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Abstract: The methods for constructing solutions to integro-differential equations of the Volterra type
are considered. The equations are related to fractional conformable derivatives. Explicit solutions of
homogeneous and inhomogeneous equations are constructed, and a Cauchy-type problem is studied.
It should be noted that the considered method is based on the construction of normalized systems of
functions with respect to a differential operator of fractional order.
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1. Introduction

There are many different ways of defining fractional operators, unlike in classical
calculus, where there is only one way to define the derivative operation. The most common
derivatives are Riemann–Liouville and Caputo derivatives, which were successfully used
in the modeling of complex dynamical processes in physics, biology, engineering and many
other fields [1–5].

Among the other definitions of fractional calculus, we can mention Hilfer, Riesz,
Hadamard, Erd’elyi-Kober, Atangana–Baleanu, Katugampola, fractional conformable
derivatives, and many others [2,6–9].

It should be noted that questions related to the theorems of existence and uniqueness of
solutions of Cauchy-type and Dirichlet-type problems for linear and nonlinear differential
equations of fractional order have been developed in sufficient detail, whereas explicit
solutions are only known for certain types of linear differential equations of fractional order.

One of the most widely used methods for constructing solutions to differential equa-
tions of fractional order is the method of integral transformations. A detailed description
of this method can be found in [2,4,5] and other works. An effective method for con-
structing explicit solutions and solving the Cauchy problem for differential equations
of fractional order is based on the Mikusinski operational calculus. In the papers of
Yu. Luchko et al. [10–15], this method was applied to solve linear differential equations
of fractional order with constant coefficients and with derivatives of Riemann–Liouville
and Caputo type and the general fractional derivative. This method was later used for a
general equation with a Hilfer-type operator [16]. In the paper [17] A. Pskhu formulated
and solved the initial problem for linear ordinary differential equations of fractional order
with Riemann–Liouville derivatives. He reduced the problem to an integral equation and
constructed an explicit solution in terms of the Wright function. We also note that in [18,19]
the Cauchy problem for differential equations of fractional order has been studied using
the Adomian decomposition method.

In this paper, we consider an operator method for constructing solutions to fractional
differential equations. This method is based on the construction of normalized systems
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with respect to operators of fractional differentiation. The method of normalized systems
was introduced in [20] and used to construct exact solutions to the Helmholtz equation
and the polyharmonic equation. The method of normalized systems was used to solve the
Cauchy problem for ordinary differential equations with constant coefficients [21], as well
as to construct solutions to differential equations associated with Dunkl operators [22,23].
Later, in [24–27], this method was applied to the construction of an explicit form of solution
of fractional differential equations.

Let us first consider the definition of fractional-order integro-differentiation operators
that will be used in this paper.

Let 0 < a < b < ∞. For function f (x) ∈ C1[a, b], we define the operator

aTα f (x) = (t− a)1−α f ′(x), α > 0.

In case α ∈ (0, 1), this operator corresponds to an integral operator of the form

a Iα f (x) =
x∫

a

f (t)
dt

(t− a)1−α
.

Let 0 < α, β and n
a Tα = aTα ·a Tα · ... ·a Tα︸ ︷︷ ︸

n

, n = 1, 2, .... In [8], the following integro-

differential operators were considered:

β
a Jα f (x) =

1
Γ(β)

x∫
a

(
(x− a)α − (t− a)α

α

)β−1

f (t)
dt

(t− a)1−α
. (1)

β
a Dα f (x) =

n
a Tα

Γ(β)

x∫
a

(
(x− a)α − (t− a)α

α

)n−β−1

f (t)
dt

(t− a)1−α
, (2)

Cβ
a Dα f (x) =

1
Γ(α)

x∫
a

(
(x− a)α − (t− a)α

α

)n−β−1
n
a Tα f (t)

dt
(t− a)1−α

, n− 1 < β ≤ n. (3)

In case α = 1, operator β
a Jα coincides with the integration operator of the β order

in the Riemann–Liouville sense, whereas β
a Dα and Cβ

a Dα coincide with the differentiation
operators of the β order in the Riemann–Liouville and Caputo sense [2].

It should be noted that the methods for solving fractional differential equations
with derivatives β

a Dα and Cβ
a Dα have been studied by many authors, in particular, in

works [28–32].
In [28] the theorem on the existence of a unique solution to the Cauchy problem is

proved by the method of successive approximations. In [29], using the generalized integral
Laplace transform for the case 0 < β ≤ 1, explicit solutions to the following Cauchy
problems were constructed

β
0 Dαy(t) = λy(t) + f (t), t > 0,

(
0 J1−βy

)
(0) = b, b ∈ R,

Cβ
0 Dαy(t) = λy(t) + f (t), t > 0, y(0) = b, b ∈ R.

Similar results were obtained in [30–32].
The use of differential equations of fractional order with derivatives β

a Dα and Cβ
a Dα in

the modeling of biological processes (fractional analogue of the Bergman model), electrical
circuits, motion of electrons under the action of the electric field (fractional analogue of the
Drude model), as well as in the analysis of applied dynamic models (Rabinovich–Fabrikant
attractor), is described in [33–37].



Fractal Fract. 2021, 5, 109 3 of 21

Further, in the work of A.A. Kilbas and M. Saigo [38], on the basis of the formula
for the composition of operators of integration of fractional order with a three-parameter
Mittag–Leffler function Eβ,m,l(z), an algorithm for solving an integral equation of the type

ϕ(t) =
λtβ(m−1)

Γ(α)

t∫
0

ϕ(τ)

(t− τ)1−β
dτ + f (t), β > 0, λ ∈ R

was obtained.
In this paper (Section 3), this result is generalized for integral equations with the oper-

ator β
a Jα. In this case, the solution to the integral equation is constructed by a constructive

method, i.e., by the method of normalized systems, and it is proved that the solution to the
integral equation is represented in terms of Mittag–Leffler-type functions Eβ,m,l(z). The
solution to the integral equation is constructed in a closed form when the right-hand side of
the equation is a quasi-polynomial. In the particular case of parameters of the considered
integral operator, the results obtained in this work agree with the results obtained in [38].

In Section 4 of this work, the method of normalized systems is used to construct
solutions to iterated differential equations of fractional order. In contrast with our work [25],
in this case, fractional-order differential equations with degeneration are considered. The
construction of solutions to such equations has not been studied by other authors. It
should be noted that in constructing solutions to these equations, a new class of special
functions Ep+1

β,m,l(z), representing a more general form of three-parameter Mittag–Leffler-
type functions Eβ,m,l(z), arises.

In the fifth and sixth sections of the work, application of the method of normalized
systems to the construction of an explicit solution of one class of fractional-order differential
equations with operators β

a Dα and Cβ
a Dα is considered. Homogeneous and inhomogeneous

equations are studied. The considered equations and, therefore, the results obtained,
generalize the results obtained in [30–32], as well as the results obtained in the work of
A.A. Kilbas and M. Saigo [39].

At the end of the section, an example of solving an equation for electrical circuit
simulation is given.

Further, we present some well-known information about the method of normal-
ized systems.

Let L1 and L2 be linear operators, acting from the functional space X to X, LkX ⊂
X, k = 1, 2. Let functions from X be defined in a domain Ω ⊂ Rn. Let us give the definition
of normalized systems [20].

Definition 1. A sequence of functions { fi(x)}∞
i=0, fi(x) ∈ X is called f−normalized with respect

to (L1, L2) on Ω, having the base f0(x), if, on this domain, the following equality holds: L1 f0(x) =
f (x), L1 fi(x) = L2 fi−1(x), i ≥ 1.

If L2 = E is a unit operator, then a system of functions f− normalized with respect
to (L1, I) is called f− normalized with respect to L1, i.e., L1 f0(x) = f (x), L1 fi(x) =
fi−1(x), i ≥ 1.

If f (x) = 0, then the system of functions { fi(x)} is just called normalized.
The main properties of the systems of functions f -normalized with respect to the

operators (L1, L2) on Ω have been described in [20]. Let us consider the main property of
the f -normalized systems.

Proposition 1. If a system of functions { fi(x)}∞
i=0 is f−normalized with respect to (L1, L2) on

Ω, then the functional series y(x) =
∞
∑

i=0
fi(x), x ∈ Ω, is a formal solution of the equation:

(L1 − L2)y(x) = f (x), x ∈ Ω. (4)
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The following proposition allows us to construct an f−normalized system with respect
to a pair of operators (L1, L2).

Proposition 2 ([27]). If for L1 there exists a right inverse operator L−1
1 , i.e., L1 · L−1

1 = E, where E

is a unit operator and L1 f0(x) = f (x), then a system of functions fi(x) =
(

L−1
1 · L2

)i
f0(x), i ≥ 1

is f−normalized with respect to a pair of operators (L1, L2) on Ω.

2. Properties of Integro-Differential Operators

Let us consider some properties of operators β
a Jα, β

a Dα and Cβ
a Dα.

Lemma 1. Let α, β > 0, s > −1 and f (x) = (x− a)αs. Then, the equality holds:(
β
a Jα(t− a)sα

)
(x) =

1
αβ

Γ(s + 1)
Γ(s + 1 + β)

(x− a)α(s+β), s > −1. (5)

Proof. By the definition of the operator β
a Jα, we have

β
a Jα f (x) =

1
Γ(β)

x∫
a

(
(x− a)α − (t− a)α

α

)β−1

(t− a)sα dt
(t− a)1−α

.

After changing variables ξ = (t−a)α

(x−a)α for β
a Jα f (x) we get

β
a Jα f (x) =

(x− a)α(β−1)+αs+α

αβΓ(β)

1∫
0

(1− ξ)β−1ξsdξ =
(x− a)αs+αβ

αβΓ(β)

Γ(β)Γ(s + 1)
Γ(s + 1 + β)

=
1

αβ

Γ(s + 1)
Γ(s + 1 + β)

(x− a)αs+αβ.

The lemma is proved.

Lemma 2. Let f (t) = (t− a)αs, s > −1. Then, the following equalities hold:

(
β
a Dα(t− a)sα

)
(x) =

{
0, s ∈ {β− 1, β− 2, ..., β− n}
αβ Γ(s+1)

Γ(s+1−β)
(x− a)α(s−β), s > n− 1

, (6)

(
Cβ
a Dα(t− a)sα

)
(x) =

{
0, s ∈ {0, 1, ..., n− 1}
αβ Γ(s+1)

Γ(s+1−β)
(x− a)α(s−β), s > n− 1

, (7)

Proof. If β = n is an integer, then, by definition, β
a Dα f (x) =Cβ

a Dα f (x) =n
a Tα and thus, for

all s > n− 1, we get

n
a Tα(x− a)αs =n−1

a Tα

(
(x− a)1−α d

dx
(t− a)αs

)
= αs ·n−1

a Tα
(
(x− a)α(s−1

)
= αs · α(s− 1) · ... · α(s− n + 1)(x− a)α(s−n) = αns · (s− 1) · ... · (s− n + 1)(x− a)α(s−n)

= αn Γ(s + 1)
Γ(s + 1− n)

(x− a)α(s−n).

If s ∈ {0, 1, ..., n− 1}, then n
a Tα(x− a)αs = 0.
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Let n− 1 < β < n, n = 1, 2, .... Then, by the definition of the operator β
a Dα and taking

into account (5), we get

β
a Dα f (x) =n

a Tα
(

n−β
a Jα(t− a)sα

)
(x) =n

a Tα

(
1

αn−β

Γ(s + 1)
Γ(s + 1 + n− β)

(x− a)α(s+n−β)

)
.

If in the latter equality the parameter s takes one of the values s1 = β − 1, s2 =
β− 2, ..., sn = β− n, then

n
a Tα

(
(x− a)α(sj+n−β)

)
= 0⇒

(
β
a Dα(t− a)sjα

)
(x) = 0, j = 1, 2, ..., n.

If s > β− 1, then

β
a Dα f (x) =n

a Tα

(
1

αn−β

Γ(s + 1)
Γ(s + 1 + n− β)

(x− a)α(s+n−β)

)

=
1

αn−β

Γ(s + 1)αn(s + n− β)...(s + 1− β)

Γ(s + 1 + n− β)
(x− a)α(s−β) = αβ Γ(s + 1)

Γ(s + 1− β)
(x− a)α(s−β).

Similarly, if s takes one of the values s1 = 0, s2 = 1, ..., sn = n− 1, we get

n
a Tα((x− a)αsj) = 0, j = 1, 2, ..., n.

Then, for these values of sj, we get
(

Cβ
a Dα(t− a)sjα

)
(x) = 0.

If s > n− 1, then

Cβ
a Dα f (x) =n−β

a Jα(n
a Tα(t− a)sα)(x) =n−β

a Jα
(
sα(sα− α)...(sα− (n + 1)α)(x− a)sα−nα

)
=

= αns(s− 1)...(s + 1− n)n−β
a Jα

(
(x− a)α(s−n)

)
=

= αns(s− 1)...(s + 1− n)
1

αn−β

Γ(s + 1− n)
Γ(s + 1− β)

(x− a)α(s−β) = αβ Γ(s + 1)
Γ(s + 1− β)

(x− a)α(s−β).

The lemma is proved.

The following assertion was proved in [8].

Lemma 3. Let n− 1 < β ≤ n, n = 1, 2, ... and f (x) ∈ C[a, b]. Then, the equality

Cβ
a Dα

(
β
a Jα f (x)

)
= f (x) (8)

is valid.

3. Construction of a Solution to an Integral Equation

Let α, β > 0, m = 1, 2, .... Let us consider in the domain x > a the following inte-
gral equation

ϕ(x) =
λ(x− a)αβ(m−1)

Γ(β)

x∫
a

(
(x− a)α − (t− a)α

α

)β−1

ϕ(t)
dt

(t− a)1−α
+ f (x). (9)

It should be noted that for the case of the Riemann–Liouville operator, i.e., for α = 1,
integral Equation (9) was studied in [38]. In this work, in the case when α = 1, based on
the properties of a special Mittag–Leffler type function

Eβ,m,l(z) =
∞

∑
i=0

cizi, c0 = 1, ci =
i−1

∏
k=0

Γ[β(km + l) + 1]
Γ[β(km + l + 1) + 1]

, i ≥ 1, (10)
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an algorithm for constructing a solution to Equation (9) was proposed for the cases when
f (x)is a polynomial or a quasi-polynomial. The properties of the function Eβ,m,l(z) were
also studied in [39–42].

In our case, to construct a solution to Equation (9), we use the method of normalized
systems. For this purpose, we introduce the notations L1 = E and L2 = λ(x− a)α(m−1) ·
β
a Jα,where L1 is the unit operator. Then, Equation (9) can be rewritten in the form (4).

Let f (x) ∈ C[a, b]. Let us denote ϕ0(x) = f (x) and

ϕk(x) =
(

λ(x− a)αβ(m−1) · β
a Jα
)k

ϕ0(x), k = 1, 2, .... (11)

It is known (see, for example, [8]) that the operator β
a Jα is bounded from the space C[a, b]

to the space C[a, b], and therefore, for each k = 1, 2, ..., an inclusion ϕk(x) ∈ C[a, b] occurs.
It is obvious that

L1 ϕ0(x) = Eϕ0(x) = f (x), L1 ϕk(x) = ϕk(x) = Lk
2 ϕ0(x) = L2

(
Lk−1

2 ϕ0(x)
)
= L2 ϕk−1(x).

Hence, the system of functions ϕk(x) from (11) is f -normalized with respect to the
pair of operators L1 = E, L2 = λ(x− a)α(m−1) · β

a Jα.
The following assertion is valid.

Theorem 1. Let α, β > 0, m > 0, f (x) ∈ C[a, b] and ϕk(x) be defined by equality (11). Then,
the function

ϕ(x) =
∞

∑
k=0

ϕk(x) (12)

is a solution to Equation (9) from class C[a, b].

Proof. Let f (x) ∈ C[a, b]. Then, formally applying operators L1 and L2 to the series (11),
we have

(L1 − L2)ϕ(x) = L1

∞

∑
k=0

ϕk(x)− L2

∞

∑
k=0

ϕk(x) = f (x) +
∞

∑
k=1

ϕk(x)−
∞

∑
k=0

Lk+1
2 f (x)

= f (x) +
∞

∑
k=1

ϕk(x)−
∞

∑
i=1

Li
2 f (x) = f (x) +

∞

∑
k=1

ϕk(x)−
∞

∑
i=1

ϕi(x) = f (x).

Hence, function ϕ(x) from (12) formally satisfies Equation (9). It remains to study the
convergence of series (11). For this, let us estimate functions ϕk(x).

For k = 1 we get

|ϕ1(x)| =

∣∣∣∣∣∣λ(x− a)αβ(m−1)

Γ(β)

x∫
a

(
(x− a)α − (t− a)α

α

)β−1

f (t)
dt

(t− a)1−α

∣∣∣∣∣∣
≤ |λ|(x− a)αβ(m−1)

αβ−1Γ(β)

x∫
a

((x− a)α − (t− a)α)β−1| f (t)| dt
(t− a)1−α

≤ || f ||C[a,b]λ(x− a)αβ(m−1) β
a Jα(1)(x)

= || f ||C[a,b]|λ|(x− a)αβ(m−1) 1
αβ

Γ(1)
Γ(1 + β)

(x− a)αβ=|| f ||C[a,b]
|λ|
αβ

Γ(1)
Γ(1 + β)

(x− a)αβm .
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For k = 2, we get

|ϕ2(x)| ≤ |λ|(x− a)αβ(m−1)

Γ(β)

x∫
a

(
(x− a)α − (t− a)α

α

)β−1

|ϕ1(t)|
dt

(t− a)1−α

≤ || f ||C[a,b]
|λ|2

αβ

Γ(1)
Γ(1 + β)

(x− a)αβ(m−1)
(

β
a Jα(t− a)αβm

)
(x) =

= || f ||C[a,b]
|λ|2

αβ

Γ(1)
Γ(1 + β)

(x− a)αβ(m−1) 1
αβ

Γ(βm + 1)
Γ(β(m + 1) + 1)

(x− a)αβ(m+1)

= || f ||C[a,b]
|λ|2

α2β

Γ(1)
Γ(β + 1)

Γ(βm + 1)
Γ(βm + β + 1)

(x− a)2αβm.

In the general case, using the method of mathematical induction, one can prove that
the inequality

|ϕk(x)| ≤ || f ||C[a,b]

(
k−1

∏
i=0

Γ[βim + 1]
Γ[β(im + 1/β + 1) + 1]

)
|λ|k

αkβ
(x− a)kαβm, k ≥ 1

is satisfied. Then,

|ϕ(x)| ≤
∞

∑
k=0
|ϕk(x)| ≤ || f ||C

(
1 +

∞

∑
k=0

(
k−1

∏
i=0

Γ[βim + 1]
Γ[β(im + 1/β + 1) + 1]

)
|λ|k

αkβ
(x− a)kαβm

)

= || f ||C[a,b]Eβ,m,1/β

(
|λ| (x− a)αβm

αβ

)
.

This implies an absolute and uniform convergence of series (12) and the inclusion
ϕ(x) ∈ C[a, b]. The theorem is proved.

Now, let us construct explicit solutions of Equation (9) for particular cases of func-
tion f (x).

Theorem 2. Let α, β > 0, m > 0 and f (x) = f0(x− a)αµ, µ > −1, where f0 is a real number.
Then, the solution to Equation (9) is the function

ϕ(x) = f0 · (x− a)αµEβ,m,µ/β

(
λα−β(x− a)αβm

)
. (13)

Proof. Under the conditions of this theorem, system (11) can be written as

ϕk(x) =
(

λ(x− a)αβ(m−1) · β
a Jα
)k

f0(x− a)µ, k = 1, 2, ....

Find the explicit form of ϕk(x). For k = 1, we get

ϕ1(x) = λ(x− a)αβ(m−1)β
a Jα( f0(t− a)αµ)(x)

= f0
λ(x− a)αβ(m−1)

αβ

Γ(µ + 1)
Γ(µ + 1 + β)

(x− a)α(µ+β) = f0
λ

αβ

Γ(µ + 1)
Γ(µ + 1 + β)

(x− a)αµ+αβm.

For k = 2, we get
ϕ2(x) = λ(x− a)αβ(m−1)β

a Jα(ϕ1)(x)

= λ(x− a)αβ(m−1) f0
λ

αβ

Γ(µ + 1)
Γ(µ + 1 + β)

β
a Jα
(
(t− a)α(µ+βm)

)
(x)
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= (x− a)αβ(m−1) f0
λ2

α2β

Γ(µ + 1)
Γ(β + µ + 1)

Γ(βm + µ + 1)
Γ(βm + β + µ + 1)

(t− a)αµ+αβm+αβ

= f0
λ2

α2β

Γ(µ + 1)
Γ(β + µ + 1)

Γ(βm + µ + 1)
Γ(βm + β + µ + 1)

(x− a)2αβm+αµ.

In the general case, for an arbitrary k ≥ 1, we get

ϕk(x) = f0
λk

αkβ

(
k−1

∏
i=0

Γ[β(im + µ/β) + 1]
Γ[β(im + µ/β + 1) + 1]

)
(x− a)kαβm+αµ.

Hence, for the solution of Equation (9), we obtain representation (13). The theorem is
proved.

Corollary 1. Let α, β > 0, m > 0 and f (x) =
l

∑
k=0

fk(x − a)αµk , µk > −1, where fk is a real

number. Then the solution to Equation (9) is written as

ϕ(x) =
l

∑
k=0

fk(x− a)αµk · Eβ,m,µk/β

(
λα−β(x− a)αβm

)
. (14)

Remark 1. For case α = 1, a = 0 representation (14) was obtained in [38].

Corollary 2. Let α, β > 0, m = 1 and f (x) =
l

∑
k=0

fk(x− a)αk, where fk is a real number. Then,

the solution to Equation (9) is written as

ϕ(x) =
l

∑
k=0

k! fk(x− a)αk · Eβ,k+1

(
λα−β(x− a)αβ

)
,

where Eβ,γ(z) is a Mittag-Leffler type function [2].

4. Construction of Solutions for Homogeneous Fractional Differential Equations

Let α > 0, n − 1 < β ≤ n, γ > 0. Let us introduce the notations RLBγ
α,β = (x −

a)−αγβ
a Dα, CBα,β

γ = (x− a)−αγCβ
a Dα. Consider in the domain x > a a differential equation

of the type (
Bα,β

γ − λ
)m

y(x) = 0, x > a, (15)

where m = 1, 2, ..., Bα,β
γ is one of the operators RLBγ

α,β or CBα,β
γ .

Let m = 1. If we introduce the notations L1 = Bα,β
γ , L2 = λ, Equation (15) can be

rewritten in the form (4), and to construct a solution to this equation we have to construct
a 0-normalized system with respect to operators

(
Bα,β

γ , λ
)

. In this case, we will use the
method proposed in [25].

Definition 2 ([25]). Operator Dµ is called generalized-homogeneous of the µ order with respect to
the variable t, if

Dµta = Cµ,ata−µ, t > 0, (16)

where 0 < a ≤ µ is a real number, Cµ,a is a constant.
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Let s ∈ R and Dµ be a generalized-homogeneous operator of order µ. Let us suppose
that operator Dµ can be applied to the monomial tµk+s. Based on equality (16), we introduce
the following coefficients

C(µ, s, 0) = 1, C(µ, s, i) =
i

∏
k=1

(
t−µk−s+µDµtµk+s

)
, i ≥ 1. (17)

Let us assume that C(µ, s, i) 6= 0, i ≥ 1.
From (17) it follows that for coefficients C(µ, s, i) the equalities

1
C(µ, s, i)

=

(
t−µi−sDµtµi+s+µ

)
C(µ, s, i + 1)

, i ≥ 1

hold.
Let p = 0, 1, .... Consider the function

ys,p(t) =
∞

∑
i=p

λi−p
(

i
p

)
tµi+s

C(µ, s, i)
, (18)

where
(

i
p

)
= i!

p!(i−p)! .

Theorem 3. Let the series (18) converge and the operator Dµ can be applied term-by-term to it.
If there exist such values of parameter s for which the equality

(
t−µi−s+µDµtµi+s)∣∣

i=0 = 0, then
functions ys,p(t) for all such values of parameters and for all p = 0, 1, ..., m− 1 satisfy the equation(

Dµ − λ
)my(t) = 0, t > 0, m = 1, 2, ....

From equalities (6) and (7) it follows that operators RLBγ
α,β and CBα,β

γ are generalized-
homogeneous of order α(β + γ) with respect to (x− a). Let us construct function (18) for
these operators.

First consider the case for operator CBα,β
γ . Let α > 0, n − 1 < β ≤ n, sj = j, j =

0, 1, ..., n− 1 and fk,j(x) = (x− a)α(β+γ)k+αsj , k = 0, 1, ....
As in case (17), consider the coefficients

C
(
α(β + γ), sj, 0

)
= 1,

C
(
α(β + γ), sj, i

)
=

i

∏
k=1

(
(x− a)−α(β+γ)k−αsj+a(β+γ)β

a Dα fk,j(x)
)

, i ≥ 1.

By virtue of equality (7) for k ≥ 1, we get

(x− a)−αγ Cβ
a Dα fk,j(x) = αβ

Γ
(
(β + γ)k + sj + 1

)
Γ
(
(β + γ)k + sj + 1− β

) (x− a)α(β+γ)k+αsj−α(β+γ), k ≥ 1.

Hence,

C
(
α(β + γ), sj, i

)
= αiβ

i

∏
k=1

(
Γ
(
(β + γ)k + sj + 1

)
Γ
(
(β + γ)k + sj + 1− β

)). (19)

By analogy with (18), we construct the functions

yj(x) =
∞

∑
i=0

λi (x− a)α(β+γ)i+sjα

C
(
α(β + γ), sj, i

) , (20)
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yj,p(x) =
∞

∑
i=p

λi−p
(

i
p

)
(x− a)α(β+γ)i+sjα

C
(
α(β + γ), sj, i

) , j = 1, 2, ..., n. (21)

Further, as

(β + γ)k + sj + 1 = β

[(
1 +

γ

β

)
k +

sj

β

]
+ 1 = β

[(
1 +

γ

β

)
(k− 1) +

sj + γ

β
+ 1
]
+ 1

and

(β + γ)k + sj + 1− β = β

[(
1 +

γ

β

)
k +

sj − β

β

]
+ 1 = β

[(
1 +

γ

β

)
(k− 1) +

sj + γ

β

]
+ 1

then, introducing notations m = 1 + γ
β , ` =

sj+γ

β for coefficients 1
C(α(β+γ),sj ,i)

we get:

1
C
(
α(β + γ), sj, i

) =
1

αiβ

i

∏
k=1

(
Γ
[
(β + γ)k + sj + 1− β

]
Γ
[
(β + γ)k + sj + 1

] )

=
1

αiβ

i

∏
k=1

(
Γ[β(m(k− 1) + `) + 1]

Γ[β(m(k− 1) + `+ 1) + 1]

)
.

If we now change the index k to k + 1, we finally obtain the equality

1
C
(
α(β + γ), sj, i

) =
1

αiβ

i−1

∏
k=0

(
Γ[β(mk + `) + 1]

Γ[β(mk + `+ 1) + 1]

)
, m = 1 +

γ

β
, ` =

sj + γ

β
.

Hence, function yj(x) in (20) satisfies the representation

yj(x) =
∞

∑
i=0

λi (x− a)α(β+γ)i+sjα

C
(
α(β + γ), sj, i

) = (x− a)sjαE
β,1+ γ

β ,
sj+γ

β

(
λα−β(x− a)α(β+γ)

)
.

Thus, the following assertion is valid.

Theorem 4. Let α > 0, n− 1 < β ≤ n, γ ≥ 0, m = 1, sj = j, j = 0, 1, ..., n− 1. Then, in case of

operator Bα,β
γ =C Bα,β

γ solutions of Equation (15) are the functions

yj(x) = (x− a)αjE
β,1+ γ

β , j+γ
β

(
λα−β(x− a)α(β+γ)

)
, j = 0, 1, ..., n− 1.

We can similarly transform the functions yj,p(x) from (21). We get

yj,p(x) =
∞

∑
i=p

λi−p
(

i
p

)
1

αiβ

i−1

∏
k=0

(
Γ[β(mk + `) + 1]

Γ[β(mk + `+ 1) + 1]

)
(x− a)α(β+γ)i+sjα

= (x− a)jα
∞

∑
n=0

λn
(

n + p
p

)
1

α(n+p)β

n+p−1

∏
k=0

(
Γ[β(mk + `) + 1]

Γ[β(mk + `+ 1) + 1]

)
(x− a)α(β+γ)(n+p)

=
(x− a)α(β+γ)p+jα

αpβ

∞

∑
n=0

(p + 1)n

n!

n+p−1

∏
k=0

(
Γ[β(mk + `) + 1]

Γ[β(mk + `+ 1) + 1]

)(
λα−β(x− a)α(β+γ)

)n

=
(x− a)α(β+γ)p+jα

αpβ
Ep+1

β,1+γ/β,(j+γ)/β

(
λα−β(x− a)α(β+γ)

)
,
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where function Ep+1
β,m,`(z) is defined by the equality

Ep+1
β,m,`(z) =

∞

∑
n=0

(p + 1)n

n!
cn+pzn, c0 = 1, cn =

n−1

∏
k=0

Γ[β(km + l) + 1]
Γ[β(km + l + 1) + 1]

, n ≥ 1. (22)

Theorem 5. Let α > 0, n− 1 < β ≤ n, γ ≥ 0, m = 1, 2, ..., sj = j, j = 0, 1, ..., n− 1. Then, in

case of operator Bα,β
γ =C Bα,β

γ solutions to Equation (15) are the functions

yj,p(x) =
(x− a)α(β+γ)p+jα

αpβ
Ep+1

β,1+γ/β,(j+γ)/β

(
λα−β(x− a)α(β+γ)

)
, j = 0, 1, ..., n− 1, p = 0,

1, ..., m− 1.

Remark 2. Note that for p = 0, we get E1
β,m,`(z) = Eβ,m,`(z). In addition, the equality holds:

1
p!

∂p

∂λp Eβ,m,`(λz) = zpEp+1
β,m,`(z).

Solutions to differential equations with the operator RLBγ
α,β = (x − a)−αγβ

a Dα are
constructed in a similar way.

The following assertion is valid.

Theorem 6. Let α > 0, n− 1 < β ≤ n, γ ≥ 0, m = 1, 2, ..., sj = β− j, j = 1, 2, ..., n. Then in

case of operator RLBγ
α,β = (x− a)−αγβ

a Dα solutions to Equation (15) are the functions

yj,p(x) =
(x− a)α(β+γ)p+(β−j)α

αpβ
Ep+1

β,1+γ/β,(γ+β−j)/β

(
λα−β(x− a)α(β+γ)

)
,

j = 1, 2, ..., n, p = 0, 1, ..., m− 1.

Remark 3. For case α = 1, a = 0 this theorem was proved in [39], and for the case γ = 0, a = 0
it was proved in [25].

5. Construction of Solutions to Inhomogeneous Differential Equations of
Fractional Order

In this section, we consider a method for constructing a solution to inhomogeneous
differential equations of fractional order with operators β

a Dα and Cβ
a Dα.

Let α > 0, n− 1 < β ≤ n, γ, ν ≥ 0. Consider the equation

Cβ
a Dαy(x) = λ(x− a)αγν

a Jαy(x) + f (x), a < x. (23)

Let us introduce the notations L1 =
Cβ
a Dα, L2 = λ(x− a)αγ · ν

a Jα. Then Equation (23)
can be rewritten in the form (4).

First, we construct a solution to the homogeneous equation. To do this, we will con-
struct 0-normalized systems with respect to the pair of operators

(
Cβ
a Dα, λ(x− a)αγ · ν

a Jα
)

.
From Proposition 2, it follows that for this purpose, it is necessary to find all solutions of
the equation Cβ

a Dαy(x) = 0 and the right inverse for the operator Cβ
a Dα. By the proposition

of Lemma 3, the right inverse to the operator Cβ
a Dα is the operator β

a Dα, and by virtue of
equality (8), linearly independent solutions of the equation Cβ

a Dαy(t) = 0 are functions
(x− a)αj, j = 0, 1, ..., n− 1.
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Let f0,j(x) = (x− a)αj, j = 0, 1, ..., n− 1. Consider a system of functions

fi,j(x) =
(

β
a Jα · λ(x− a)αγ ·νa Jα

)i
f0,j(x), i = 1, 2, .... (24)

Let us find an explicit form of the system of functions fi,j(x).
The following assertion is valid.

Lemma 4. For functions fi,j(x) equalities hold

fi,j(x) =
1

αi(β+ν)
Cβ,ν(β + ν + γ, j, i)(x− a)α(β+ν+γ)i+αj, i = 1, 2, ..., (25)

where

Cβ,ν(β + ν + γ, j, i) =
i−1

∏
k=0

Γ[(β + ν + γ)k + j + 1]
Γ[(β + ν + γ)k + j + 1 + ν]

× Γ[(β + ν + γ)(k + 1) + j + 1− β]

Γ[(β + ν + γ)(k + 1) + j + 1]
. (26)

Proof. By virtue of equality (8), we get

ν
a Jα(x− a)αj =

1
αν

Γ(j + 1)
Γ(j + 1 + ν)

(x− a)αj+αν.

Hence, for function f1,j(x), we obtain

f1,j(x) =
(

β
a Jα · λ(x− a)αγ ·νa Jα

)
f0,j(x) =

λ

αν

Γ(j + 1)
Γ(j + 1 + ν)

β
a Jα(x− a)α(j+ν+γ)

=
λ

αν+β

Γ(j + 1)
Γ(j + 1 + ν)

Γ(ν + γ + j + 1)
Γ(β + γ + j + 1 + ν)

(x− a)α(j+ν+γ+β)

=
λ

αν+β

Γ(j + 1)
Γ(j + 1 + ν)

Γ((β + γ + ν) + j + 1− β)

Γ((β + γ + ν) + j + 1)
(x− a)α(β+ν+γ+j)

=
λ

αν+β
Cβ,ν(β + γ + ν, j, 1)(x− a)α(β+γ+ν+j).

If i = 2, then

f1,j(x) =
(

β
a Jα · λ(x− a)αγν

a Jα
)2

f0,j(x)

=
λ

αν+β
Cβ,ν(β + ν + γ, j, 1)

(
β
a Jα · λ(x− a)αγν

a Jα
)
(x− a)α(β+ν+γ+j)

=
λ2

α2ν+β
Cβ,ν(β + ν + γ, j, 1)

Γ(β + ν + γ + j + 1)
Γ(β + ν + γ + j + 1 + ν)

β
a Jα(x− a)α(β+2ν+2γ+j)

=
λ2

α2(ν+β)
Cβ,ν(β + ν + γ, j, 1)

Γ(β + ν + γ + j + 1)
Γ(β + 2ν + γ + j + 1)

Γ(β + 2ν + 2γ + j + 1)
Γ(2(β + ν + γ) + j + 1 + ν)

·(x− a)α(2β+2ν+2γ+j) =
λ2

α2(ν+β)
Cβ,ν(β + ν + γ, j, 1)

Γ((β + ν + γ) + j + 1))
Γ((β + ν + γ) + j + 1 + ν)

·Γ(2(β + ν + γ) + j + 1− β)

Γ(2(β + ν + γ) + j + 1)
(x− a)2α(β+ν+γ)+αj

=
λ2

α2(ν+β)
Cβ,ν(β + ν + γ, j, 2)(x− a) 2α(β+ν+γ)+αj.
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Further, let equality (25) hold for a natural number r. Then, for r + 1, we get

fr+1,j(x) =
(

β
a Jα · λ(x− a)αγ ·νa Jα

)r+1
f0,j(x) =

(
β
a Jα · λ(x− a)αγ ·νa Jα

)
·
(

β
a Jα · λ(x− a)αγ ·νa Jα

)r
f0,j(x) =

λr

αr(ν+β)
Cβ,ν(β + ν + γ, j, r)

(
β
a Jα · λ(x− a)αγ ·νa Jα

)
·(x− a)α(β+ν+γ)r+αj =

λr+1

αr(ν+β)+ν
Cβ,ν(β + ν + γ, j, r)

Γ[(β + ν + γ)r + j + 1]
Γ[(β + ν + γ)r + j + 1 + ν]

·βa Jα(x− a)α(β+ν+γ)r+αj+αν+αγ =
λr+1

α(r+1)(ν+β)
Cβ,ν(β + ν + γ, j, r)

· Γ((β + ν + γ)r + j + 1)
Γ((β + ν + γ)r + j + 1 + ν)

Γ((β + ν + γ)r + ν + γ + j + 1)
Γ((β + ν + γ)r + ν + γ + β + j + 1 + ν)

·(x− a)α(β+ν+γ)r+αj+αν+αγ+αβ

=
λr+1

α(r+1)(ν+β)
Cβ,ν(β + ν + γ, j, r)

Γ((β + ν + γ)r + j + 1)
Γ((β + ν + γ)r + j + 1 + ν)

·Γ((β + ν + γ)(r + 1) + j + 1− β)

Γ((β + ν + γ)(r + 1) + j + 1 + ν)
(x− a)α(β+ν+γ)r+αj+αν+αγ+αβ

=
λr+1

α(r+1)(ν+β)
Cβ,ν(β + ν + γ, j, r + 1)(x− a)α(β+ν+γ)(r+1)+αj.

Thus, equality (25) also holds for the case r + 1. Obviously, for the given values of
parameters α, β, γ, ν, for any i ≥ 1, the inequality Cβ,ν(β + ν + γ, j, i) 6= 0 is satisfied. The
lemma is proved.

Let Cβ,ν(β + ν + γ, j, 0) = 1 and consider functions

uj(z) =
∞

∑
i=0

Cβ,ν(β + ν + γ, j, i)zi, j = 0, 1, ..., n− 1, (27)

where z− is a complex number.
If, in equality (26) γ = 0, then

Cβ,ν(β + ν, j, i) =
i−1

∏
k=0

Γ[(β + ν)k + j + 1]
Γ[(β + ν)k + j + 1 + ν]

· Γ[(β + ν)(k + 1) + j + 1− β]

Γ[(β + ν)(k + 1) + j + 1]

=
Γ(j + 1)

Γ[i(β + ν) + j + 1]
,

and

uj(z) =
∞

∑
i=0

Γ(j + 1)
Γ[i(β + ν) + j + 1]

zi = Γ(j + 1)Eβ+ν,j+1(z).

Moreover, for ν = 0 the following equality holds:

Cβ,0(β + γ, j, i) =
i−1

∏
k=0

Γ[(β + γ)k + j + 1]
Γ[(β + γ)k + j + 1]

· Γ[(β + γ)(k + 1) + j + 1− β]

Γ[(β + γ)(k + 1) + j + 1]

=
i−1

∏
k=0

Γ[(β + γ)(k + 1) + j + 1− β]

Γ[(β + γ)(k + 1) + j + 1]
=

i−1

∏
k=0

Γ[(β + γ)k + β + γ + j + 1− β]

Γ[(β + γ)k + β + γ + j + 1]

=
i−1

∏
k=0

Γ[β((1 + γ/β)k + (γ + j)/β) + 1]
Γ[β((1 + γ/β)k + (γ + j)/β + 1) + 1]

= ci,
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i.e., these coefficients coincide with the expansion coefficients of the functionEβ,m,l(z)with

the indices m = 1 + γ
β , ` = γ+j

β . It was shown in [30] that the coefficients of the function
Eβ,m,l(z) satisfy the asymptotic estimate

ci
ci+1

= (βmi)β → ∞(i→ ∞),

from whence it follows that the functionEβ,m,l(z) is an integral function.
Let us introduce the notation δ = β + γ + ν and rewrite coefficients Cβ,ν(β + ν + γ, j, i)

as

Cβ,ν(δ, j, i) =
i−1

∏
k=0

Γ[δk + j + 1]
Γ[δk + j + 1 + ν]

· Γ[δk + δ + j + 1− β]

Γ[δk + δ + j + 1]

=
i−1

∏
k=0

Γ
[
ν
(

k δ
ν + j

ν

)
+ 1
]

Γ
[
ν
(

k δ
ν + j

ν + 1
)
+ 1
] · Γ

[
β
(

k δ
β + δ+j−β

β

)
+ 1
]

Γ
[

β
(

k δ
β + δ+j−β

β + 1
)
+ 1
] , i ≥ 1, ν > 0.

Further, from the asymptotic estimate

Cβ,ν(δ, j, i)
Cβ,ν(δ, j, i + 1)

= (δi)ν+β → ∞(i→ ∞),

it follows that uj(z), j = 1, 2, ..., m, from equality (27) it also follows that they are inte-
gral functions.

Lemma 4 and Proposition 2 imply the following lemma.

Lemma 5. Let α > 0, n− 1 < β ≤ n, γ, ν ≥ 0. Then for all values j = 0, 1, ..., n− 1 the system
of functions (25) is 0-normalized with respect to the pair of operators

(
Cβ
a Dα, λ(x− a)αγ · ν

a Jα
)

in the domain x > a.

Using the main property of normalized systems, we obtain the following assertion.

Theorem 7. Let α > 0, n − 1 < β ≤ n, γ, ν ≥ 0 Then, for all values j = 0, 1, ..., n − 1
the functions

yj(x) =
∞

∑
i=0

fi,j(x) ≡ (x− a)αj
∞

∑
i=0

λi

αi(β+ν)
Cβ,ν(β + ν + γ, j, i)(x− a)α(β+ν+γ)i (28)

are linearly independent solutions of the homogeneous Equation (23) where yj(t) ∈ C[a, b],
Cβ
a Dαyj(x) ∈ C[a, b].

Proof. Consider the function

uj(x) =
∞

∑
i=0

λiCβ,ν(β + ν + γ, j, i)(x− a)i, j = 0, 1, ..., n− 1.

Since function (27) is an integral function, it is obvious that

yj(x) = (x− a)αjuj

(
λα−(β+ν)(x− a)α(β+ν+γ)

)
∈ C[a, b]

and
Cβ
a Dαyj(x) = λyj(x) ∈ C[a, b],

for j = 0, 1, ..., n− 1. Therefore, functions yj(x) from (28) are solutions to the homogeneous
Equation (23). The proof of the linear independence of solutions (28) will be shown below
in Theorem 11. The theorem is proved.
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Corollary 3. Let the conditions of Theorem 7 be satisfied and ν = 0. Then, the solutions to the
homogeneous Equation (23) are represented as

yj(x) = (x− a)αjE
β,1+ γ

β , γ+j
β

(
λ
(x− a)α(β+γ)

α(β+γ)

)
, j = 0, 1, ..., n− 1.

Corollary 4. Let the conditions of Theorem 7 be satisfied and γ = 0. Then, the solutions of the
homogeneous Equation (23) are represented as

yj(x) = Γ(j + 1)(x− a)αjEβ+ν,j+1

(
λ
(x− a)αβ

αβ

)
, j = 0, 1, ..., n− 1.

Further, we will consider a method for constructing a solution to the inhomogeneous
equation. Let f (x) ∈ C[a, b]. Then, by the proposition of Lemma 3, the function f0(x) =
β
a Jα f (x) satisfies the equality

L1 f0(x) = Cβ
a Dα

[
β
a Jα f

]
(x) = f (x).

Consider the system

fi(x) =
(

β
a Jα · λ(x− a)αγ ·νa Jα

)i
f0(x) ≡ λi

(
β
a Jα(x− a)αγ ·νa Jα

)i
f0(x), i = 1, 2, .... (29)

Lemma 6. Let f (x) ∈ C[a, b]. Then the system of function (29) is f (x)-normalized with respect
to the pair of operators

(
Cβ
a Dα, λ(x− a)αγ · ν

a Jα
)

in the domain x > a .

Proof. Let f (x) ∈ C[a, b], then

| f0(x)| =
∣∣∣ β

a Jα f (x)
∣∣∣ ≤ || f ||C[a,b]

β
a Jα(1)(x) ≤ || f ||C[a,b]

1
αβ

Γ(1)
Γ(β + 1)

(x− a)αβ.

Hence

| f0(x)| ≤
|| f ||C[a,b]

αβ

Γ(1)
Γ(β + 1)

(x− a)αβ, ‖ f0(x)‖C[a,b]
|| f ||C[a,b]

αβ

Γ(1)
Γ(β + 1)

(b− a)αβ.

Further, we use the notation M =
|| f ||C[a,b]

αβ
Γ(1)

Γ(β+1) . Then | f0(x)| ≤ M(x − a)αβ From
the latter estimate, it follows that∣∣∣(β

a Jα · λ(x− a)αγ ·νa Jα
)

f0(t)
∣∣∣ ≤ M|λ|

(
β
a Jα · (x− a)αγ ·νa Jα

)
(x− a)αβ.

Hence, for any i ≥ 1, the estimate is valid:

| fi(x)| =
∣∣∣∣(β

a Jα · λ(x− a)αγ ·νa Jα
)i

f0(x)
∣∣∣∣ ≤ M|λ|i

(
β
a Jα · (x− a)αγ ·νa Jα

)i
(x− a)αβ.

Let us calculate the value of the function gi(x) =
(

β
a Jα · (x− a)αγ ·νa Jα

)i
(x − a)αβ.

Due to equality (25), we get

gi(x) =
1

αi(β+ν)
Cβ,ν(β + ν + γ, β, i)(x− a)α(β+ν+γ)i+αβ, i = 1, 2, ....



Fractal Fract. 2021, 5, 109 16 of 21

Hence, for any i ≥ 1 the relation fi(x) ∈ C[a, b] and estimates

| fi(x)| ≤ M
|λ|i

αi(β+ν)
Cβ,ν(β + ν + γ, β, i)(x− a)α(β+ν+γ)i+αβ (30)

are valid. Moreover,(
β
a Jα · λ(x− a)αγ · ν

a Jα
)i

f0(x) =
(

β
a Jα · λ(x− a)αγ · ν

a Jα
)

fi−1(x) =β
a Jαg(x)

where
g(x) = λ(x− a)αγ · ν

a Jα fi−1(x).

As fi−1(x) ∈ C[a, b], then g(x) = λ(x− a)αγ · ν
a Jα fi−1(x) also belongs to class C[a, b]

and the equality is satisfied:

L1 fi(x) =Cβ
a Dα

(
β
a Jα · λ(x− a)αγ · ν

a Jα
)i

f0(x) =Cβ
a Dα

[
β
a Jαg

]
(x) = g(x)

= λ(x− a)αγ · ν
a Jα fi−1(x) = L2 fi−1(x), i ≥ 1.

It is obvious that L1 f0(x) =
Cβ
a Dα( f0)(x) = f (x). Thus, in the class of functions

X = C[a, b], the equalities

L1 f0(x) = f (x), L1 fi(x) = L2 fi−1(x), i ≥ 1

hold, i.e., system (29) is f− normalized with respect to the pair of operators(
Cβ
a Dα, λ(x− a)αγ · ν

a Jα
)

.

The lemma is proved.

Theorem 8. Let f (x) ∈ C[a, b], f0(x) =
β
a Jα f (x) and function fi(x), i ≥ 1 are defined by

equality (29). Then, the function

y f (x) =
∞

∑
i=0

fi(x) (31)

is a particular solution of Equation (23) from the class C[a, b].

Proof. Let us estimate the series (31). By virtue of estimate (30), we have

|y f | ≤
∞

∑
i=0
| fi(t)| ≤ M|| f ||C[0,d](x− a)αβ

[
1 +

∞

∑
i=1
|λ|iCβ,ν(β + γ + ν, β, i)(x− a)i(β+γ+ν)

]

As the latter series converges uniformly in the domain a ≤ t ≤ b, the sum of this
series, and hence the function y f (t), belong to class C[a, b]. The theorem is proved.

Let us investigate the representation of function (31) for some special cases of function
f (x).

Lemma 7. Let f (x) = (x − a)αµ, µ ≥ 0. Then, the particular solution of Equation (23) is
written as

yµ(t) =
1

αβ

Γ(µ + 1)(x− a)α(µ+β)

Γ(µ + 1 + β)

∞

∑
i=0

λi

αi(β+ν)
Cβ,ν(β + γ + ν, µ + β, i)(x− a)αi(β+γ+ν).
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Proof. In this case, for fi(x) from (29), we get

fi(x) =
(

β
a Jα · λ(x− a)αγ ·νa Jα

)i β
a Jα(x− a)αµ =

1
αβ

Γ(µ + 1)
Γ(µ + 1 + β)

(
β
a Jα · λ(x− a)αγ ·νa Jα

)i

·(x− a)α(µ+β) =
1

αβ

Γ(µ + 1)
Γ(µ + 1 + β)

1
αi(β+ν)

Cβ,ν(β + γ + ν, µ + β, i)(x− a)αi(β+γ+ν)+α(µ+β).

The lemma is proved.

This lemma implies the following assertion.

Theorem 9. Let f (x) =
p
∑

j=1
λj(x − a)µj , µj ≥ 0 µj > −1. Then the particular solution of

Equation (23) is written as

y f (t) =
p

∑
j=1

λjΓ(µj + 1)(x− a)α(β+µj)

αβΓ(µj + 1 + β)

×
∞

∑
i=0

λi

αi(β+ν)
Cβ,ν(β + γ + ν, µj + β, i)(x− a)iα(β+γ+ν). (32)

Remark 4. In case α = 1 representation (32) of a particular solution of Equation (23) coincides
with the result of [27].

Further, let us investigate the following Cauchy-type problem

Cβ
a Dαy(x) = λ(x− a)αγ ·νa Jαy(x) +

p

∑
j=1

λj(x− a)αµj , µj ≥ 0, a < x, (33)

m
a Tαy(x)|x=a = dm, m = 0, 1, ..., n− 1 (34)

where dk are real numbers. First, let us consider the homogeneous problem (33), (34).

Theorem 10. Let λj = 0, j = 1, 2, ..., p. Then, the solution to the Cauchy problem (33), (34) exists,
is unique, and can be represented as

y(x) =
n−1

∑
j=0

dj

αjΓ(j + 1)
(x− a)αj

∞

∑
i=0

λi

αi(β+ν)
Cβ,ν(β + ν + γ, j, i)(x− a)α(β+ν+γ)i. (35)

Proof. Let λj = 0, j = 1, 2, ..., p. According to Theorem 7, function y(x) in (35) is a solution
to Equation (33). Let us show that y(x) satisfies the initial conditions (34). For function
(x− a)αjwe have

m
a Tα(x− a)αj = 0, m > j, m

a Tα(x− a)αj = αj(αj− α)...(αj− (m− 1)α)(x− a)α(j−m)

= αm j(j− 1)...(j− (m− 1))(x− a)α(j−m) =
αmΓ(j + 1)

Γ(j + 1−m)
(x− a)α(j−m), m = 1, 2..., j.

Then

lim
x→a

m
a Tα(x− a)αj =

{
αmΓ(m + 1), m = j
0, m < j

.

Hence, for function y(x) we get

m
a Tαy(x)|x=a = lim

x→a
m
a Tαy(x) =

dm

αmΓ(k + 1)
αmΓ(k + 1) = dm. (36)



Fractal Fract. 2021, 5, 109 18 of 21

The theorem is proved.

From Theorem 10 the following theorem can be derived.

Theorem 11. Functions yj(t), j = 0, 1, ..., n− 1 from (28) are linearly independent.

Proof. For functions y0(t), y1(t), ..., yn−1(t) we introduce an analogue of Wronskian: Wα(x) =
det
(m

a Tαyj(x)
)n−1

m,j=1, a ≤ x ≤ b.
As in the case of the theorem for linear differential equations of order n, the following

statement can be proved.

Lemma 8. For solutions y1(t), y2(t), ..., ym(t) to Equation (33) be linearly independent, it is
necessary and sufficient that Wα(x0) 6= 0 at a point x0 ∈ [a, b].

According to (36) we get Wα(a) 6= 0 and, hence, according to the lemma, the solutions
y1(t), y2(t), ..., ym(t) to Equation (33) are linearly independent. The theorem is proved.

Theorems 9 and 10 imply the following assertion.

Theorem 12. If µj ≥ 0, j = 1, 2, ..., p,, then the solution to the Cauchy problem (33), (34) exists,
is unique, and can be represented as

y(x) =
n−1

∑
j=0

dj

αjΓ(j + 1)
(x− a)αj

∞

∑
i=0

λi

αi(β+ν)
Cβ,ν(β + ν + γ, j, i)(x− a)α(β+ν+γ)i

+
p

∑
j=1

λjΓ(µj + 1)(x− a)α(β+µj)

αβΓ(µj + 1 + β)

∞

∑
i=0

λi

αi(β+ν)
Cβ,ν(β + γ + ν, µj + β, i)

× (x− a)iα(β+γ+ν). (37)

Corollary 5. Let the conditions of Theorem 12 be satisfied and ν = 0 . Then, the solution to the
Cauchy problem (33), (34) is represented as

y(x) =
n−1

∑
j=0

dj

αjΓ(j + 1)
(x− a)αjE

β,1+ γ
β , γ+j

β

(
λ
(x− a)α(β+γ)

αβ

)

+
p

∑
j=1

λjΓ(µj + 1)

αβΓ(µj + 1 + β)
(x− a)α(β+µj)E

β,1+ γ
β ,

γ+µj
β

(
λ
(x− a)α(β+γ)

αβ

)
. (38)

In case α = 1, a = 0 the obtained representation of the solution coincides with
Formula (65) in the work of A.A. Kilbas and M. Saigo [39].

Remark 5. If γ = 0, then it is not difficult to find an explicit form of the system fi(x) from (29).

Indeed, in this case, by virtue of Formula (31) from [28], the equality β
a Jα · ν

a Jα =
β+ν
a Jα

is valid and thus

fi(x) =
(

β
a Jα · λ ·νa Jα

)i
f0(x) ≡ λi(β+ν)i+β

a f0(x) = λi(β+ν)i+β
a Jα f (x), i = 1, 2, ... .

Then

y f (x) =
∞

∑
i=0

fi(x) =
∞

∑
i=0

λi · (β+ν)i+β
a Jα f (x)

=
∞

∑
i=0

λi

Γ[(β + ν)i + β]

x∫
a

(
(x− a)α − (t− a)α

α

)(β+ν)i+β−1

f (t)
dt

(t− a)1−α
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=

x∫
a

(
(x− a)α − (t− a)α

α

)β−1

·
(

∞

∑
i=0

λi

Γ[(β + ν)i + β]

(
(x− a)α − (t− a)α

α

)(β+ν)i)
f (t)

dt

(t− a)1−α

=

x∫
a

(
(x− a)α − (t− a)α

α

)β−1

Eβ+ν,β

(
λ
(x− a)α − (t− a)α

α

)
f (t)

dt

(t− a)1−α
.

In the simple case when γ = 0 from the last formula and from the statement of
Theorem 10 the following assertion follows.

Corollary 6. Let f (t) be a smooth function. Then, the solution to the Cauchy problem

Cβ
a Dαy(x) = λν

a Jαy(x) + f (x), a < x, (39)

m
a Tαy(x)|x=a = dm, m = 0, 1, ..., n− 1 (40)

is the function

y(x) =
n−1

∑
k=0

dk(x− a)αk

αk Eβ+ν,k+1

(
λ
(x− a)α(β+ν)

α(β+ν)

)

+

x∫
a

(
(x− a)α − (t− a)α

α

)β−1

Eβ+ν,β

(
λ
(x− a)α − (t− a)α

α

)
f (t)

dt

(t− a)1−α
. (41)

In particular, for n = 1, ν = 0 we get

y(x) = d0Eβ,1

(
λ
(x− a)αβ

αβ

)
+

x∫
a

(
(x− a)α − (t− a)α

α

)β−1

Eβ,β

(
λ
(x− a)α − (t− a)α

α

)
f (t)

dt

(t− a)1−α
.

This formula for a = 0 and 0 < α ≤ 1 was obtained in [30].
In conclusion, we will consider an example of applying the results obtained to the

equation in the theory of electrical circuits.

Example 1. Let 0 < β ≤ 1, α, γ ≥ 0. Consider the following Cauchy problem(
Cβ
a DαV

)
(t) + ρ(t− a)γα ·νa JαV(t) = A, t > a, V(0) = V0. (42)

where A, ρ, V0 are given as real numbers, V(t) is an unknown function. By virtue of Formula (37),
the solution to problem (42) is the function

V(t) = V0 ·
∞

∑
i=0

(−ρ)i

αi(β+ν)
Cβ,ν(β + ν + γ, 0, i)(t− a)α(β+ν+γ)i

+A
(t− a)αβ

αβΓ(1 + β)

∞

∑
i=0

(−ρ)i

αi(β+ν)
Cβ,ν(β + γ + ν, β, i)(t− a)iα(β+γ+ν).
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If ν = 0, the solution to problem (42) is represented as

V(t) = V0 · Eβ, γ
β +1, γ

β

(
− ρ

αβ
(t− a)α(β+γ)

)
+ A

(t− a)αβ

αβΓ(β + 1)
E

β, γ
β +1, γ+β

β

(
− ρ

αβ
(t− a)α(β+γ)

)
. (43)

If ν = 0, γ = 0, then Equation (42) coincides with the differential equation of motion of
electrons in metals (the Drude model), considered in [29]. In this case, function (43) will be written as

y(t) = V0 · Eβ,1

(
− ρ

αβ
(t− a)α(β+γ)

)
+ A

(t− a)αβ

αβ
Eβ,β+1

(
− ρ

αβ
(t− a)α(β+γ)

)
. (44)

As

Eβ,β+1

(
− ρ

αβ
(t− a)α(β+γ)

)
=

∞

∑
i=0

(−ρ)i

αiβ
(t− a)iαβ

Γ(βk + β + 1)
=

∞

∑
i=0

(−ρ)i

αiβ
(t− a)iαβ

β(k + 1)Γ(βk + 1)
,

function (44) coincides with Formula (40) obtained in [29].

Remark 6. Similar investigations can be carried out for the equation with the operator β
a Dα.
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