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Abstract: In the three-dimensional open rectangular domain, the problem of the identification of
the redefinition function for a partial differential equation with Gerasimov–Caputo-type fractional
operator, degeneration, and integral form condition is considered in the case of the 0 < α ≤ 1
order. A positive parameter is present in the mixed derivatives. The solution of this fractional
differential equation is studied in the class of regular functions. The Fourier series method is used,
and a countable system of ordinary fractional differential equations with degeneration is obtained.
The presentation for the redefinition function is obtained using a given additional condition. Using
the Cauchy–Schwarz inequality and the Bessel inequality, the absolute and uniform convergence of
the obtained Fourier series is proven.

Keywords: inverse problem; Gerasimov–Caputo-type fractional operator; redefinition function;
degeneration; integral form condition; one value solvability
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1. Introduction

When the boundary of a domain of a physical process is impossible to study, a non-
local condition of integral form can be obtained as additional information sufficient for
the unique solvability of the problem. Therefore, in recent years, research has intensi-
fied on the nonlocal direct and inverse boundary value problems for differential and
integro-differential equations with integral conditions (see, for example, [1–14]). The many
problems of gas dynamics, the theory of elasticity, and the theory of plates and shells have
been described by high-order partial differential equations.

Fractional calculus plays an important role in mathematical modeling in many sci-
entific and engineering disciplines [15–18]. In [19] where problems of continuum and
statistical mechanics are considered. The construction of various models of theoretical
physics using fractional calculus is described in ([20], Vol. 4, 5), [21,22]. A detailed review
of the application of fractional calculus to solving problems in applied sciences is provided
in ([23], Vol. 6–8), [24]. In [25], an inverse problem to determine the right-hand side
for a mixed type integro-differential equation with fractional order Gerasimov–Caputo
operators is considered. The problem of determining the source function for a degenerate
parabolic equation with the Gerasimov–Caputo operator was investigated [26]. In [27],
the solvability of the nonlocal boundary problem for a mixed-type differential equation
with a fractional-order operator and degeneration is studied. In the applications of frac-
tional derivatives to solving partial differential equations, interesting results have been
obtained [28–32].
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We recall some materials from the theory of fractional order integro-differentiation.
Let

(
0; T

)
be an interval on the set of non-negative real numbers, 0 < T < ∞. The Riemann–

Liouville 0 < α-order fractional integral for the function η (t) has the form

I α
0+η (t) =

1
Γ (α)

t∫
0

(t− s)α−1η(s)ds, α > 0, t ∈
(
0; T

)
,

where Γ (α) is the Gamma function.
For the case n− 1 < α ≤ n, n ∈ N, the Riemann–Liouville α-order fractional deriva-

tive for the function η(t) is defined as follows:

D α
0+η (t) =

dn

dtn I n−α
0+ η (t), t ∈

(
0; T

)
.

The Gerasimov–Caputo α-order fractional derivative for the function η (t) is defined
by the following formula

∗D α
0+η (t) = I n−α

t0+
η(n)(t) =

1
Γ (n− α)

t∫
0

η(n)(s) d s
(t− s)α−n+1 , t ∈

(
0; T

)
.

These derivatives are reduced to the nth order derivatives for α = n ∈ N:

D n
0+η (t) = ∗D n

0+η (t) =
dn

dtn η(t), t ∈
(
0; T

)
.

In this paper, for the case of the 0 < α ≤ 1 order, we study the regular one value
solvability of the inverse boundary value problem for the Gerasimov–Caputo-type frac-
tional partial differential equation with degeneration. This partial differential equation is
a fractional-order ordinary differential equation with respect to the first argument and is
a higher even-order partial differential equation with respect to spatial arguments. The
stability of the solution on the given functions is proved.

So, in the three-dimensional open domain Ω = {(t, x, y) | 0 < t < T, 0 < x, y < l}, a
partial differential equation of the following form is considered

Dβ, α, 4, 4
t, x, y [U (t, x, y)] = a (t) b (x, y) (1)

with a nonlocal condition on the integral form

U (T, x, y) +
(

Iρ
0+U (t, x, y)

)
|t=T = ϕ(x, y), 0 ≤ x, y ≤ l, (2)

where ρ, T, and l are given positive real numbers,

Dβ, α, 4, 4
t, x, y [U] =

[
∗Dα

0+ + ε Dα
0+

(
∂ 4k

∂ x 4k +
∂ 4k

∂ y 4k

)
+

+ω tβ

(
∂ 4k

∂ x 4k +
∂ 4k

∂ y 4k

)]
U (t, x, y),

where ω and β are non-negative parameters, ε is a positive parameter, ε > δ > 0, δ = const,
0 < α ≤ 1, k is a given positive integer, a (t) ∈ C (ΩT), Ω T ≡ [0; T], Ω l ≡ [0; l],
b (x, y) ∈ C

(
Ω 2

l
)

is a known function, and ϕ(x, y) is a redefinition function, Ω 2
l ≡ Ωl ×Ωl .

We assume that for the given functions, the following boundary conditions are true

ϕ(0, y) = ϕ(l, y) = ϕ(x, 0) = ϕ (x, l) = 0,
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b (0, y) = b (l, y) = b (x, 0) = b (x, l) = 0.

Statement of Problem. We find the pair of functions {U (t, x, y); ϕ (x, y)}, the first
of which satisfies the partial differential Equation (1), nonlocal integral condition (2), and
boundary value conditions

U (t, 0, y) = U (t, l, y) = U (t, x, 0) = U (t, x, l)

=
∂ 2

∂ x2 U (t, 0, y) =
∂ 2

∂ x2 U (t, l, y) =
∂ 2

∂ x2 U (t, x, 0) =
∂ 2

∂ x2 U (t, x, l)

=
∂ 2

∂y2 U (t, 0, y) =
∂ 2

∂y2 U (t, l, y) =
∂ 2

∂y2 U (t, x, 0) =
∂ 2

∂y2 U (t, x, l) = . . .

=
∂ 4k−2

∂x 4k−2 U (t, 0, y) =
∂ 4k−2

∂x 4k−2 U (t, l, y) =
∂ 4k−2

∂x 4k−2 U (t, x, 0) =
∂ 4k−2

∂x 4k−2 U (t, x, l)

=
∂4k−2

∂y4k−2 U(t, 0, y) =
∂4k−2

∂y4k−2 U(t, l, y) =
∂ 4k−2

∂y4k−2 U(t, x, 0) =
∂4k−2

∂y4k−2 U(t, x, l) = 0, (3)

class of functions[
U (t, x, y) ∈ C (Ω),

∗Dα
0+U (t, x, y) ∈ C4k, 4k

x, y (Ω) ∩ C4k+0
x, y (Ω) ∩ C0+4k

x, y (Ω)
(4)

and additional condition

U (t1, x, y) = ψ(x, y), 0 < t1 < T, 0 ≤ x, y ≤ l, (5)

ϕ (x, y) ∈ C [0; l] 2, where ψ (x, y) are a given smooth function and

ψ(0, y) = ψ(l, y) = ψ(x, 0) = ψ(x, l) = 0,

C4k+0
x, y (Ω) is the class of continuous functions ∂4k U (t, x, y)

∂ x 4k on Ω, whereas C0+4k
x, y (Ω) is the class of

continuous functions ∂4k U (t, x, y)
∂ y 4k on Ω, ∂ 4k−2

∂y 4k−2 U (t, x, l)we understand as ∂ 4k−2

∂y 4k−2 U (t, x, y)
∣∣∣
y=l

,

Ω = {(t, x, y) | 0 ≤ t ≤ T, 0 ≤ x, y ≤ l}.

2. Cauchy Problem for a Fractional Ordinary Differential Equation with Degeneration

It is well-known that the two-parametric Mittag–Leffler function is defined as (see, for
example, [33])

Eα,β(z) =
∞

∑
k=0

zk

Γ(α k + β)
, α > 0, z, β ∈ C. (6)

The generalized Mittag–Lefler (Kilbas–Saigo)-type function was defined for real
α, m ∈ R and complex l ∈ C by Kilbas and Saigo in the following form [33]

Eα, m, l(z) =
∞

∑
k=0

ckzk, c0 = 1, ck =
k−1

∏
j=0

Γ(α [jm + l] + 1)
Γ (α [jm + l + 1] + 1)

, k = 1, 2, . . . (7)

These functions belong to the class of entire functions on the complex plane.
Let us consider the Cauchy problem for an ordinary differential equation of fractional

order with degeneration{
∗Dα

0+u (t) = λ tβu(t) + f (t), t ∈ (0; T),
u(0) = u0,

(8)

where β, λ, u0 ∈ R, f (t) is a given continuous function.
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Let γ ∈ [0; 1). Then, we consider the class of following functions ([34], p. 4, 205):

Cγ

(
ΩT
)
=
{

g (t) : tγg (t) ∈ C
(
ΩT
)}

,

Cα
γ

(
ΩT
)
=
{

g (t) ∈ C
(
ΩT
)

: ∗Dα
0+g (t) ∈ Cγ

(
ΩT
)}

.

Lemma 1. Let γ ∈ [0; α], β ≥ 0. Then, for all f (t) ∈ Cγ

(
ΩT
)
, there exists a unique solution

u(t) ∈ Cα
γ

(
ΩT
)

of the Cauchy problem (8). This solution has the following form

u (t) = u0E
α, 1+ β

α , β
α

(
λ tα+β

)
+

t∫
0

K (t, τ) f (τ) dτ, (9)

where

K (t, τ) =
∞

∑
i=1

Ki(t, τ), (10)

K0(t, τ) =
1

Γ (α)
(t− τ)α−1, Ki(t, τ) =

λ

Γ (α)

t∫
τ

sβ(t− s)α−1Ki−1(s, τ)ds, (11)

where E
α, 1+ β

α , β
α

(
λ tα+β

)
is the Kilbas–Saigo function, defined by (7).

Proof. The uniqueness of the solution u (t) ∈ Cα
γ

(
ΩT
)

of the problem (8) was proven
in [34], p. 205. In this paper, the existence of solution for the case f (t) = 0 is also proved.
So, we consider the inhomogeneous problem (8) and the solution to this problem as the
sum of two functions

u (t) = v (t) + w (t), (12)

where the functions v (t) and w (t), respectively, are solutions to the following two problems:{
∗Dα

0+v (t) = λ tβv (t), t ∈ (0; T),
v (0) = u0,

(13)

{
∗Dα

0+w (t) = λ tβw (t) + f (t), t ∈ (0; T),
w (0) = 0.

(14)

As implied by [34], p. 233, in their Theorem 4.4, the problem (13) has a unique solution
v (t) ∈ Cα

γ

(
ΩT
)

of the form

v (t) = u0E
α, 1+ β

α , β
α

(
λ tα+β

)
. (15)

We consider the problem (14). According to [34] in their Corollary 3.24, p. 202,
the problem is equivalent to the one value solvability of theVolterra-type integral equation
of the second kind

w (t) = λ Iα
0+

(
tβw (t)

)
+ Iα

0+ f (t), t ∈ (0; T). (16)

We apply the method of successive approximations to solve the integral Equation (16).
In this order, we place{

w0(t) = Iα
0+ f (t),

wm(t) = w0(t) + λIα
0+
(
tβwm−1(t)

)
, m = 1, 2, . . .

With the convergence of the iterative process for the integral Equation (16), i.e., the
existence of a solution to Equation (16), we can similarly provide the proof of the corre-
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sponding part of Theorem 3.25 in [34], p. 202. Hence, it is not difficult to determine that
the solution to (16) has the form

w(t) =
t∫

0

K (t, τ) f (τ) d τ, (17)

where the kernel K(t, τ) is defines by the Formulas (10) and (11). According to (12), from
the representations (15) and (17), we have (9). Lemma 1 is proved.

Lemma 2. For the case of γ ∈ [0; α], β ≥ 0, there holds the following estimate∣∣∣(t− τ)1−αK(t, τ)
∣∣∣ ≤ Eα, α

(
|λ|tβ(t− τ)α

)
. (18)

Proof. By virtue of (10) and (11), we obtain that there the following estimates hold:

|K(t, τ)| =
∣∣∣∣ ∞

∑
i=1

Ki(t, τ)

∣∣∣∣ ≤ |K0(t, τ)|+ |K1(t, τ)|+ |K2(t, τ)|+ · · ·+ |Ki(t, τ)|+ . . . , (19)

|K0(t, τ) | = 1
Γ(α)

(t− τ)α−1, (20)

|K1(t, τ) | =

∣∣∣∣∣∣ λ

Γ(α)

t∫
τ

sβ(t− s)α−1K0(s, τ)ds

∣∣∣∣∣∣ ≤ |λ|
Γ(α)

t∫
τ

sβ(t− s)α−1|K0(s, τ) |ds

≤ |λ|
Γ2(α)

t∫
τ

sβ(t− s)α−1(s− τ)α−1ds ≤ |λ|t
β

Γ2(α)

t∫
τ

(t− s)α−1(s− τ)α−1ds. (21)

Through the change in variables s = τ + (t− τ)z, we obtain

t∫
τ

(t− s)ρ−1(s− τ)σ−1ds =
Γ(ρ)Γ(σ)
Γ(ρ + σ)

(t− τ)ρ+σ−1.

Hence, considering ρ = σ = α, for (21), we derive

|K1(t, τ) | ≤ |λ|t
β

Γ2(α)

Γ2(α)

Γ(2α)
(t− τ)2α−1 =

|λ|
Γ(2α)

tβ(t− τ)2α−1. (22)

Now, we estimate the next kernel K2(t, τ):

|K2(t, τ) | =

∣∣∣∣∣∣ λ

Γ(α)

t∫
τ

sβ(t− s)α−1K1(s, τ)ds

∣∣∣∣∣∣ ≤ |λ|
Γ(α)

t∫
τ

sβ(t− s)α−1|K1(s, τ) |ds

≤ |λ|
Γ2(α)

|λ|
Γ(2α)

t∫
τ

s2β(t− s)α−1(s− τ)2α−1ds ≤ |λ|2t2β

Γ(α)Γ(2α)

t∫
τ

(t− s)α−1(s− τ)2α−1ds.

Hence, considering ρ = α, σ = 2α, we derive

|K2(t, τ) | ≤ |λ|2
Γ(3α)

t2β(t− τ)3α−1. (23)

Through the induction method, we obtain

|Km(t, τ) | ≤ |λ|m
Γ((m + 1)α)

tmβ(t− τ)(m+1)α−1. (24)
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Considering (6) and the estimates (20), (22)–(24), for (19), we have

|K(t, τ) | ≤ 1
Γ(α)

(t− τ)α−1 +
|λ|

Γ(2α)
tβ(t− τ)2α−1 +

|λ|2
Γ(3α)

t2β(t− τ)3α−1

+ · · ·+ |λ|m
Γ(mα + α)

tmβ(t− τ)(m+1)α−1 + . . .

= (t− τ)α−1
[

1
Γ(α)

+
|λ|

Γ(2α)
tβ(t− τ)α +

|λ|2
Γ(3α)

t2β(t− τ)2α

+ · · ·+ |λ|m
Γ(mα + α)

tmβ(t− τ)mα + . . .
]
= (t− τ)α−1Eα,α

(
|λ|tβ(t− τ)α

)
.

Hence, we obtain the estimate (18). Lemma 2 is proved.

3. Expansion of the Solution into Fourier Series

Nontrivial solutions of the inverse problem are sought as a Fourier series

U (t, x, y) =
∞

∑
n, m=1

u n, m (t) ϑ n, m(x, y), (25)

where

u n, m (t) =
l∫

0

l∫
0

U (t, x, y) ϑ n, m(x, y) d x d y, (26)

ϑ n, m(x, y) =
2
l

sin
π n

l
x sin

π m
l

y, n, m = 1, 2 , . . .

We also suppose that the following function is expand to Fourier series

b(x, y) =
∞

∑
n, m=1

b n, mϑ n, m(x, y), (27)

where

b n, m =

l∫
0

l∫
0

b (x, y) ϑ n, m(x, y) d x d y. (28)

Substituting Fourier series (25) and (27) into partial differential Equation (1), we
obtain the countable system of ordinary fractional differential equations of 0 < α < 1-order
with degeneration

∗Dα
0+u n, m(t) + ω λ 2k

n, m tβu n, m(t) =
a (t) b n, m

1 + ε µ 4k
n, m

, (29)

where

λ 2k
n, m =

µ 4k
n, m

1 + ε µ 4k
n, m

, µ k
n, m =

(π

l

)k√
n 2k + m 2k.

According to Lemma 1, the general solution of the countable system of differential
Equation (29) has the form

u n, m(t) = C n, mE
α, 1+ β

α , β
α

(
−ω λ 2k

n, m t α+β
)
+ b n, m h n, m(t), (30)

where

h n, m(t) =
1

1 + ε µ 4k
n, m

t∫
0

K(t, τ) a (τ) d τ,
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C n, m is arbitrary constant, function K (t, τ) is defined by the formula (11).
By Fourier coefficients (26), the integral condition (2) is rewritten in the form

u n, m(T) +
(

Iρ
0+u n, m(t)

)
|t=T

=

l∫
0

l∫
0

(
U (T, x, y) +

(
I ρ
0+U (t, x, y)

)
|t=T

)
ϑ n, m(x, y) d x d y

=

l∫
0

l∫
0

ϕ(x, y) ϑ n, m(x, y) d x d y = ϕ n, m. (31)

To find the unknown coefficients C n, m in (30), we use condition (31), and from (30),
we have

C n, m =
1

σ0 n, m
[ϕ n, m − b n, mσ1 n, m], (32)

where

σ0 n, m = E α, 1+β/α, β/α

(
−ω λ 2k

n, m T α+β
)
+ Iρ

0+

(
E α, 1+β/α, β/α

(
−λ 2k

n, m ω t α+β
))
|t=T ,

σ1 n, m = h n, m(T) + I ρ
0+h n, m(t)|t=T .

Note that σ0 n, m 6= 0, which is separate from zero and finite. This easily follows
from the complete monotonicity of the function Eα, m, l(−z), z > 0 at α ≤ 1 and from the
finiteness of λ 2k

n, m [35]. Substituting the defined coefficients (32) into presentation (30),
we derive that

u n, m(t) = ϕ n, m A n, m(t) + b n, mB n, m(t), (33)

where
A n, m(t) =

1
σ0 n, m

E α, 1+β/α, β/α

(
−ω λ 2k

n, m t α+β
)

,

B n, m(t) = h n, m(t)−
σ1 n, m

σ0 n, m
E α, 1+β/α, β/α

(
−ω λ 2k

n, m t α+β
)

.

Substituting the presentation of Fourier coefficients (33) of the main unknown function
into Fourier series (25), we obtain

U (t, x, y) =
∞

∑
n, m=1

ϑ n, m(x, y)[ϕ n, m A n, m(t) + b n, mB n, m(t)]. (34)

We consider the Fourier series (34) as a formal solution of the direct problem (1)–(4).

4. Determination of the Redefinition Function

Using the additional condition (5) and considering presentation (33), we obtain from
the Fourier series (34) the following countable system for the Fourier coefficients of the
redefinition function

ϕ n, m An, m(t1) + b n, m Bn, m(t1) = ψn, m, (35)

where

ψ n, m =

l∫
0

l∫
0

ψ(x, y) ϑ n, m(x, y) d x d y. (36)

From the relation (35), we find the redefinition function as

ϕ n, m = ψ n, mχ1 n, m + b n, m χ2 n, m, (37)
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where

χ1 n, m =
1

A n, m(t1)
, χ2 n, m = − B n, m (t1)

A n, m (t1)
,

A n, m(t1) =
1

σ0 n, m
E α, 1+β/α,β/α

(
−λ 2k

n, m ω t1
α+β
)
6= 0, 0 < t1 < T.

Since ϕ n, m are Fourier coefficients defined by (31), we substitute presentation (35)
into the Fourier series

ϕ(x, y) =
∞

∑
n, m=1

ϑ n, m(x, y)[ψ n, m χ1 n, m + b n, m χ2 n, m]. (38)

We prove the absolute and uniform convergence of the Fourier series (38) of the
redefinition function. We need this to use the concepts of the following well-known Banach
spaces and the Hilbert coordinate space `2 of number sequences { ϕ n, m}∞

n, m=1 with norm

‖ ϕ ‖ ` 2
=

√√√√ ∞

∑
n, m=1

| ϕ n, m| 2 < ∞.

The space L 2 (Ω 2
l ) of square-summable functions on the domain Ω 2

l = Ω l × Ω l
has norm

‖ ϑ (x, y) ‖ L 2(Ω 2
l )

=

√√√√√ l∫
0

l∫
0

| ϑ (x, y) | 2d x d y < ∞.

Smoothness conditions. For functions

ψ(x, y), b (x, y) ∈ C 4k(Ω2
l ),

let there exist piecewise continuous 4k + 1-order derivatives. Then, by integrating the
functions (28) and (36) 4k + 1 times over every variable x, y in parts, we obtain the follow-
ing relations

|ψn, m | =
(

l
π

)8k+2
∣∣∣ψ

(8k+2)
n, m

∣∣∣
n 4k+1m 4k+1 , | bn, m | =

(
l
π

)8k+2
∣∣∣ b(8k+2)

n, m

∣∣∣
n 4k+1 m 4k+1 , (39)

∥∥∥ψ
(8k+2)
n, m

∥∥∥
` 2
≤ 2

l

∥∥∥∥∥ ∂ 8k+2ψ(x, y)
∂ x4k+1 ∂ y4k+1

∥∥∥∥∥
L 2(Ω 2

l )

, (40)

∥∥∥ b (8k+2)
n, m

∥∥∥
` 2
≤ 2

l

∥∥∥∥∥ ∂ 8k+2b (x, y)
∂ x4k+1∂ y4k+1

∥∥∥∥∥
L 2(Ω 2

l )

, (41)

where

ψ
(8k+2)
n, m =

l∫
0

l∫
0

∂ 8k+2ψ(x, y)
∂ x4k+1 ∂ y4k+1 ϑn, m(x, y) d x d y,

b (8k+2)
n, m =

l∫
0

l∫
0

∂ 8k+2b (x, y)
∂ x4k+1 ∂ y4k+1 ϑn, m(x, y) d x d y.

By obtaining estimates for the solution, we use the above properties of the Kilbas–
Saigo function and Lemma 2. Then, it is easy to see that

σ2 = max
n, m
{| χ1 n, m |; | χ2 n, m |} < ∞, (42)
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where

χ1 n, m =
1

A n, m (t1)
, χ2 n, m = − B n, m (t1)

A n, m (t1)
, 0 < t1 < T.

Theorem 1. Suppose that the conditions of smoothness are fulfilled. Then, Fourier series (38) is
absolute and uniform convergent.

Proof. We use Formulas (39)–(41) and Estimate (42). Using the Cauchy–Schwartz inequal-
ity for series (38), we obtain the estimate

| ϕ (x, y) | ≤
∞

∑
n, m=1

| ϑ n, m(x, y) | · |ψn, mχ 1 n, m + b n, mχ 2 n, m |

≤ 2
l

σ2

[
∞

∑
n, m=1

|ψn, m|+
∞

∑
n, m=1

| bn, m |
]

≤ 2
l

(
l
π

)8k+2
σ2

 ∞

∑
n, m=1

∣∣∣ψ
(8k+2)
n, m

∣∣∣
n 4k+1m 4k+1 +

∞

∑
n, m=1

∣∣∣ b(8k+2)
n, m

∣∣∣
n 4k+1m 4k+1


≤ 2

l

(
l
π

)8k+2
σ2C 01

[∥∥∥ψ
(8k+2)
n, m

∥∥∥
` 2

+
∥∥∥ b (8k+2)

n, m

∥∥∥
` 2

]

≤ γ 1

∥∥∥∥∥ ∂ 8k+2ψ(x, y)
∂ x4k+1∂ y4k+1

∥∥∥∥∥
L 2(Ω 2

l )

+

∥∥∥∥∥ ∂ 8k+2b (x, y)
∂ x4k+1∂ y4k+1

∥∥∥∥∥
L 2(Ω 2

l )

 < ∞, (43)

where

γ 1 = σ2 C 0 1

(
2
l

) 2( l
π

)8k+2
, C 0 1 =

√√√√ ∞

∑
n, m=1

1
n 8k+2 m 8k+2 < ∞.

Estimate (43) implies the absolute and uniform convergence of Fourier series (38).
Theorem 1 is proved.

5. Determination of the Main Unknown Function

So, the redefinition function is determined as a Fourier series (38). Now, the redefi-
nition function is known. Substituting representation (37) into the Fourier series (34), the
main unknown function can be presented as

U (t, x, y) =
∞

∑
n, m=1

ϑ n, m(x, y)[ψ n, mPn, m(t) + b n, mQ n, m(t)], (44)

where
Pn, m(t) = χ 1 n, m A n, m(t), Q n, m(t) = χ 2 n, m A n, m(t) + B n, m(t).

To establish the uniqueness of the function U (t, x, y), we suppose that there are
two functions, U1 and U2, satisfying the given conditions (1)–(5). Then, their difference
U = U1 −U2 is a solution of the differential Equation (1), satisfying conditions (2)–(5) with
function ψ(x, y) ≡ 0. By virtue of relations (36), we have ψn, m = 0. Hence, we obtain from
formulas (26), (28), and (44) in the domain Ω that the zero identity follows

l∫
0

l∫
0

U (t, x, y) ϑ n, m(x, y) d x d y ≡ 0.
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Hence, by virtue of the completeness of the systems of eigenfunctions
{√

2
l sin π n

l x
}

,{√
2
l sin π m

l y
}

in L 2
(
Ω 2

l
)
, we deduce that U (t, x, y) ≡ 0 for all x ∈ Ω 2

l ≡ [0, l] 2 and

t ∈ ΩT ≡ [0; T].
Since U (t, x, y) ∈ C

(
Ω
)
, then U (t, x, y) ≡ 0 in the domain Ω. Therefore, the solution

of the problem (1)–(5) is unique in the domain Ω.

Theorem 2. Let the conditions of the Theorem 1 be fulfilled. Then, the series (44) converges. At
the same time, their term-by-term differentiation is possible.

Proof. By virtue of conditions of Theorem 1 and the properties of the Mittag–Leffler and
Kilbas–Saigo functions, the functions Pn, m(t), Q n, m(t) are uniformly bounded on the
segment [0; T]. So, for any positive integers n, m, there exists a finite constant σ3, so the
following estimate is true:

max
n, m

{
max

0≤t≤T
| Pn, m(t) |; max

0≤t≤T
|Q n, m(t) |

}
≤ σ3 . (45)

Using estimation Formulas (39)–(41) and (45), analogously to the case of estimate (43),
for series (44), we obtain

|U (t, x, y) | ≤
∞

∑
n, m=1

| ϑ n, m (x, y) | · |ψ n, mPn, m(t) + b n, mQ n, m(t) |

≤ γ 2

∥∥∥∥∥ ∂ 8k+2ψ(x, y)
∂ x4k+1∂ y4k+1

∥∥∥∥∥
L 2(Ω 2

l )

+

∥∥∥∥∥ ∂ 8k+2b(x, y)
∂ x4k+1∂ y4k+1

∥∥∥∥∥
L 2(Ω 2

l )

 < ∞, (46)

where γ 2 = C 01σ3
( 2

l
) 2
(

l
π

)8k+2
.

The estimate (46) implies the absolute and uniform convergence of the Fourier
series (44). We differentiate this function (44) the required number of times

∂ 4k

∂ x 4k U (t, x, y) =
∞

∑
n, m=1

(π n
l

) 4k
ϑ n, m (x, y)[ψ n, mPn, m(t) + b n, mQ n, m(t)], (47)

∂ 4k

∂ y 4k U (t, x, y) =
∞

∑
n, m=1

(π m
l

) 4k
ϑ n, m(x, y)[ψn, mPn, m(t) + bn, mQn, m(t)]. (48)

The expansions of the following functions into Fourier series are defined similarly

∗Dα
0+U (t, x, y),

∂ 4k

∂ x 4k ∗D
α
0+U (t, x, y),

∂ 4k

∂ y 4k ∗D
α
0+U (t, x, y).

We show the convergence of series (47) and (48). As in the case of estimate (43),
applying the Cauchy–Schwarz inequality, we obtain∣∣∣∣∣ ∂ 4k

∂ x 4k U (t, x, y)

∣∣∣∣∣ ≤ ∞

∑
n, m=1

(π n
l

) 4k
| u n, m(t) | · | ϑ n, m(x, y) |

≤ 2
l

(π

l

) 4k
σ3

[
∞

∑
n, m=1

n 4k|ψ n, m|+
∞

∑
n, m=1

n 4k| b n, m|
]

≤ 2
l

(
l
π

)4k+2
σ3

 ∞

∑
n, m=1

∣∣∣ψ
(8k+2)
n, m

∣∣∣
n m 4k+1 +

∞

∑
n, m=1

∣∣∣ b(8k+2)
n, m

∣∣∣
n m 4k+1
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≤ 2
l

(
l
π

)4k+2
σ3C 02

[∥∥∥ψ
(8k+2)
n, m

∥∥∥
` 2

+
∥∥∥ b (8k+2)

n, m

∥∥∥
` 2

]

≤ γ 3

∥∥∥∥∥ ∂ 8k+2ψ(x, y)
∂ x4k+1∂ y4k+1

∥∥∥∥∥
L 2(Ω 2

l )

+

∥∥∥∥∥ ∂ 8k+2b (x, y)
∂ x4k+1∂ y4k+1

∥∥∥∥∥
L 2(Ω 2

l )

 < ∞, (49)

where γ 3 =
( 2

l
)2
(

l
π

)4k+2
σ3C 02, C 0 2 =

√
∑∞

n, m=1
1

n m 8k+2 < ∞;∣∣∣∣∣ ∂ 4k

∂ y 4k U (t, x, y)

∣∣∣∣∣ ≤ ∞

∑
n, m=1

(π m
l

) 4k
| u n, m(t) | · | ϑ n, m(x, y) |

≤ 2
l

(π

l

) 4k
σ3

[
∞

∑
n, m=1

m 4k|ψ n, m|+
∞

∑
n, m=1

m 4k| b n, m|
]

≤ 2
l

(
l
π

)4k+2
σ3

 ∞

∑
n, m=1

∣∣∣ψ
(8k+2)
n, m

∣∣∣
n 4k+1m

+
∞

∑
n, m=1

∣∣∣ b (8k+2)
n, m

∣∣∣
n 4k+1m


≤ 2

l

(
l
π

)4k+2
σ3C 03

[∥∥∥ψ
(8k+2)
n, m

∥∥∥
` 2

+
∥∥∥ b (8k+2)

n, m

∥∥∥
` 2

]

≤ γ 4

∥∥∥∥∥ ∂ 8k+2ψ(x, y)
∂ x4k+1∂ y4k+1

∥∥∥∥∥
L 2(Ω 2

l )

+

∥∥∥∥∥ ∂ 8k+2b (x, y)
∂ x4k+1∂ y4k+1

∥∥∥∥∥
L 2(Ω 2

l )

 < ∞, (50)

where γ 4 =
( 2

l
)2
(

l
π

)4k+2
σ3C 03, C 0 3 =

√
∞
∑

n, m=1

1
n 8k+2m < ∞.

The convergence of the Fourier series for functions

∗Dα
0+U (t, x, y),

∂ 4k

∂ x 4k ∗D
α
0+U (t, x, y),

∂ 4k

∂ y 4k ∗D
α
0+U (t, x, y)

is easy to prove because the necessary estimates are obtained similarly for the cases of
estimates (43), (49) and (50). Therefore, the function U (t, x, y) belongs to the (4) class of
functions. Theorem 2 is proved.

6. Stability of the Solution U (t, x, y) with Respect to the Given Functions

Theorem 3. Suppose that all the conditions of Theorem 2 are fulfilled. Then, the function
U (t, x, y) as a solution of the problem (1)–(5) is stable with respect to given function ψ(x, y).

Proof. We show that the solution of the differential Equation (1) U (t, x, y) is stable with
respect to a given function ψ(x, y). Let U 1(t, x, y) and U 2(t, x, y) be two different solu-
tions of the inverse boundary value problem (1)–(5), corresponding to two different values
of the function ψ 1(x, y) and ψ 2(x, y), respectively.

We state that |ψ1 n, m − ψ2 n, m | < δ n, m, where 0 < δ n, m is a sufficiently small positive
quantity and the series ∑∞

n, m=1| δ n, m | is convergent. Then, as such, given the conditions of
the theorem, from the Fourier series (44), we obtain

‖U 1(t, x, y)−U 2(t, x, y) ‖C (Ω) ≤
2
l

σ3

∞

∑
n, m=1

|ψ 1 n, m − ψ 2 n, m | <
2
l

σ3

∞

∑
n, m=1

| δ n, m | < ∞.

If we set ε = 2
l σ3

∞
∑

n, m=1
| δ n, m | < ∞, then, from the last estimate, we derive assertions

about the stability of the solution of the differential Equation (1) with respect to a given
function ψ(x, y) in (5). Theorem 3 is proved.
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Similarly, we proved that the following two theorems hold.

Theorem 4. Suppose that all the conditions of Theorem 2 are fulfilled. Then, the function
U (t, x, y) as a solution of the problem (1)–(5) is stable with respect to a given function b (x, y) in
the right-hand side of Equation (1).

Theorem 5. Suppose that all the conditions of Theorem 2 are fulfilled. Then, the function U (t, x, y),
as a solution of the problem (1)–(5), is stable with respect to the source function ϕ (x, y).

7. Conclusions

In three-dimensional domain, an inverse boundary value problem (1)–(5) of the identi-
fication of the redefinition function ϕ (x, y) for a partial differential equation with degener-
ation and integral form condition was studied in this paper. The case of a 0 < α ≤ 1-order
Gerasimov–Caputo-type fractional operator was considered. The solution of the partial
differential equation was studied in the class of regular functions. Equation (1) depends
on three independent arguments: t, x, y. The first argument is the time argument, and
with respect to this argument, Equation (1) is a fractional Gerasimov–Caputo-type ordi-
nary differential equation with degeneration. The other two variables x, y are spatial,
and Equation (1) with respect to them is a partial differential equation of higher even
order. The Fourier series method was used and a countable system of ordinary differential
equations was obtained. Using the given additional condition (5), the presentation for
the redefinition function was obtained. When conditions of smoothness are fulfilled, then
using the Cauchy–Schwarz inequality and the Bessel inequality, the absolute and uniform
convergence of the obtained Fourier series was proved. The stability of main unknown
function u (t, x, y) of the problem (1)–(5) with respect to given functions b (x, y), ψ (x, y)
and redefinition function ϕ (x, y) was studied.

This work is theoretical in nature and develops the theory of differential equations
with fractional operators. We studied the unique solvability in the classical sense of a
nonlocal inverse problem for a partial differential equation. In the future, we intend to
continue our research in the direction of superposition of several fractional-order operators.

Remark 1. Equation (1) is a generalization of the Barenblatt–Zheltov–Kochina differential equation.
The Barenblatt–Zheltov–Kochina equation simulates the filtration of a viscoelastic fluid in fractured
porous media [36].
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