes
are logistic maps was well-described by the M-] set formulated by ETA .

To further reveal the complex internal structure of the M-] set, some supplementary
studies, including quantitative methods and visualization methods, were proposed and
added to ETA [28-35]. For instance, by analyzing the trajectory of the critical points,
Danca et al. [28,29] pointed out that the Julia set showed different connectivity by alter-
nating the iteration of switched systems [30]. Afterwards, a kind of fractals paradox
phenomenon “disconnected+disconnected=connected” and the corresponding graphical
investigations were proposed in [31,32]. The Julia deviation distance method and Julia
deviation plot method were given in the study of noise-perturbed Julia sets [34,35].

As mentioned above, although some progress has been made in the research of modify-
ing the ETA to explore M-] sets’ properties, such as the bounded trajectories [20,21,28,29,36],
symmetry property [19,22,24,31,32], and region location [9,17,18,24,33-35], few studies have
been done on the connectivity measurement of M-J sets. For some high-order polynomial
maps [29,31,37], the system generally has multiple critical points, which means that the
parameter spaces of this type of map is more complicated than the classical Mandelbrot
set. Therefore, the motivation of this work is to quantitatively and visually analyze the
distribution of Julia’s connected regions. Therefore, the motivation of this work is to give
the quantitative and visual analysis of the distribution law of connected regions for the
Julia sets with diverse connectivity properties. The main novelties of this work can be
summarized as follows:

(1) This is the first attempt to solve the problem of measuring the connectivity of Julia
sets generated from polynomial maps.

(2) A criterion is designed to map the connectivity degree to the range of [0, 1]. In this
way, the quantification of connectivity degree is effectively achieved.

(3) The connectivity is visualized by coloring Julia sets with different brightnesses, which
provides an intuitive way to identify the connectivity degree.

The remainder of the paper is organized as follows. In Section 2, some definitions
and preliminaries that will be used throughout the paper are presented. In Section 3, the
frame of the proposed algorithm is given. Section 4 contains numerical results about a
kind of switched system and a kind of quartic polynomial map. Quantitative analysis and
visualization results are included in Section 4. In Section 5, the summation of this present
work and prospects of future investigations are made.

2. Definitions and Preliminaries

Julia sets J(f) is defined as the closure of repelling periodic points of a complex
function. That is, the trajectories of points in a Julia set remain bounded during the
iterations of f. Particularly, if f has an attractive point w, the Julia set can be defined as
J(f) = 0A(w), where A(w) is the attractive domain of the attractive fixed point w [38,39].
The basic frame of ETA is mainly based on the following definition.

Definition 1. Set (xo,y0) = zo € C as an initial point of a complex map f. The filled Julia set of
f is defined as
K(f) = {zo|f"(z0)~ c0,n— co}.

Julia set of f is the boundary of K(f), that is, J(f) = 0K(f).
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The connectivity of the Julia set is determined by parameter c. For the classical map
Zpt] = z%l +¢, z,c € C, the set making J(f) connected, is named the Mandelbrot set,
composed of all the cs that keep the trajectory of zy = 0 bounded.

As mentioned in the introduction, for some higher-order polynomial maps, the Julia
sets present diverse connectivities according to the trajectories of critical points. In this
paper, we use two such maps as examples to describe, verify the description of, and actually
verify the proposed algorithm.

Example 1. Danca et al. [28,29] pointed out that Julia sets show different connectivities by
studying a kind of switched map:

2 . .
) _ | z; 4+, if n iseven,
bz = { z2 4+ ¢y, if n isodd. M)

Same as Definition 1, the Julia set of system (1) is composed of zo, whose sequence is kept
bounded. By analyzing the boundedness and periodicity of the two critical points 0, \/—c1, the
following definition is given.

Definition 2. The connectivity loci of system (1), denoted as M(F), is separated into three parts,
as follows:

(1)  CL(F) denotes the locations of (c1,c2) ensuring the connectedness of J(F).
(2)  DL(F) denotes the locations of (c1,cy) ensuring the disconnectedness of J(F).
(3)  TDL(F) denotes the locations of (c1, cz) ensuring the totally disconnectedness of J(F).

Example 2. In [37], the authors investigated the connectivity of a polynomial map with degree
d > 2. The work [37] contains the Julia sets from the following quartic map:

F: zyq =a(zy +2)%(322 — 82, +8)/3—-2, ac C. )

Remark 1. In [37], the authors denoted K(F,) as the Fy’s filled Julia set, I(F,) = C\K(F,) as the
escaping set. They pointed out that system (2) has three critical points 1,0, —2, whose relationship
position with the two sets K(F,), I(F,) determine the different connectivity of the corresponding
Julia sets.

3. Escape-Time Algorithm Design

The purpose of the proposed algorithm is to quantify the connectivity of systems
whose unconnected Julia sets have locally connected regions. Because connectivity is an
opposite concept to fragmentation, the main idea of measuring connectivity is to find the
relevant rules of fragment distribution. Details are as follows: The purpose of the proposed
algorithm is to quantify the connectivity of systems whose unconnected Julia sets have
locally connected regions. Because connectivity is an opposite concept to fragmentation,
the main idea of measuring connectivity is to find the relevant rules of fragmentation
distribution. Details are as follows:

(I)  First, similar to the classical ETA: for polynomial maps f, denote R,N as the escape
radius and escape-time, respectively. For each point (xg,yo) in the lattice ¢ which
contains J(f), a serial number (¢, ¢) is assigned (1 < ¢, < M), where ¢, € N+.
M?2 is the image’s resolution.

(I) Travel all (¢, ) in the range 1 < ¢, < M to get a set K based on the following
rule: if | f"(x0,Y0)| > R in which n < N, the point (¢, ) is abandoned. Otherwise,
(¢, 1) € K. The number of points in K is defined as num(K).

(IIT) In the set K, ¢ and ¢ are iterated successively. Once a point (¢, i) is reached, we express
it as g1 and regard it as the initial point of a connected region (3, 1 < p < M?.

(IV) Eachg,,1 = (@, ) has, at most, eight neighbors in K. In counter-clockwise order, the

eight points (¢, —1),(¢ =Ly —1),(¢ =L ¢) (¢ -1 p+1), (9, +1),(¢+ 1L ¢+
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1),(¢+1,9),(¢+1,¢ — 1) are denoted as G, which means the second generation
of g1 Suppose that P — 1 connected regions have been classified; then, all the points
before the Qth iteration (always in counter-clockwise order) of gp ; are separated into
a set KIJJF,Q, defined as

. P-1 Q-1
Kpo=2 Qp+ ) 6par
=1 q=1
The Qth iteration of ¢p yields

{Gpq}t =@ backto (3).
into {Qp}: if Gpg & {K;Q}
{cpq} # O ignore : if Gpg € {KIJ;Q}
back to (3) : if all gpq € {Kp 5}

Qp(Qth iteration) :

As shown in Figure 1, we illustrate a flowchart for a more intuitive explanation of the
algorithm. The (a)—(c) parts of Figure 1 illustrate steps (I), (II), which are in accordance
with the classical ETA.

000000000

O 000000
00 0@@0
0@0 000
O O 000

Figure 1. The flowchart of the proposed algorithm in which (a,b): corresponding to the steps (I), (II).
(c,d): corresponding to the steps (III), (IV). (e,f): corresponding to the step (V).

V)

The labelling process in steps (III), (IV) is shown in Figure 1d. Blue points in Figure 1d
are the first points ¢ in regions (). The grey points labeled with several generations are
those connected with ¢. It can be seen from step (IV) that there are some redundant
computations in the labelling process. Specifically, 43-times redundant computations
occur in Figure 1d. To handle this problem, the linked storage structure illustrated
in Figure 2 is adopted. In Figure 2, the white points depict (¢, ¢) that do not belong
to the set K, and the black points are those that have been classified in the previous
regions. The grey and blue ones are those that will be classified only in the set Kp o

pP-1 Q-1
Kpog=K=) 0~} cpa
=1 g=1

Repeat steps (III) and (IV) until all points in K are classified. Count all the ¢}, in each
region () and define the number as num(C). Itis clear that num(C) means the number
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of connected regions, that is, the degree of the fragmentation. Then, the connectivity
criterion is defined as

Co(J) = { Z”;"’:Z(((]:)) : zf num(C) # 1,
0 o if num(C) = 1.

The two extreme cases of connectivity are shown in Figure 3. For the right-side case,
the Julia set is totally disconnected; herein, Co(]) = 1. For the left-side case, since
there is a unique blue point ¢; 1 and a unique (), we define Co(]) = 0, which makes
Co(J) change in the closed interval [0, 1]. The smaller the Co value, the better the
connectivity.

(VI) According to the value of Co, the color K(F) ranges from dark gray to light gray.
Highlight and separate all the ¢, 1 with different colors.

only to theirightside

@ :cn +1|
? "'?Q@‘OQ"'O-T"-QQQOQ O

have been classified to jprevious regions

k th region @.

k+1 th region @ .

Figure 2. The labelling process in step (IV).

‘ Totally connected(0) + cocde 4»‘ Totally disconnected(1) ‘

Figure 3. Two extreme two cases of steps (IV), (V).

4. Numerical Results

In this section, numerical results about Examples 1 and 2 are both given to illustrate
the quantitative results and visual exhibitions. The parameters are given as R = 5, N = 100,
M = 1000.

For Example 1, the imaginary part of c; of system (1) is chosen as 0.3. The lattice ¢
for J(Fy) is {p, = [—2,2] U [—2,2]. Figure 4a—c display 3D and 2D slices of M(F). In
Figure 4c, the dark-blue area denotes the connected locus CL(F; ), the light-blue area depicts
the disconnected locus DL(F;), and the remaining white area is the totally disconnected
locus TDL(F;). The corresponding filled Julia set constructed by the proposed algorithm
with ¢; = —0.8, ¢, = 0.32 + 0.3i is illustrated in Figure 4d, in which the grey area is the
filled Julia set K(Fy), and the blue points are the initial points g1 in each region Q.
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Imic l)

-1 09 08 07 -06 ) -1 0 1 2
Refe,) X

Figure 4. (a) The spatial CL(F;) with Im(cy) = 0.3 (Im is the imaginary part). (b) The 2D slice of
M(Fs) Im(cz)=03 with Re(cy) = 0.32. (Re is the real part). (c) The local enlarged region of (b). (d) The
filled Julia set K(F; ) with B point parameter c; = —0.8.

The filled Julia sets corresponding with different parameters are separately illustrated
in Figure 5. Point D is located in CL(F; ), and the other two points are located in DL(Fy).
Point (—0.9,0) is close to the edge of TDL(F;). As can be seen from Figure 5, the darker the
color, the better the connectivity of the Julia set. This law of the color gradient is consistent
with the law of parameter distribution. The quantitative results about num(C) and Co(J)
in Table 1 further support the above observations.

The results in Table 1 show that Co(J) can better explain the degree of connectivity
than num(C). The reason lies in the fact that the Julia set whose parameters are located
close to TDL(F;) has fewer points, but more () regions.

Table 1. num(C) and Co(]) of the three cases in Figure 5.

J(F) Figure 5a Figure 5b Figure 5¢

num(C) 1 372 260
Co(J) 0 0.0224 0.0492
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2 . - - - - : . 2
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-05
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15} 151
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(e) ()

Figure 5. The filled Julia sets of system F; with different brightness based on Co. (a) c; = —0.68,c; =
0.324-0.37, (¢)c; = —0.8,cp = 0.324+0.37, (e) c; = —0.9,cp = 0.3240.3i. (b,d f): Separate the points

¢p,1 corresponding to (a,c.e).
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To get a continuous distribution law of num(C) and Co(J), two local enlarged regions
of Figure 4b are given in Figures 4c and 6, respectively. In the two enlarged regions,
two intervals AC € DL(F;) and EF € DL(F;) are selected and derived into 100 points
(A:(-095,0),C: (—0.752,0), E : (0.4968, —0.9326), F : (0.576, —0.992)). Set M = 600, and
serial number 1-100 are assigned to those points, in which C and E correspond to serial
number 1.

Im(cl)

11 I i I i I i
0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
Re(cl)

Figure 6. The local enlarged region of Figure 4b.
In Table 2 and 3, we list part of the num(C) and Co(]) in two intervals.

Table 2. num(C) and Co(]) in the interval AC.

No. 1 5 10 15 20 25 30 35 40 45 50
num(C) 348 344 384 372 372 372 388 350 362 344 332
Co(J) 0.0143 0.0151 0.0183 0.0192 0.0207 0.0224 0.0252 0.0245 0.0276  0.0286  0.0303
No. 55 60 65 70 75 80 85 90 95 100 -
num(C) 338 326 320 290 260 252 238 268 210 162 -
Co(J) 0.0339 0.0370 0.0412 0.0447 0.0492 0.0597 0.0729 0.1121 0.1542  0.3785 -
Table 3. num(C) and Co(]) in the interval EF.
No. 1 5 10 15 20 25 30 35 40 45 50
num(C) 311 299 317 319 311 349 395 397 363 411 439
Co(J) 0.0194 0.0193 0.0213 0.0224 0.0229 0.0271 0.0322 0.0347 0.0338 0.0415 0.0484
No. 55 60 65 70 75 80 85 90 95 100 -
num(C) 371 445 371 423 429 391 417 381 349 321 -
Co(J) 0.0450 0.0594 0.0548 0.0697 0.0797 0.0830 0.1040 0.1202 0.1707  0.2967 -

In order to visualize the changing rule of num(C) and Co(]), Figure 7 shows the curve
and bar graph of the whole 100 points.

Figure 7 has dual longitudinal axes, which contains blue Numi(c) on the left side, and
red Co(J) on the right side. The results in Tables 2 and 3 and Figure 7 further verify that
Co(J) can explain the degree of connectivity better than num(C). In Figure 7, the change of
num(C) is not obvious, but it decreases sharply when the parameter is close to TDL(Fy).
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This is because when the parameters are close to TDL(F), the main structure of K(F;)
almost disappears. The Co(]) presents the exponential growth rule when the parameter
point tends to TDL(F;). These results testify the effectiveness of our algorithm.

700 T T T T T T T T T 0.7 800 T T T T T T T T T 0.25

700 0.2

600
4001 104

Num(C)
Co(J)
Num(C)
Co(J)

i<}
S

=)

5 ‘ 0.
400 m vos
1 80 90

1 0 20 3 40 5 60 70 100
Serial number

@) (b)

Figure 7. The num(C) and Co(J) in: (a) AC, (b) EF.

.|uumuu||||||||I||IIIIIIIIIIIIIIIIII|||||||||||||||||||""”l""”"””"”m"‘”” )
10 20 30 40 50 60 70 80 90 100

Serial number

For Example 2, we first give the parameter space of the system (2) in Figure 8, which
is calculated based on the bounded trajectory of one of the three critical points (this picture
has been shown in Figure 8 in [37]). As the Figure 8 shows, the light-blue set is composed
of all parameter a, which ensure that the trajectory of critical point 1 is bounded. Based on
the research in [37], the Julia set corresponds to any point in Figure 8 which may have a
disconnected structure. Therefore, three points marked as G, H, I were chosen to illustrate
the corresponding Julia sets.

Im(a)

-0.1 0 0.1 0.2 03 04 : 0.27 0.29 0.31 0.33 0.35 0.37 0.39
Re(a) Re(a)

Figure 8. The parameter space of system (2). The light-blue region is the set of parameter 4, such that
{a€C:F}(zo=1) » oo,n — 0} [37].

Three Julia sets generated by points G, H, I are shown in Figure 8. In Figure 8, the Julia
sets of points I can be referred to [37]; meanwhile, the Julia sets of points G, H are newly
added in this work. Through the new proposed algorithm, three Julia sets present the
colors matching with their connectivity’s degrees. Simulation results of system (2) further
verify the effectiveness of the proposed algorithm Figure 9.
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Figure 9. The filled Julia sets of system F, with different brightnesses based on Co. (a) a = 0.3 +
0.02i, (c) a = 0.324 4 0.017, (e). a =1/3 +83i/2000. (b,df): Separate the points ¢,,1 corresponding
to (a,c.e).
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5. Conclusions

The Julia set is one of the most important topics in the field of fractals. With the aid of
computer simulation, the research of constructing M-]J sets has gradually become a research
hotspot. The most basic algorithm to calculate the M — ] sets is the escape-time algorithm.

This work focused on the modification of the classical ETA by considering the mea-
surement of the connectivity of Julia sets. By calculating the ratio of fragmentation regions’
numbers to the whole points’ numbers in K, a connectivity criterion Co was constructed to
quantize the degree of connectivity. The visualization of the Julia set is also improved by
highlighting the initial points of each connected region and distinguishing the brightness
of K according to different Co. The numerical results of two kinds of polynomial maps are
given to illustrate the realization process of the proposed algorithm.

Note that the main idea of the proposed algorithm is to find the relevant rules of
fragmentation distribution. It is of interest to explore the relationship between the connec-
tivity criterion and the resolution. The change curves of num(C) and Co(J]) in the interval
AC (we take the same 20 points as in Table 2) have been demonstrated in Figure 10. The
results illustrate general trends, such as that num(C) increases with the increase of M, and
Co(J) decreases with the increase of M. However, Julia sets with different parameters
have somewhat different changing rules with the increase of M. Therefore, it is difficult
to summarize a general convergence rule. Thus, there is still much work that needs to be
further investigated.

900 . . . . . . . . . 07

06

Num(C)

Co(J)

0.2

‘,‘/J‘ N N A
'N \// \‘/\V\\"'/\'\rv/\/\,,«

2001

100 . . . . . . . . .
500 550 600 650 700 750 800 850 900 950 1000 700 750 800 850 900 950 1000

Resolution ratio Resolution ratio

() (b)

Figure 10. (a) The change curve of num(C) with the increase of M. (b) The change curve of Co(])

with the increase of M.
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