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Abstract: In this paper, the existence, uniqueness and stability of solutions to a boundary value
problem of nonlinear FDEs of variable order are established. To do this, we first investigate some
aspects of variable order operators of Hadamard type. Then, with the help of the generalized
intervals and piecewise constant functions, we convert the variable order Hadamard FBVP to an
equivalent standard Hadamard BVP of the fractional constant order. Further, two fixed point
theorems due to Schauder and Banach are used and, finally, the Ulam–Hyers–Rassias stability of the
given variable order Hadamard FBVP is examined. These results are supported with the aid of a
comprehensive example.

Keywords: boundary value problem; Hadamard derivatives of variable order; piecewise constant
functions; fixed point theorems

1. Introduction

The primitive idea of fractional calculus is to constitute the rational numbers in the
order of derivation operators with natural numbers. Although this idea seems elementary
and simple, it involves remarkable effects and outcomes which describe many physical
and natural phenomena accurately. For this reason, research into both of the theoretical
and practical aspects of boundary value problems has attracted the focus of many math-
ematicians in international academic institutions [1–20]. A main difference and novelty
in this investigation is the application of the concept of variable order operators. These
versions of variable order operators, which are dependent on their power-law kernel, can
explain and model several hereditary aspects of various phenomena [21–23]. Generally, it
is usually difficult to solve variable order FBVPs and obtain their analytical solution; hence,
some numerical methods are introduced for the approximation of solutions to different
FBVPs of variable order. In relation to the study of the existence theory to FBVPs of variable
order, we point out some of them. In [24], Zhang studied solutions of a 2-point FBVP of
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variable order involving singular FDEs. Some years later, Zhang and Hu [25] presented
the existence results for approximate solutions of a variable order fractional IVP on the
half-axis. Recently, Refice et al. [26] investigated the Hadamard FBVP of variable order by
means of the Kuratowski MNC method. In 2021, Bouazza et al. [27] considered a variable
order multiterm BVP and derived their results by means of fixed point methods. For other
instances, refer to [28–31].

In [32], Benchohra et al. studied the existence and Ulam-stability for the following
implicit FBVP for the constant order w given by

H Dw
1+x(t) = ψ(t, x(t), H Dw

1+), t ∈ I := [1, T], T > 1, 0 < w ≤ 1

x(1) = x1,

in which H Dw
1+ is the wth-constant order Hadamard operator and ψ : I× R2 → R is a

function with some properties defined for it.
Motivated by the above mentioned articles and by the given Benchohra’s FBVP [32],

in this manuscript, we deal with some qualitative aspects of solutions to the following
FBVP of Hadamard variable order type with terminal conditions as(H Dw(t)

1+ x)(t) = ψ(t, x(t)), t ∈ I := [1, T],

x(1) = 0, x(T) = 0,
(1)

in which 1 < T < +∞, w(t) : [1, T] → (1, 2], ψ : I×R→ R is a continuous function and
H Dw(t)

1+ illustrates the Hadamard derivative of variable order w(t).
The purpose of our study is to propose new criteria on the uniqueness and existence

for solutions of the Hadamard variable order FBVP (1). Additionally, we investigate the
stability criterion of the obtained solution of the Hadamard variable order FBVP (1) in the
sense of Ulam–Hyers–Rassias.

Ultimately, the remaining part of our research manuscript is arranged as follows.
In Section 2, some preliminaries and properties of the variable order operators are intro-
duced. In Section 3, new existence conditions are obtained based on the standard functional
analysis techniques. The Ulam–Hyers–Rassias stability behavior is investigated in the
sequel of this section. An example is given in Section 4 to illustrate the application of our
main results. In Section 5, we indicate conclusions.

2. Auxiliary Notions

This section is devoted to recall some notions and definitions and auxiliary proposi-
tions which are used later.

Definition 1. [33,34] Let 1 ≤ a < b < +∞ and w : [a, b]→ (0,+∞). The Hadamard integral
of variable order w(t) for ψ is defined by

(H Iw(t)
a+ ψ)(t) =

1
Γ(w(t))

∫ t

a
(log

t
s
)w(t)−1 ψ(s)

s
ds, t > a, (2)

if the right-hand side integral exists.

Definition 2. [33,34] Let k ∈ N and w : [a, b]→ (k− 1, k). The Hadamard derivative of variable
order w(t) for ψ is defined by

(H Dw(t)
a+ ψ)(t) =

1
Γ(k−w(t))

(t
d
dt
)k
∫ t

a
(log

t
s
)k−w(t)−1 ψ(s)

s
ds, t > a, (3)

if the right-hand side integral exists.
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It is notable that if w(t) is assumed to be a constant function w, then the Hadamard
variable order fractional operators (2)–(3) are reduced to the usual Hadamard fractional
operators; see [33–35]. Some applied properties of such variable order operators are as
follows:

Proposition 1. [35] For a > 1, the general solution of the linear FDE

H Dw
a+ψ = 0

has the following structure

ψ(t) = d1(log
t
a
)w−1 + d2(log

t
a
)w−2 + · · ·+ dk(log

t
a
)w−k

for each di ∈ R, i = 1, 2, . . . , k. Here, k− 1 < w ≤ k.

Proposition 2. [35] Setting a > 1, ψ ∈ L(a, b), H Dw
a+ψ ∈ L(a, b), we have

H Iw
a+(

H Dw
a+ψ)(t) = ψ(t) + d1(log

t
a
)w−1 + d2(log

t
a
)w−2 + · · ·+ dk(log

t
a
)w−k

for di ∈ R, i = 1, 2, ..., k. Here, k− 1 < w ≤ k.

Proposition 3. [35] Let w > 0, a > 1, ψ ∈ L(a, b). Then, we have

H Dw
a+(

H Iw
a+ψ)(t) = ψ(t).

Proposition 4. [35] Let w1, w2 > 0, a > 1, ψ ∈ L(a, b). Then, we have

H Iw1
a+ (H Iw2

a+ ψ)(t) = H Iw2
a+ (H Iw1

a+ ψ)(t) = H Iw1+w2
a+ ψ(t).

Remark 1. Note that for general functions w1 and w2, the semigroup property is not fulfilled, i.e.,

H Iw1(t)
a+ (H Iw2(t)

a+ ψ)(t) 6= H Iw1(t)+w2(t)
a+ ψ(t), a > 1.

To see this, we provide an example.

Example 1. Let

w1(t) =
{

t− 1, t ∈ [1, 2],
t− 2, t ∈ (2, 4],

w2(t) =
{

1, t ∈ [1, 2]
2, t ∈ (2, 4],

ψ(t) = 1, t ∈ [1, 4].

Then

H Iw1(t)
1+ (H Iw2(t)

1+ ψ)(t) =
1

Γ(w1(t))

∫ t

1

1
s
(log

t
s
)w1(t)−1

[ 1
Γ(w2(s))

∫ s

1

1
τ
(log

s
τ
)w2(s)−1ψ(τ)dτ

]
ds

=
1

Γ(t− 1)

∫ 2

1

1
s
(log

t
s
)t−2

[ 1
Γ(1)

∫ 2

1

1
τ
(log

s
τ
)1−1dτ +

1
Γ(2)

∫ s

2

1
τ
(log

s
τ
)2−1dτ

]
ds

+
1

Γ(t− 2)

∫ t

2

1
s
(log

t
s
)t−3

[ 1
Γ(1)

∫ 2

1

1
τ
(log

s
τ
)1−1dτ +

1
Γ(2)

∫ s

2

1
τ
(log

s
τ
)2−1dτ

]
ds

=
1

Γ(t− 1)

∫ 2

1

1
s
(log

t
s
)t−2

[
log 2 +

1
2
(log

s
2
)2
]
ds

+
1

Γ(t− 2)

∫ t

2

1
s
(log

t
s
)t−3

[
log 2 +

1
2
(log

s
2
)2
]
ds,
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and

H Iw1(t)+w2(t)
1+ ψ(t) =

1
Γ(w1(t) + w2(t))

∫ t

1

1
s
(log

t
s
)w1(t)+w2(t)−1h(s)ds.

Now, we see that

H Iw1(t)
1+ (H Iw2(t)

1+ ψ)(t)
∣∣
t=3 =

1
Γ(2)

∫ 2

1

1
s
(log

3
s
)1
[

log 2 +
1
2
(log

s
2
)2)
]
ds

+
1

Γ(1)

∫ 3

2

1
s
(log

3
s
)3−3

[
log 2 +

1
2
(log

s
2
)2
]
ds

= log 2
∫ 2

1

1
s
(log

3
s
)ds +

1
2

∫ 2

1

1
s
(log

3
s
)(log

s
2
)2ds

+ log 2
∫ 3

2

1
s

ds +
1
2

∫ 3

2

1
s
(log

s
2
)2ds

=
log 2

2
[(log 3)2 − (log

3
2
)2] +

1
24

[(log 3)4 − (log
3
2
)4] +

1
4
(log 3)2(log 2)2

− 1
6
(log 2)(log 3)3 + log 2[(log 3)− (log 2)] +

1
6
(log

3
2
)3

' 0.9013,

and

H Iw1(t)+w2(t)
1+ ψ(t)

∣∣
t=3 =

1
Γ(w1(t) + w2(t))

∫ t

1

1
s
(log

t
s
)w1(t)+w2(t)−1ψ(s)ds

=
1

Γ(3)

∫ 2

1

1
s
(log

3
s
)2ds +

1
Γ(3)

∫ 3

2

1
s
(log

3
s
)2ds

=
1

Γ(4)
[(log 3)3 − (log

3
2
)3] +

1
Γ(4)

(log
3
2
)3

' 0.2209.

Therefore, we obtain

H Iw1(t)
1+ (H Iw2(t)

1+ ψ)(t)
∣∣
t=3 6=

H Iw1(t)+w2(t)
1+ ψ(t)

∣∣
t=3.

Proposition 5. Let I := [1, T], where 1 < T < +∞ and let w ∈ C(I, (1, 2]). Then, for each

ψ ∈ Cg(I,R) = {ψ(t) ∈ C(I,R), (log t)gψ(t) ∈ C(I,R)}, 0 ≤ g ≤ 1,

the Hadamard variable order integral H Iw(t)
1+ ψ(t) exists for each point on I.

Proof. In view of the continuity of Γ(w(t)), we verify that Mw = maxt∈I
∣∣∣ 1
Γ(w(t))

∣∣∣ exists.

Take w∗ = maxt∈I |(w(t))|. In this case, for 1 ≤ s ≤ t ≤ T, one may write

(log
t
s
)w(t)−1 ≤ 1, if 1 ≤ t

s
≤ e,

and
(log

t
s
)w(t)−1 ≤ (log

t
s
)w∗−1, if

t
s
> e.
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In addition, for 1 ≤ t
s
< +∞, we know that

(log
t
s
)w(t)−1 ≤ max{1, (log

t
s
)w∗−1} = M∗.

Thus, for each ψ ∈ Cg(I, X) and by the definition of (2), we deduce that

∣∣(H Iu(t)
1+ ψ)(t)

∣∣ =
1

Γ(w(t))

∫ t

1
(log

t
s
)w(t)−1 |ψ(s)|

s
ds

≤ Mw

∫ t

1
(log

t
s
)w(t)−1(log s)−g(log s)g |ψ(s)|

s
ds

≤ MwM∗
∫ t

1

1
s
(log s)−g max

s∈I
(log s)g|ψ(s)|ds

≤ MwM∗max
s∈I

(log s)gψ?
∫ t

1

1
s
(log s)−gds

≤ MwM∗max
s∈I

(log s)gψ? (log T)1−g

1− g
< ∞,

where ψ? = maxt∈I |ψ(t)|. It yields that the variable order Hadamard integral H Iw(t)
1+ ψ(t)

exists for every point on I.

Proposition 6. Let w ∈ C(I, (1, 2]). Then,

H Iw(t)
1+ ψ(t) ∈ C(I,R)

for every ψ ∈ C(I,R).

Proof. For any t, t∗ ∈ I subject to t∗ ≤ t and ψ ∈ C(I,R), we obtain

∣∣∣H Iw(t)
1+ ψ(t)− H Iw(t∗)

1+ ψ(t∗)
∣∣∣ = ∣∣∣ ∫ t

1

1
Γ(w(t))

(log
t
s
)w(t)−1 ψ(s)

s
ds

−
∫ t∗

1

1
Γ(w(t∗))

(log
t∗
s
)w(t∗)−1 ψ(s)

s
ds
∣∣∣

=
∣∣∣ ∫ 1

0

1
Γ(w(t))

(t− 1)
r(t− 1) + 1

(log
t

r(t− 1) + 1
)w(t)−1ψ(r(t− 1) + 1)dr

−
∫ 1

0

1
Γ(w(t∗))

(t∗ − 1)
r(t∗ − 1) + 1

(log
t∗

r(t∗ − 1) + 1
)w(t∗)−1ψ(r(t∗ − 1) + 1)dr

∣∣∣
=
∣∣∣ ∫ 1

0

[ 1
Γ(w(t))

(t− 1)
r(t− 1) + 1

(log
t

r(t− 1) + 1
)w(t)−1ψ(r(t− 1) + 1)

− 1
Γ(w(t))

(t∗ − 1)
r(t∗ − 1) + 1

(log
t

r(t− 1) + 1
)w(t)−1ψ(r(t− 1) + 1)

]
dr

+
∫ 1

0

[ 1
Γ(w(t))

(t∗ − 1)
r(t∗ − 1) + 1

(log
t

r(t− 1) + 1
)w(t)−1ψ(r(t− 1) + 1)

− 1
Γ(w(t))

(t∗ − 1)
r(t∗ − 1) + 1

(log
t∗

r(t∗ − 1) + 1
)w(t∗)−1ψ(r(t− 1) + 1)

]
dr
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+
∫ 1

0

[ 1
Γ(w(t))

(t∗ − 1)
r(t∗ − 1) + 1

(log
t∗

r(t∗ − 1) + 1
)w(t∗)−1ψ(r(t− 1) + 1)

− 1
Γ(w(t∗))

(t∗ − 1)
r(t∗ − 1) + 1

(log
t∗

r(t∗ − 1) + 1
)w(t∗)−1ψ(r(t− 1) + 1)

]
dr

+
∫ 1

0

[ 1
Γ(w(t∗))

(t∗ − 1)
r(t∗ − 1) + 1

(log
t∗

r(t∗ − 1) + 1
)w(t∗)−1ψ(r(t− 1) + 1)

− 1
Γ(w(t∗))

(t∗ − 1)
r(t∗ − 1) + 1

(log
t∗

r(t∗ − 1) + 1
)w(t∗)−1ψ(r(t∗ − 1) + 1)

]
dr
∣∣∣

≤ ψ?
∫ 1

0

1
Γ(w(t))

(log
t

r(t− 1) + 1
)w(t)−1

∣∣∣ (t− 1)
r(t− 1) + 1

− (t∗ − 1)
r(t∗ − 1) + 1

∣∣∣dr

+ ψ?
∫ 1

0

1
Γ(w(t))

(t∗ − 1)
r(t∗ − 1) + 1

∣∣∣(log
t

r(t− 1) + 1
)w(t)−1 − (log

t∗
r(t∗ − 1) + 1

)w(t)−1
∣∣∣dr

+ ψ?
∫ 1

0

(t∗ − 1)
r(t∗ − 1) + 1

(log
t∗

r(t∗ − 1) + 1
)w(t∗)−1

∣∣∣ 1
Γ(w(t))

− 1
Γ(w(t∗))

∣∣∣dr

+
∫ 1

0

1
Γ(w(t∗))

(t∗ − 1)
r(t∗ − 1) + 1

(log
t∗

r(t∗ − 1) + 1
)w(t∗)−1

∣∣∣ψ(r(t− 1) + 1)− ψ(r(t∗ − 1) + 1)
∣∣∣dr,

where ψ? = maxt∈I |ψ(t)|. In view of the continuity of functions

(t− 1)
r(t− 1) + 1

, (log
t

r(t− 1) + 1
)w(t)−1,

1
Γ(w(t))

, ψ(t),

we obtain that the integral H Iw(t)
1+ ψ(t) is continuous at point t∗ and so we find that

H Iw(t)
1+ ψ(t) ∈ C(I,R)

for each ψ(t) ∈ C(I,R) which completes the proof.

Definition 3. [36–38]

(1) A set J ⊂ R is termed as a generalized interval whenever it is either a standard interval,
a point, or ∅.

(2) By assuming J as a generalized interval, a finite set P consisting of generalized intervals
contained in J is named a partition of J provided that every w ∈ J lies in exactly one of the
generalized intervals E in P.

(3) By virtue of above notations, the function g : J → R is defined to be a piecewise constant
w.r.t. P whenever ∀ E ∈ P, g admits constant values on E.

To establish required results on the existence criterion of solutions for the supposed
Hadamard variable order BVP (1), we apply the next theorem due to Schauder [35].

Theorem 1. [35] Consider X and A as a Banach space and a closed convex bounded subset of X,
respectively, and φ : A → A is compact and continuous. Then, φ admits at least one fixed point
in A.

3. Existence Criterion and Ulam–Hyers–Rassias Stability

By C(I,R), we denote the class of all continuous maps via the norm

‖x‖ = sup{|x(t)|, t ∈ I}.
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In this case, (C(I,R), ‖ · ‖) is a Banach space. We present some needed assumptions:

(HP1) For n ∈ N, define

P = {I1 := [0, T1], I2 := (T1, T2], I3 := (T2, T3], . . . , In := (Tn−1, T]}

as a partition of the interval I, and assume that w : I→ (1, 2] is a piecewise constant
function w.r.t. P; in other words

w(t) =
n

∑
i=1

wiIi(t) =



w1, if t ∈ I1,

w2, if t ∈ I2,

...
...

...

wn, if t ∈ In,

in which 1 < wi ≤ 2 belong to R, and Ii illustrates the indicator of Ii := (Ti−1, Ti], i ∈
Nn

1 , (by assuming T0 = 1, Tn = T) so that

Ii(t) =
{

1, for t ∈ Ii,
0, for o.w.

(HP2) For 0 ≤ g ≤ 1, let (log t)gψ ∈ C(I×R,R) and ∃ ` > 0 so that, (log t)g|ψ(t, x1)−
ψ(t, x2)| ≤ `|x1 − x2|, for any x1, x2, ∈ R and t ∈ I.

In addition, by Ei = C(Ii,R), we denote the class of functions which form a Banach
space via

‖x‖Ei = sup
t∈Ii

|x(t)|,

where i ∈ {1, 2, ..., n}.
To prove the main results, we continue our analysis on the variable order Hadamard

fractional boundary value problem (1) as follows.
By Equation (3), the differential equation of the variable order Hadamard FBVP (1)

can be rewritten as

1
Γ(2−w(t))

(t
d
dt
)2
∫ t

1
(log

t
s
)1−w(t) x(s)

s
ds = ψ(t, x(t)), t ∈ I. (4)

According to (HP1), Equation (4) in every interval Ii can be represented by

(t
d
dt
)2
( 1

Γ(2−w1)

∫ T1

1
(log

t
s
)1−w1

x(s)
s

ds + · · ·+ 1
Γ(2−wi)

∫ t

Ti−1

(log
t
s
)1−wi

x(s)
s

ds
)
= ψ(t, x(t)), (5)

for t ∈ Ii. Now, we can state the definition of the solution to the variable order Hadamard
FBVP (1) which is fundamental in the paper.

Definition 4. We say that the variable order Hadamard FBVP (1) admits a solution, if the functions
xi, i = 1, 2, ..., n, exist such that xi ∈ C([1, Ti],R) satisfies Equation (5) and xi(1) = 0 = xi(Ti).

In accordance with above contents, the differential equation of the variable order
Hadamard FBVP (1) can be formulated as Equation (4), and accordingly can be written in
the intervals Ii, i ∈ {1, 2, ..., n} as Equation (5). So, for 0 ≤ t ≤ Ti−1, we assume x(t) ≡ 0.
In this case, Equation (5) is reduced to the following equation

(H Dwi
T+

i−1
x)(t) = ψ(t, x(t)), t ∈ Ii.
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From now on, we follow our study on the equivalent standard Hadamard FBVP which
takes the form (H Dwi

T+
i−1

x)(t) = ψ(t, x(t)), t ∈ Ii

x(Ti−1) = 0, x(Ti) = 0.
(6)

The next auxiliary proposition helps us to derive the existence criterion of solutions to
the equivalent standard Hadamard FBVP (6).

Proposition 7. The function x ∈ Ei is a solution of the equivalent standard Hadamard FBVP (6)
if x satisfies

x(t) = −(log
Ti

Ti−1
)1−wi (log

t
Ti−1

)wi−1H Iwi
T+

i−1
ψ(Ti, x(Ti)) +

H Iwi
T+

i−1
ψ(t, x(t)). (7)

Proof. Let x ∈ Ei be the solution of the equivalent standard Hadamard FBVP (6). Now,
applying the operator H Iwi

T+
i−1

to both sides of Equation (6) and by Proposition 2, we have

x(t) = d1(log
t

Ti−1
)wi−1 + d2(log

t
Ti−1

)wi−2 + H Iwi
T+

i−1
ψ(t, x(t)), t ∈ Ii.

By x(Ti−1) = 0 and the given hypothesis on the function ψ, it is obtained d2 = 0.
By considering x(t) satisfying x(Ti) = 0, we can obtain

d1 = −(log
Ti

Ti−1
)1−wi H Iwi

T+
i−1

ψ(Ti, x(Ti)).

Then,

x(t) = −(log
Ti

Ti−1
)1−wi (log

t
Ti−1

)wi−1H Iwi
T+

i−1
ψ(Ti, x(Ti)) +

H Iwi
T+

i−1
ψ(t, x(t)), t ∈ Ii.

Reversely, let x ∈ Ei be the solution of Equation (7). Then, by the continuity of
(log t)gψ and Proposition 3, one can simply follow that x is the solution of the equivalent
standard Hadamard FBVP (6).

The next result is based on Theorem 1.

Theorem 2. Consider (HP1) and (HP2) and let ψ : Ii ×R→ R be a continuous function and

`
(
(log Ti)

1−g − (log Ti−1)
1−g
)

(1− g)Γ(wi)
(log

Ti
Ti−1

)wi−1 <
1
2

.

Then, the variable order Hadamard FBVP (6) possesses a solution on I.

Proof. We firstly convert the equivalent standard Hadamard FBVP (6) to a fixed-point
problem. Define

W : Ei → Ei, i ∈ Nn
1 ,

by

Wx(t) = − 1
Γ(wi)

(log
Ti

Ti−1
)1−wi (log

t
Ti−1

)wi−1
∫ Ti

Ti−1

(log
Ti
s
)wi−1 ψ(s, x(s))

s
ds

+
1

Γ(wi)

∫ t

Ti−1

(log
t
s
)wi−1 ψ(s, x(s))

s
ds. (8)



Fractal Fract. 2021, 5, 108 9 of 20

From the continuity of (log t)gψ and the specifications of Hadamard integrals, we find
that W : Ei → Ei defined above is well-defined. Let

Ri ≥
2ψ∗

Γ(wi+1) (log Ti
Ti−1

)wi

1− 2`
(1−g)Γ(wi)

(log Ti
Ti−1

)wi−1
(
(log Ti)1−g − (log Ti−1)1−g

) ,

where
ψ∗ = sup

t∈Ii

|ψ(t, 0)|.

We consider the set
BRi = {x ∈ Ei, ‖x‖Ei ≤ Ri}.

Clearly, BRi is nonempty, bounded, convex and closed.
Now, we shall investigate that W fulfills the given assumptions of Theorem 1. The ar-

gument will be implemented in several steps.

Step 1: W(BRi ) ⊆ BRi .
For x ∈ BRi and by (HP2), we obtain

|Wx(t)| ≤ 1
Γ(wi)

(log
Ti

Ti−1
)1−wi (log

t
Ti−1

)wi−1
∫ Ti

Ti−1

(log
Ti
s
)wi−1|ψ(s, x(s))|ds

s

+
1

Γ(wi)

∫ t

Ti−1

(log
t
s
)wi−1|ψ(s, x(s))|ds

s

≤ 2
Γ(wi)

∫ Ti

Ti−1

(log
Ti
s
)wi−1|ψ(s, x(s))|ds

s

≤ 2
Γ(wi)

∫ Ti

Ti−1

(log
Ti
s
)wi−1|ψ(s, x(s))− ψ(s, 0)|ds

s
+

2
Γ(wi)

∫ Ti

Ti−1

(log
Ti
s
)wi−1|ψ(s, 0)|ds

s

≤ 2
Γ(wi)

∫ Ti

Ti−1

(log
Ti
s
)wi−1(log s)−δ`|x(s))|ds

s
+

2ψ∗

Γ(wi)

∫ Ti

Ti−1

(log
Ti
s
)wi−1 ds

s

≤ 2`
Γ(wi)

(log
Ti

Ti−1
)wi−1‖x‖Ei

∫ Ti

Ti−1

(log s)−g ds
s
+

2ψ∗

Γ(wi + 1)
(log

Ti
Ti−1

)wi

≤ 2`
(1− g)Γ(wi)

(log
Ti

Ti−1
)wi−1Ri

(
(log Ti)

1−g − (log Ti−1)
1−g
)
+

2ψ∗

Γ(wi + 1)
(log

Ti
Ti−1

)wi

≤ Ri.

which means that W(BRi ) ⊆ BRi .
Step 2: W is continuous.
Let (xn) be a sequence satisfying xn → x in Ei. For t ∈ Ii, we estimate

|(Wxn)(t)− (Wx)(t)| ≤ 1
Γ(wi)

(log
Ti

Ti−1
)1−wi (log

t
Ti−1

)wi−1
∫ Ti

Ti−1

(log
Ti
s
)wi−1|ψ(s, xn(s))− ψ(s, x(s))|ds

s

+
1

Γ(wi)

∫ t

Ti−1

(log
t
s
)wi−1|ψ(s, xn(s))− ψ(s, x(s))|ds

s

≤ 1
Γ(wi)

(log
Ti

Ti−1
)1−wi (log

Ti
Ti−1

)wi−1
∫ Ti

Ti−1

(log
Ti
s
)wi−1|ψ(s, xn(s))− ψ(s, x(s))|ds

s
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+
1

Γ(wi)

∫ Ti

Ti−1

(log
Ti
s
)wi−1|ψ(s, xn(s))− ψ(s, x(s))|ds

s

≤ 2
Γ(wi)

∫ Ti

Ti−1

(log
Ti
s
)wi−1|ψ(s, xn(s))− ψ(s, x(s))|ds

s

≤ 2
Γ(wi)

∫ Ti

Ti−1

(log
Ti
s
)wi−1(log s)−g`|xn(s))− x(s)|ds

s

≤ 2`
Γ(wi)

(log
Ti

Ti−1
)wi−1‖xn − x‖Ei

∫ Ti

Ti−1

(log s)−g ds
s

≤ 2`[(log Ti)
1−g − (log Ti−1)

1−g]

(1− g)Γ(wi)
(log

Ti
Ti−1

)wi−1‖xn − x‖Ei .

So
‖(Wxn)− (Wx)‖Ei → 0 as n→ ∞.

In consequence, W is continuous on Ei.

Step 3: W is compact.
Here, we intend to prove the relative compactness of W(BRi ) which means that W is

compact. Evidently, W(BRi ) is uniformly bounded, due to Step 2, we saw that

W(BRi ) = {W(x) : x ∈ BRi} ⊂ BRi .

Hence, for every x ∈ BRi , we obtain ‖W(x)‖Ei ≤ Ri meaning the uniform boundedness
of W(BRi ). For t1, t2 ∈ Ii, t1 < t2 and x ∈ BRi , we estimate

|(Wx)(t2)− (Wx)(t1)|

≤ 1
Γ(wi)

(log
Ti

Ti−1
)1−wi

(
(log

t2

Ti−1
)wi−1 − (log

t1

Ti−1
)wi−1

) ∫ Ti

Ti−1

(log
Ti
s
)wi−1|ψ(s, x(s))|ds

s

+
1

Γ(wi)

∫ t1

Ti−1

(
(log

t2

s
)wi−1 − (log

t1

s
)wi−1

)
|ψ(s, x(s))|ds

s
+

1
Γ(wi)

∫ t2

t1

(log
t2

s
)wi−1|ψ(s, x(s))|ds

s

≤ 1
Γ(wi)

(log
Ti

Ti−1
)1−wi

(
(log

t2

Ti−1
)wi−1 − (log

t1

Ti−1
)wi−1

) ∫ Ti

Ti−1

(log
Ti
s
)wi−1|ψ(s, x(s))− ψ(s, 0)|ds

s

+
1

Γ(wi)
(log

Ti
Ti−1

)1−wi
(
(log

t2

Ti−1
)wi−1 − (log

t1

Ti−1
)wi−1

) ∫ Ti

Ti−1

(log
Ti
s
)wi−1|ψ(s, 0)|ds

s

+
1

Γ(wi)

∫ t1

Ti−1

(
(log

t2

s
)wi−1 − (log

t1

s
)wi−1

)
|ψ(s, x(s))− ψ(s, 0)|ds

s

+
1

Γ(wi)

∫ t1

Ti−1

(
(log

t2

s
)wi−1 − (log

t1

s
)wi−1

)
|ψ(s, 0)|ds

s

+
1

Γ(wi)

∫ t2

t1

(log
t2

s
)wi−1|ψ(s, x(s))− ψ(s, 0)|ds

s
+

1
Γ(wi)

∫ t2

t1

(log
t2

s
)wi−1|ψ(s, 0)|ds

s

≤ 1
Γ(wi)

(log
Ti

Ti−1
)1−wi

(
(log

t2

Ti−1
)wi−1 − (log

t1

Ti−1
)wi−1

) ∫ Ti

Ti−1

(log
Ti
s
)wi−1(log s)−g`|x(s)|ds

s
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+
ψ∗

Γ(wi)
(log

Ti
Ti−1

)1−wi
(
(log

t2

Ti−1
)wi−1 − (log

t1

Ti−1
)wi−1

) ∫ Ti

Ti−1

(log
Ti
s
)wi−1 ds

s

+
1

Γ(wi)

∫ t1

Ti−1

(
(log

t2

s
)wi−1 − (log

t1

s
)wi−1

)
(log s)−g`|x(s)|ds

s

+
ψ∗

Γ(wi)

∫ t1

Ti−1

(
(log

t2

s
)wi−1 − (log

t1

s
)wi−1

)ds
s
+

1
Γ(wi)

∫ t2

t1

(log
t2

s
)wi−1(log s)−g`|x(s)|ds

s

+
ψ∗

Γ(wi)

∫ t2

t1

(log
t2

s
)wi−1 ds

s

≤
`[(log Ti)

1−g − (log Ti−1)
1−g]‖x‖Ei

(1− g)Γ(wi)

(
(log

t2

Ti−1
)wi−1 − (log

t1

Ti−1
)wi−1

)

+
ψ∗

Γ(wi + 1)
(log

Ti
Ti−1

)
(
(log

t2

Ti−1
)wi−1 − (log

t1

Ti−1
)wi−1

)

+
`[(log t1)

1−g − (log Ti−1)
1−g]‖x‖Ei

(1− g)Γ(wi)
(log

t2

t1
)wi−1 +

ψ∗

Γ(wi + 1)
[(log

t2

Ti−1
)wi − (log

t2

t1
)wi − (log

t1

Ti−1
)wi ]

+
`[(log t2)

1−g − (log t1)
1−g]‖x‖Ei

(1− g)Γ(wi)
(log

t2

t1
)wi−1 +

ψ∗

Γ(wi + 1)
(log

t2

t1
)wi

≤
( `[(log Ti)

1−g − (log Ti−1)
1−g]‖x‖Ei

(1− g)Γ(wi)
+

ψ∗

Γ(wi + 1)
(log

Ti
Ti−1

)
)(

(log
t2

Ti−1
)wi−1 − (log

t1

Ti−1
)wi−1

)

+
ψ∗

Γ(wi + 1)
[(log

t2

Ti−1
)wi − (log

t1

Ti−1
)wi ] +

`[(log t2)
1−g − (log Ti−1)

1−g]‖x‖Ei

(1− g)Γ(wi)
(log

t2

t1
)wi−1.

Hence, |(Wx)(t2)− (Wx)(t1)| → 0 as |t2 − t1| → 0. It implies that W(BRi ) is equicon-
tinuous.

In view of steps 1 to 3 along with Arzela–Ascoli theorem, we figure out that W is
completely continuous.

As a consequence of Theorem 1, the equivalent standard Hadamard FBVP (6) possesses
at least a solution x̃i in BRi .

We let

xi =

 0, t ∈ [1, Ti−1],

x̃i, t ∈ Ii.
(9)

We know that xi ∈ C([1, Ti],R) defined by Equation (9) satisfies the equation

(t
d
dt
)2
( 1

Γ(2−w1)

∫ T1

1
(log

t
s
)1−w1

xi(s)
s

ds + · · ·+ 1
Γ(2−wi)

∫ t

Ti−1

(log
t
s
)1−wi

xi(s)
s

ds
)
= ψ(t, xi(t)),

for any t ∈ Ii, which states that xi is a solution of Equation (5) with xi(1) = 0, xi(Ti) =
x̃i(Ti) = 0.
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As a result, we find that the variable order Hadamard FBVP (1) possesses a solution
defined by

x(t) =



x1(t), t ∈ I1,

x2(t) =

 0, t ∈ I1,

x̃2, t ∈ I2

.

.

.

.

xi(t) =
{

0, t ∈ [1, Ti−1],
x̃i, t ∈ Ii,

and the proof is completed.

Theorem 3. Consider (HP1) and (HP2). If

2`[(log Ti)
1−g − (log Ti−1)

1−g]

(1− g)Γ(wi)
(log

Ti
Ti−1

)wi−1 < 1, (10)

then the variable order Hadamard FBVP (6) involves a solution in Ei uniquely.

Proof. We shall invoke the contraction principle due to Banach to verify the existence of a
unique fixed point for W denoted in Equation (8). For x(t), x∗(t) ∈ Ei, we may write

|(Wx)(t)− (Wx∗)(t)| ≤ 1
Γ(wi)

(log
Ti

Ti−1
)1−wi (log

t
Ti−1

)wi−1
∫ Ti

Ti−1

(log
Ti
s
)wi−1|ψ(s, x(s))− ψ(s, x∗(s))|ds

s

+
1

Γ(wi)

∫ t

Ti−1

(log
t
s
)wi−1|ψ(s, x(s))− ψ(s, x∗(s))|ds

s

≤ 1
Γ(wi)

(log
Ti

Ti−1
)1−wi (log

Ti
Ti−1

)wi−1
∫ Ti

Ti−1

(log
Ti
s
)wi−1|ψ(s, x(s))− ψ(s, x∗(s))|ds

s

+
1

Γ(wi)

∫ Ti

Ti−1

(log
Ti
s
)wi−1|ψ(s, x(s))− ψ(s, x∗(s))|ds

s

≤ 2
Γ(wi)

∫ Ti

Ti−1

(log
Ti
s
)wi−1|ψ(s, x(s))− ψ(s, x∗(s))|ds

s

≤ 2
Γ(wi)

∫ Ti

Ti−1

(log
Ti
s
)wi−1(log s)−g`|x(s))− x∗(s)|ds

s

≤ 2`
Γ(wi)

(log
Ti

Ti−1
)wi−1‖x− x∗‖Ei

∫ Ti

Ti−1

(log s)−g ds
s

≤ 2`[(log Ti)
1−g − (log Ti−1)

1−g]

(1− g)Γ(wi)
(log

Ti
Ti−1

)wi−1‖x− x∗‖Ei .

Consequently by Equation (10), the operator W will be a contraction. So, W involves a
fixed point x̃i ∈ Ei uniquely, which is the same unique solution of the equivalent standard
Hadamard FBVP (6). We let

xi =

 0, t ∈ [1, Ti−1],

x̃i, t ∈ Ii.
(11)
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We know that xi ∈ C([1, Ti],R) defined by Equation (11) satisfies the equation

(t
d
dt
)2
( 1

Γ(2−w1)

∫ T1

1
(log

t
s
)1−w1

xi(s)
s

ds + · · ·+ 1
Γ(2−wi)

∫ t

Ti−1

(log
t
s
)1−wi

xi(s)
s

ds
)
= ψ(t, xi(t)),

for t ∈ Ii, meaning that xi will be a unique solution of Equation (5) with xi(1) = 0, xi(Ti) =
x̃i(Ti) = 0.

Then,

x(t) =



x1(t), t ∈ I1,

x2(t) =

 0, t ∈ I1,

x̃2, t ∈ I2

.

.

.

.

xi(t) =
{

0, t ∈ [1, Ti−1],
x̃i, t ∈ Ii,

is a unique solution of the variable order Hadamard FBVP (1) and our argument is com-
pleted.

One of the important qualitative specifications of solutions to given FBVPs is their
stability and, in the sequel, we aim to investigate the Ulam–Hyers–Rassias stability for
solutions of the supposed variable order Hadamard FBVP (1).

Definition 5. [39] The variable order Hadamard FBVP (1) is Ulam–Hyers–Rassias stable w.r.t.
the function φ ∈ C(I,R+) if ∃ 0 < cψ ∈ R such that ∀ ε > 0 and ∀ r ∈ C(I,R) satisfying

|H Dw
1+r(t)− ψ(t, r(t))| ≤ εφ(t), t ∈ I,

∃ x ∈ C(I,R) as a solution of the variable order Hadamard FBVP (1) with

|r(t)− x(t)| ≤ cψεφ(t), t ∈ I.

Theorem 4. Consider the hypotheses (HP1), (HP2) and the inequality (10). Assume:

(HP3) ∃ φ ∈ C(Ii,R+) as an increasing mapping and ∃ λφ > 0 so that ∀ t ∈ Ii,

H Iwi
Ti−1

+φ(t) ≤ λφ(t)φ(t).

Then, the variable order Hadamard FBVP (1) is Ulam–Hyers–Rassias stable w.r.t. φ.

Proof. Assume ∀ ε > 0, r ∈ C(Ii,R) satisfies the inequality

|H Dwi
Ti−1

+r(t)− ψ(t, r(t))| ≤ εφ(t), t ∈ Ii. (12)

For any i ∈ {1, 2, ..., n}, we introduce the functions r1(t) ≡ r(t), t ∈ [1, T1] and for
i ∈ Nn

2 ,

ri(t) =

 0, t ∈ [0, Ti−1],

r(t), t ∈ Ii.

Taking H Iwi
Ti−1

+ to both sides of Equation (12), we obtain for t ∈ Ii

|ri(t) +
1

Γ(wi)
(log

Ti
Ti−1

)1−wi (log
t

Ti−1
)wi−1

∫ Ti

Ti−1

(log
Ti
s
)wi−1 ψ(s, ri(s))

s
ds
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− 1
Γ(wi)

∫ t

Ti−1

(log
t
s
)wi−1 ψ(s, ri(s))

s
ds|

≤ ε
1

Γ(wi)

∫ t

Ti−1

1
s
(log

t
s
)wi−1φ(s)ds

≤ ελφ(t)φ(t).

In accordance with the argument above, the variable order Hadamard FBVP (1) admits
a solution x defined as x(t) = xi(t) for t ∈ Ii, i = 1, 2, ..., n, where

xi(t) =

 0, t ∈ [1, Ti−1],

x̃i, t ∈ Ii,
(13)

and x̃i ∈ Ei is a solution of Equation (6). According to Proposition (7), the integral equation

x̃i(t) = −
1

Γ(wi)
(log

Ti
Ti−1

)1−wi (log
t

Ti−1
)wi−1

∫ Ti

Ti−1

(log
Ti
s
)wi−1 ψ(s, x̃i(s))

s
ds

+
1

Γ(wi)

∫ t

Ti−1

(log
t
s
)wi−1 ψ(s, x̃i(s))

s
ds

holds. Then, we have, for each t ∈ Ii

|r(t)− x(t)| = |r(t)− xi(t)| = |ri(t)− x̃i(t)|

= |ri(t) +
1

Γ(wi)
(log

Ti
Ti−1

)1−wi (log
t

Ti−1
)wi−1

∫ Ti

Ti−1

(log
Ti
s
)wi−1 ψ(s, x̃i(s))

s
ds

− 1
Γ(wi)

∫ t

Ti−1

(log
t
s
)wi−1 ψ(s, x̃i(s))

s
ds|

≤ |ri(t) +
1

Γ(wi)
(log

Ti
Ti−1

)1−wi (log
t

Ti−1
)wi−1

∫ Ti

Ti−1

(log
Ti
s
)wi−1 ψ(s, ri(s))

s
ds

− 1
Γ(wi)

∫ t

Ti−1

(log
t
s
)wi−1 ψ(s, ri(s))

s
ds|

+
1

Γ(wi)
(log

Ti
Ti−1

)1−wi (log
t

Ti−1
)wi−1

∫ Ti

Ti−1

(log
Ti
s
)wi−1 |ψ(s, ri(s))− ψ(s, x̃i(s))|

s
ds

+
1

Γ(wi)

∫ t

Ti−1

(log
t
s
)wi−1 |ψ(s, ri(s))− ψ(s, x̃i(s))|

s
ds

≤ λφ(t)εφ(t) +
1

Γ(wi)
(log

Ti
Ti−1

)1−wi (log
t

Ti−1
)wi−1

∫ Ti

Ti−1

(log
Ti
s
)wi−1(log s)−g `|ri(s)− x̃i(s)|

s
ds

+
1

Γ(wi)

∫ t

Ti−1

(log
t
s
)wi−1(log s)−g `|ri(s)− x̃i(s)|

s
ds

≤ λφ(t)εφ(t) +
1

Γ(wi)
(log

t
Ti−1

)wi−1
∫ Ti

Ti−1

(log s)−g `|ri(s)− x̃i(s)|
s

ds

+
1

Γ(wi)
(log

t
Ti−1

)wi−1
∫ t

Ti−1

(log s)−g `|ri(s)− x̃i(s)|
s

ds
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≤ λφ(t)εφ(t) +
(log Ti)

1−g − (log Ti−1)
1−g

(1− g)Γ(wi)
(log

t
Ti−1

)wi−1`‖ri − x̃i‖Ei

+
(log t)1−g − (log Ti−1)

1−g

(1− g)Γ(wi)
(log

t
Ti−1

)wi−1`‖ri − x̃i‖Ei

≤ λφ(t)εφ(t) +
2`[(log Ti)

1−g − (log Ti−1)
1−g]

(1− g)Γ(wi)
(log

Ti
Ti−1

)wi−1‖ri − x̃i‖Ei

≤ λφ(t)εφ(t) + µ‖r− x‖

where

µ = max
i=1,2,...,n

2`[(log Ti)
1−g − (log Ti−1)

1−g]

(1− g)Γ(wi)
(log

Ti
Ti−1

)wi−1.

Then,

‖r− x‖(1− µ) ≤ λφ(t)εφ(t).

It yields, for each t ∈ I, that

|r(t)− x(t)| ≤ ‖r− x‖ ≤
λφ(t)

(1− µ)
εφ(t) := cψεφ(t).

Then, the variable order Hadamard FBVP (1) is Ulam–Hyers–Rassias stable w.r.t.
φ.

4. Example

In this section, we provide an illustrative example to show the consistency and validity
of our results.

Example 2. In accordance with Equation (1), we design a variable order Hadamard FBVP in the
following form  H Dw(t)

1+ x(t) =
7

5
√

π
(log t)w(t) +

(log t)−
1
3

t + 1
x(t),

x(1) = 0, x(e) = 0,

(14)

for t ∈ I := [1, e], where

ψ(t, x) =
7

5
√

π
(log t)w(t) +

(log t)−
1
3

t + 1
x(t), (t, x) ∈ [1, e]× [0,+∞),

and

w(t) =

 1.3, t ∈ I1 := [1, 2],

1.7, t ∈ I2 := (2, e].
(15)

The graph of the function ψ for two values of the variable order w(t) on the subintervals I1
and I2 are illustrated in Figures 1 and 2.
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Figure 1. The graph of the function ψ for w(t) = 1.3 on I1 = [1, 2].

Figure 2. The graph of the function ψ for w(t) = 1.7 on I1 = (2, e].

Accordingly, we have

(log t)
1
3 |ψ(t, x)− ψ(t, x∗)| =

∣∣∣∣ 7
5
√

π
(log t)w(t)+ 1

3 +
1

t + 1
x(t)− 7

5
√

π
(log t)w(t)+ 1

3 − 1
t + 1

x∗(t)
∣∣∣∣

≤ 1
t + 1

|x(t)− x∗(t)|

≤ 1
2
|x(t)− x∗(t)|.

Thus, the hypothesis (HP2) is valid with g =
1
3

and ` =
1
2

.

By Equation (15), the differential equation of the variable order Hadamard FBVP (14) is
divided into two separate FDEs as follows

H D1.3
1+ x(t) =

7
5
√

π
(log t)1.3 +

(log t)−
1
3

t + 1
x(t), t ∈ I1,

H D1.7
1+ x(t) =

7
5
√

π
(log t)1.7 +

(log t)−
1
3

t + 1
x(t), t ∈ I2.
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For t ∈ I1, the variable order Hadamard FBVP (14) corresponds to the equivalent standard
Hadamard FBVP

H D1.3
1+ x(t) =

7
5
√

π
(log t)1.3 +

(log t)−
1
3

t + 1
x(t), t ∈ I1,

x(1) = 0, x(2) = 0.

(16)

Simply, one can check that condition (10) is fulfilled. Indeed,

2`[(log T1)
1−g − (log T0)

1−g]

(1− g)Γ(w1)
(log

T1

T0
)w1−1 =

(log 2)
2
3

( 2
3 )Γ(1.3)

(log 2)0.3 ' 0.5279 < 1.

Let φ(t) = (log t)
1
2 . Hence,

H Iw1
1+ φ(t) =

1
Γ(1.3)

∫ t

1
(log

t
s
)1.3−1 (log s)

1
2

s
ds

≤ 1
Γ(1.3)

∫ t

1
(log

t
s
)0.3 1

s
ds

≤ 0.75
Γ(2.3)

(log t)
1
2 := λφ(t)φ(t).

Therefore, the condition (HP3) is satisfied with φ(t) = (log t)
1
2 and λφ(t) =

0.75
Γ(2.3)

.

By Theorem 3, the equivalent standard Hadamard FBVP (16) involves a solution x1 ∈ E1
uniquely, and from Theorem 4, the equivalent standard Hadamard FBVP (16) is Ulam–Hyers–
Rassias stable.

On the other side, for t ∈ I2, the variable order Hadamard FBVP (14) can be rewritten as
follows 

H D1.7
1+ x(t) =

7
5
√

π
(log t)1.7 +

(log t)−
1
3

t + 1
x(t), t ∈ I2

x(2) = 0, x(e) = 0.

(17)

Evidently,

2`[(log T2)
1−g − (log T1)

1−g]

(1− g)Γ(w2)
(log

T2

T1
)w2−1 =

1− (log 2)
2
3

( 2
3 )Γ(1.7)

(log
e
2
)0.7 ' 0.0742 < 1.

Thus, the condition (10) is satisfied and

H Iw2
2+ φ(t) =

1
Γ(1.7)

∫ t

2
(log

t
s
)1.7−1 (log s)

1
2

s
ds

≤ 1
Γ(1.7)

∫ t

2
(log

t
s
)0.7 1

s
ds

≤ 1
Γ(2.7)

(log t)
1
2 := λφ(t)φ(t).

This means that the condition (HP3) is fulfilled with φ(t) = (log t)
1
2 and λφ(t) =

1
Γ(2.7)

.
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By Theorem 3, the equivalent standard Hadamard FBVP (17) involves a solution x̃2 ∈ E2
uniquely, and from Theorem 4, we find that the variable order Hadamard FBVP (17) is Ulam–Hyers–
Rassias stable. On the other side, it is known that

x2(t) =

 0, t ∈ I1,

x̃2(t), t ∈ I2.

As a result, by Definition 4, the variable order Hadamard FBVP (14) involves a solution
uniquely in the format

x(t) =


x1(t), t ∈ I1,

x2(t) =

 0, t ∈ I1,

x̃2(t), t ∈ I2,

and, by Theorem 4, the variable order Hadamard FBVP (14) is Ulam–Hyers–Rassias stable.

5. Conclusions

In this paper, we introduced an abstract variable order boundary value problem
of Hadamard FDEs with terminal conditions, where the function w(t) : [1, T] → (1, 2]
stands for the variable order of the given system. First, we reviewed some important
specifications of Hadamard variable order operators and by an example, we showed that
the semi-group property is not valid for variable order Hadamard integrals. Then, by
defining a partition based on the generalized intervals, we introduced a piecewise constant
function w(t) and converted the given variable order Hadamard FBVP (1) to an equivalent
standard Hadamard BVP (6) of the fractional constant order. By using the standard fixed
point theorems, we established the existence and uniqueness and, finally, the Ulam–Hyers–
Rassias stability of its possible solutions was checked. Finally, using an example, we
illustrated the theoretical findings.
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