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Abstract: This paper studies the uniqueness of solutions for several generalized Abel’s integral
equations and a related coupled system in Banach spaces. The results derived are new and based on
Babenko’s approach, Banach’s contraction principle and the multivariate Mittag—Leffler function. We
also present some examples for the illustration of our main theorems.
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1. Introduction
Let T > 0. The space L[0, T] is given by

L[0,T] = {u(x) || = /OT|u(x)|dx < oo}.

Clearly, L[0, T] is a Banach space. The product space L[0, T] x L[0, T] (which is also a
Banach space) is defined as follows:

L[0,T] x L[0,T] = {(u(x),v(x)) : u(x),v(x) € L[0,T]},

with the norm given by
[1Ca, 0} = [l + [Jo]]-

The Riemann-Liouville fractional integral I* of order « € R is defined for the
function u(x) by (see [1,2]):

(4 _ 1 * n—
(1) (x) = W/o (x — ) Lu(t)dt.
In particular, we have

(I%u)(x) = u(x).

Let0 S g < wjfori=1,2,---,mand ap < . In this paper, we begin to construct an
explicit solution in L[0, T] to the following Abel’s integral equation by using Babenko’s
approach and the multivariate Mittag-Leffler function:

"oy (x) + iail“iu(x) =I"f(x), (1)
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whereeacha; (i =1,2,---,m)isaconstantand f(x) € L[0, T]. We then further investigate
the uniqueness of solutions in L[0, T| for the following nonlinear Abel’s integral equation
by using Banach’s fixed point theorem:

1“0u(x) + ﬁail“"u(x) = I°g(x,u(x)), )
i=1

where ¢ is a mapping from [0, T| x R to R and satisfies certain conditions. Finally, the
sufficient conditions are given for the uniqueness of solutions in the product space L[0, T] x
L]0, T] to the associated system given by

I%u(x) + iail"‘fu(x) =I1¢1 (x, u(x),v(x))
i=1

®)

1Poy(x) + ibilﬁfv(x) = IPgy (x,u(x),0(x)),

where g; and g, are mappings from [0,T] x RZto R, 0 < By < B and By < B; for all
i=1,2,---,m. Equations (1)-(3) are new and, to the best of our knowledge, have never
been investigated earlier.

The single-term (for m = 1) Equation (1) turns out to be

u(x) +mIMu(x) = f(x) (. =a=0), @

which is the classical Abel’s integral equation of the second kind with the following solution
given by Hille and Tamarkin (see, for details [3]; see also [4—6]):

u(x) = F) —an [ (e =" Euyy (—ma (3= 1) (01,

where E, 4(z) given by

=) Zj
Enp(z) = ];,) T(aj+p) (a, > 0),

is the two-parameter Mittag—Leffler function.
The above solution can also be easily deduced by the Laplace transform. Indeed,

L(u(x) +aI"u(x)) = Lf(x) = f(s)

infers that

. ay . 7
(5) + -a(s) = F(s)
Hence, we have
N . m Fd
) = (1- 4 )7
Using the formula (1.80) from [7]
Y estm-1E Y p—
0 e Dé],ﬂé](_al ) - m/

we arrive at

u(x) = f(x) = arx" " By, (—a1x™) * f(x)

= fx) =y [ (=T By (= (x = ") f (),

0
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where ¢ * P denotes the Laplace convolution given by

(p*y)(x) = /Ox ¢ (x — t)p(t)dt.

On the other hand, Babenko’s approach is a potentially powerful tool for solving dif-
ferential, integral and integro-differential equations by treating integral operators like vari-
ables. The method itself is similar to the Laplace transform method while dealing with such
equations with constant coefficients, but it can be used in other cases as well, such as han-
dling integral equations with variable coefficients (see [8,9]). To demonstrate this method,
we are going to solve Equation (4) with Babenko’s approach. Clearly, Equation (4) becomes

(1+mI*u(x) = £(x).
Therefore, we get

u(x) = (1+a ) f(x) = Y (1) (@ ™)kf(x)

k=0

+ Z k+1 a szl)k-i-lf( )

= - Z tx1k1+ a1) /’f(x — )R f () dt
— ) - / e L) g (2 OO

= £ —ar [ (= 0 By (= D (0

We now recall Wright’s generalized Bessel Function ¢(p, §;z) defined as follows:

@(B,6;2) = i ]+5) (B,6 > 0).

10]

We also define

S;/lrl(x/.zlr' t /Zm;ﬁlr' t /,Bm) = (hl *hz* e *hm)(x)/

where
I = i (x) = x’”‘_14’(ﬁk, Mk;kaﬁ") (x, Bk > 0; zx € R),
m
= Z Mk, Mk > 0.
k=1
Let
Gil;l’l(x.r)/ll' o /r)/m;,Bl/' o /,Bm)
- / tsy x r)/lt . /]/mt;,Bll' o /,Bm)dtr
and

w,u(x) = Gg’liao(xl. _al/' t /_am;lxl - ‘XO/' 0 _“O> (‘u > IXO)
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In 2013, Pskhu [10] constructed an explicit solution for the following Abel’s integral
equation (which is a special case of the Equation (1)):

I"u(x) + iail”"’u(x) =I"f(x) (f e L[0,T)),
i=1
as follows:

u(x) =Dy (fxw)(x) (4> o),

where the solution u(x) is independent of the parameter y and

s [0 -0 = ) (e<0)
Dp¢(x) = $(x) (1 =0)
dd:n (I (x)} (n-1<usSmneN),

N being the set of positive integers.

We would also like to add that Gorenflo and Luchko [11] established an explicit
solution to the following generalized Abel integral equation of the second kind, which
was based on a modification of the Mikusiriski operational calculus and the Mittag—Leffler
function of several variables (see, for details, [12]):

m
u(x) = Y ol u(x) = f(x) (>0 m=21 p>0;x>0),
=1

which is also a special case of Equation (1).

There are many analytic and numerical studies on Abel’s integral equation and its
variants in distribution, as well as the existence and uniqueness of the corresponding solu-
tions by using fixed point theorems [7,8,13-15]. For example, Brunner et al. [16] considered
numerical solutions of Abel’s integral equation of the second kind:

"X
u(x) = f(x) —|—/0 (x —6) "% x(x, t,u(t))dt (x €10,T]),
where 0 < & < 1and f € C[0, T], and the kernel « is continuous on S x R, with
S={(t,s5):0<Ss<t< T,

and satisfies the Lipschitz conditions in the third argument.

The multivariate Mittag-Leffler function was studied by (among others) Hadid and
Luchko [17] for solving linear fractional differential equations with constant coefficients by
applying the operational calculus:

E(’Xlr”'r"‘m),/g(zlf T /Zm)

SN ( k ) 2k gk
20k Tk N1 k) Tanks + -+ + amkm + B)

wherea; >0 (i=1,2,---,m)and B > 0.

2. A Set of Main Results

In this section, we begin to establish an explicit solution to Equation (1) by using
Babenko’s approach in [18].
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Theorem 1. Assume that f € L[0,T], 0 < ag < a; fori = 1,2,--- ,mand ag < «. Then,
Equation (1) has a unique solution in L]0, T] given by

ux) = Y (-1F ¥ (k o )1;
k=0 Kyt hm=k N1 Ko

. Ikl(al—a0)+~~.+km(a,,,—oco)+a—agf(x), (5)
where each a; (i =1,2,--- ,m) is a constant.

Proof. Equation (1) becomes
m
u(x) + Y % 0u(x) = I f(x),
i=1

by applying the operator Dgf)x to both sides of Equation (1). This implies that, by Babenko’s
method, we have

. -1
u(x) = <1 + Z}ail‘)‘i“fJ) [*% f(x)

o0 m k
- Z(—l)k@airw) s (x)

k —ank o\ km ya—
P . ‘. (kl . km) (ﬂ11a1 zxo) 1., (amlam aco) I¢ ”‘Of(x)
= 1+4..+ m= 7 7

“V et (e
k=0 ky+++km=k SN "

. Ikl(‘Xl—“O)"‘"‘+km(“m—“0)+“—”‘0f(x)_

Let y
X
D, (x) = —* ,
’Y( ) F('y)
where ¥ € R and
x* (x >0)
x| =
0 (otherwise).

We then find from [19] that
Dy * Doy = Py 4y
Clearly, we have
Ikl(061*060)+--~+km(DCm*lXO)‘HX*lXOf(x) — q)kl(al—a0)+~~+km(zxm—a0)+a—oc0 % f.

Moreover, it follows from [20] that

Hq)kl(ocl—a0)+--~+km(am—oc0)+1x—tx0 * fH

A

il

Tkl(‘Xl_0‘0)+"‘+km(lxm—lxo)-‘ra—ag
T(ky(ag — o) + -+ ky(om — @) + & — g + 1)

‘ (Dkl (@1 =) +--Akm (am—ag)+a—ag

A

IA1I-
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This implies that
< 3 k kl km
Iy X (5 )l
k=0 ki+--+ku=k 1, rKAm

Tkl(“17“0)+”'+km(“nz*ﬂto)+0c71x0
. T(ky(eq —wo) +- - +hkm(am —ag) +a—ag+1) 1£1]

= T“_“OE(ocrrxo,...,ocmﬂxo), a—up+1 (|611|Ta1_“0r’ Ty |am|Ttxm_“0) Hf”
< 0.

Hence, we get u(x) € L[0, T], and that the series on the right-hand side of Equation (5)
is absolutely convergent in L[0, T|.

The uniqueness of the solution follows immediately from the fact that the following
fractional integral equation:

m
I"ou(x) + Y _ajl%u(x) =0,
i=1

has only the zero solution by Babenko’s method.

It remains to show that the series on the right-hand side of Equation (5) is a solution
of Equation (1). Indeed, we have

I*u(x) + i a;I%u(x)

i=1
= Z(—l)k ( k )alil coogkm [kl(1’61—ﬂéo)+-"+km(txm—zxo)+txf(x)
k=0 ky+-e+km=k ki ook
3 k -k ki+1
+Y (- % ( ) g gk
k=0 Ky tkm=k ki o km) (5

. Ik1(ocl7oc0)+--~+(k,-+1)(aifao)+-'~+km(ocmfao)%xf(x)

- k
=)+ Y (D% (k o )7;;;1
k=1 Kyt =k N1 Ko

. Ikl(‘Xl*D‘O)JF'”Jka(le*th)#»tXf(x)

o k 4L ,
S VTN o (R D ot R R
= k)5

k=0 ky+-4km=k
) Ikl(‘Xl_“0)4_...+(ki+1)(ai—ag)-i-""i'km(‘Xm_‘xo)""“f(x) = Iaf(X),
by noting that

k
(k ok )‘1]1(1 e -a’,j;" . Ikl("‘1—“o)+~~‘+km(am_a0)+af(x)
k=1 ey ek L K

= k k ok Kl
R (L | e e
k=0 kyteotk=k Nl Rm /i

. Ikl(oq7a0)+...+(k,-+1)(uc,-foco)+...+km(ocmfzxg)Jrzxf(x) -0,
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after the sign changes and cancellations. Obviously, it is true that

(_1)1 Z 1 alil . ulrcnm . Ikl(zx]ftxo)+---+km(amfzxo)thxf(x)
Ky thy=1 N1 K

(1.0 ) Bt
ki+-++km=0 Ean /

.[kl(“1—“0)+"'+(ki+1)(“i_‘xo)""”""‘km(“m_“0)+”‘f(x) =0.

+(-1)°

This completes the proof of Theorem 1. []

As an example, we can deduce that the following integral equation:

1
1%9u(x) + Tu(x) + IMu(x) = Exz

has a unique solution given by

00 ‘ k x0.5k1+k2+1.5

u(x) = -1 ,
(%) k;()( ) lir%:k (kl,kz) I'(0.5k1 + ko +2.5)
in the space L0, T] by using the relation:

1
Ex2 = D3(x) = Py x Dy = 171,

and Theorem 1.
Using Banach'’s fixed point theorem, we are now ready to show the uniqueness of
solutions to Equation (2) in the space L0, T].

Theorem 2. Assume that 0 < g < a; fori =1,2,--- ,mand ag < w. Suppose also that there
exists a constant C = 0 such that

8(x,y1) —g(x,y2)| = Clyr — v,
forallx € [0,T], y1, y2 € R, g(x,0) € L[0, T] and
CT* ™ E (4 —ag,+ an—ag), a—ag+1 (181 T80, - a [T 70) < 1.
Then the Equation (2) has a unique solution in the space L0, T].

Proof. Letu € L[0, T]. Then g(x, u(x)) € L[0, T]. Indeed, we have

18 u(®)| = |g(xu(x)) — g(x,0) + §(x,0)| < |g(x u(x)) ~ g(x,0)| + |3(x,0)|
< Clu(x)] +[3(x,0)],

which implies that

[ 1sCout)dx < ¢ [ utoid+ [ [g(x,0)ldx < o

We now define a nonlinear mapping S on L[0, T] as follows:

d k

k k km

(Su) (x) - k;)(_l) k Z = (klr T ,km>a11 o
= 1+ +km=k

i Ikl (0(170(0)+"'+km(“m*“O)‘HX*’XOg(x, u(x)) .
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It follows from the lines of the proof of Theorem 1 that
HS(L[) H é Ta_aOE(quag,-u,txmﬂxo), a—ung+1 (|a1 |T“1_a0, oty |am|T"‘m_"‘0)
g (xu(x)) || < oo,

which shows that S is a mapping from L[0, T] to itself.
It now remains to show that the mapping S is contractive. In fact, we have

T
/0 g (x,u(x)) — x))|dx < C/ x)|dx
and
[S(u) = S(v)|| = T‘X_“OE(lxlfﬂco,'",lxm*Déo),1170604»1(|a1|T“1_a0" o, |ay| T m00)
g (xu(x)) = g(xv(x))|
s CT™ ‘XOE(M —, B —0), oc—zxo+1(|al|Tlx17“O/' Tty ‘am|T“mi“0) |u |
=qlu—o|,
where

q= CTa_aOE(alfao,---,zxmﬂxo), a—ug+1 (|a1|Tuc1—a0’ Tty ‘am|T0lm—0¢0) <1
This completes the proof of Theorem 2. []

Finally, we present the sufficient conditions for the uniqueness of the solution of
Equation (3) in the product space L[0, T] x L0, T].

Theorem 3. Assume that 0 < ag < a;, 0 < Bo < Bifori=1,2,--- ,mand ay < &, Bp < B.
Suppose also that there exist constants C1,Cp, C3 and Cy such that

191(%,y1,¥2) — §1(x,21,22)| = C1ly1 — z1| + Caly2 — 22|
and
182(x, y1,y2) — £2(x, 21, 22)| = C3ly1 — z1| + Caly2 — 22/,
forall x € [0,T], y1,y2,21,22 € R, §1(%,0,0),82(x,0,0) € L[0, T] and
q= maX{ClrCZ}T’Xﬁ%E(M—ao,W,am—vco), a—ap+1 (|‘11|T“17%,' Ty ‘am|Tamia0)
+max{Cs, Ca} " P E(p, .. ), ppio 1
. (|b1|Tﬁ1—50, cee |bm|T.3m—ﬁO)

<1
Then, Equation (3) has a unique solution in the space L]0, T] x L0, T'.
Proof. Letu,v € L[0, T]. Then g1 (x,u(x),v(x)) € L[0, T]. Indeed, we have

|81 (x,u(x),v(x))|
= Jg1 (5 u(x),0(2)) — g1(50,0) + 1(3,0,0)
< [g1 (% u(x),v(x)) - x00|+|g1x00)|

S Gilu(x)] + Cofo(x )|+|g1(x/0/0)\~
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This implies that

/OT |81 (x, u(x),v(x)) |dx
<q /OT|u(x)|dx+C2/0T\v(x)|dx+/OT 19(x,0,0)|dx
< 00.

Similarly, we can see that g, (x, u(x),v(x)) € L[0, T].
Let us now define the mappings S1, Sp on L[0, T] x L]0, T] as follows:

Silwe) =0 8 (Y
k=0 ky =k N1 Km

. Ikl("‘17"‘0)+“'+k’”(”"”7“0)”7“0& (x,u(x),v(x))

and
Swo)m =Y (-1 ¥ £V gt
’ k=0 k — kl/ e /km 1 "
= 1+ =k
. Ikl (txl—ao)+‘..+km(p¢,,,—o¢0)+a—aog2 (x, u(x), Z)(X)) )
Furthermore, we define a mapping S on L[0, T| x L[0, T|] as follows:
S(u,v) = (S1(u,v),S2(u,0)),
with
[15(u, o) | = [[S1(w, 0)[| + [[S2(w, V)
Thus, clearly, we see that
||Sl (u/ U) || é T‘x_aoE(alfﬂco,---,ucmflxg), a—ap+1 (|a1|T0¢1—(X0, Tty |am|Tl¥m—0l[))
g1 (o u(x), o)) |
< 0
and

1S2(2,0)|| < TPPOE (g g0 . o po), p—Pot1 (‘b1|Tﬁlfﬁ0,' ", \bm‘TﬁmiﬁO)
182 (x u(x), 0(x) |
< 0.

This implies that S is a mapping from L[0, T] x L[0, T] to itself.
It remains to be shown that S is contractive. Indeed, we have

|S(u1,01) — S(uz,v2) ||
= [|S1(u1,v1) — S1(uz,v2)||
+ |S2(u1,v1) — Sa(u2,v2) |,
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and

HS] (ulr 'U]) - Sl (qu UZ) ||

g T“iaUE( ‘al‘T“17“0, e, |am|T“m*‘X0)

Ky =00, M —0p), a—ag+1 (
“|lg1(x,u1,01) — g1(x, 12, 02 ||

S T ME |ag |[T* 1750, - |ay, | T*" %)

T

. (Cl /OT [u1(x) — up(x)|dx + Co /0 |y (x) — vz(x)|dx>
g max{Cl, Cz}T’Xﬁﬂ‘OE(

=g, o —0g), x—ag+1 (

=gy am—g), a—ag+1 ([A1[ T4, @y [T —"0)
(11, 01) = (u2,02) |-
Similarly, we obtain
15211, 01) — S2(uz, 02)|
< max{Cs, Ci} TP POEg o 5 5) ppott (|bl |TP1=Fo, ..., |bm|T/5m*/50>
(1, 01) = (u2,02) |-

We thus find that

1S (u1,01) — S(uz, v2) ||
< max{Cy, CZ}TQ_IXOE(Mﬂxo,---,rxmftxo), x—ap+1 (|a1|Ta1_a0/' Ty |ﬂm‘T‘X'"_ao)

| (ur,v1) = (uz, v2) |
+ max{Cs, C4}Tﬂ_ﬂ0E(ﬁ1*l%o,---,ﬁwﬁo),ﬁfﬁoﬂ (|bl|T,51_.50,. . |bm|Tﬂm—ﬁo)

|[(u1,01) = (u2,02) ||
= q||(u1,v1) — (u2,02) |,

where ¢ is defined above and g < 1. This completes the proof of Theorem 3. O

3. An [llustrative Example

In this section, we present the following example to illustrate the use of Theorem 3.
Example 1. The integral system given by

199u(x) — IMu(x) + "u(x) = %I” sino(x)

1
I?30(x) + I*30(x) — Po(x) — I3%0(x) = %12'3 cosu(x),
has a unique solution in L]0, 1] x LI[0,1].

Demonstration of Example 1 Clearly, we have
1 .
g1(x,u(x),v(x)) = g sin v(x)

and

1

4 (X, u(x), U(X)) = — cosu(x),

53

and C; =0,C; =1/8,C3 =1/53 and C4 = 0, by noting that

|sinzy —sinzy| £ |21 — 23]
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and
|coszy — coszy| £ |z1 — 22,
for all z1,zo € R. Furthermore, we have
T=1 and la1| = |az| = |b1] = |ba| = |b3] = 1.
Hence, we get
q = max{Cp, Co} T " E (4, _ap, - pum—ag), a—ng+1 (|81 T 50, [y | T 720)

+ max{Cs, CAL}Tﬁ*ﬁo}E(ﬂl_)80,“.’ﬁm_ﬁo)’ﬁ_ﬁOJrl (|b1|T51*/30,- o |bm|Tﬁm*ﬁO>
1 1
= gE(l.l,l),z.z(lf 1)+ 55(1,1.1,1‘2),1(1/ 1,1).

It is now evident that

E(l.1,1)22(1 1)
> 1. + —+
k 0k1+k2 kl,kz I 1k1 k2 22)

k o0
<k1,k2> k-|—2 = 0 k+1
2-

2 222+2222+22222
1-2-3-4-5 1-2-3-4-5-6

+>

0 kl +k2

—1+ 1

U‘I\I\J

-2
S1+141+4 2(
15
3.2

=3+

<
151 %—

On the other hand, we have

ad k 1
Eqq11o1(1,1,1) = ( ) .
(1,1 11 2)/1 k:ZOkl-‘rkzz-‘rk3:k kl/k2/ k3 F(kl —+ 11k2 =+ 12k3 + 1)

It follows from [21] that

1 < 1
(kg +1.1ky +1.2k3+1) ~— T(k+1)
forallk =0,1,- - . This implies that
Eqp1120(L1,1)

<y

= k!
_1+3+Q+3 3- 3+3-3-3-3+3-3-3-3-3+

1 1-2 1.2-3 1-2-3-4 1-2-3-4-5
1 1 1 1

< - ..

1+3+45+45+3375+2025+(80+1)+2+22+23+
= 20.4125.

Clearly, therefore, we get ¢ < 1. This completes our demonstration of Example 1.
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4. Conclusions

By using Babenko’s approach, Banach’s contraction principle and the multivariate
Mittag-Leffler function, we have studied several generalized forms of Abel’s integral equa-
tions and a related coupled system with constant coefficients in Banach spaces. The results,
which we have presented in this article, are new and provide interesting generalizations of
the existing results in the literature. We have also included some examples, including one
example that shows the application of our main theorem (Theorem 3).
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