
fractal and fractional

Article

A q-Gradient Descent Algorithm with Quasi-Fejér Convergence
for Unconstrained Optimization Problems
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Abstract: We present an algorithm for solving unconstrained optimization problems based on the
q-gradient vector. The main idea used in the algorithm construction is the approximation of the
classical gradient by a q-gradient vector. For a convex objective function, the quasi-Fejér convergence
of the algorithm is proved. The proposed method does not require the boundedness assumption
on any level set. Further, numerical experiments are reported to show the performance of the
proposed method.

Keywords: descent methods; q-calculus; iterative methods; inexact line searches

MSC: 41A60; 05A30; 65F08

1. Introduction

The descent direction plays a central role in the development of optimization algo-
rithms. The classical gradient descent method was first proposed by Cauchy [1] in 1847.
The optimization problem is a significant mathematical model in a wide class of disci-
plines [2]. In applications such as image processing [3], data analysis [4], and machine
learning [5], in which one needs to quickly provide an approximate solution, several
gradient-based algorithms [6–9] have been proposed based on the iterative technique of
the gradient descent method [2,10]. Quantum calculus is the modern field for the investiga-
tion of calculus without limits. Quantum calculus, or q-calculus, began with the work of
Jackson in the early twentieth century [11], but similar kinds of calculus had already been
developed by Euler and Jacobi in the eighteenth and nineteenth centuries, respectively.
Recently it has come under deep interest due to the high demand of mathematics that
models quantum computing. Besides appearing as a connection between mathematics and
physics, q-calculus has many applications in different mathematical areas such as oper-
ator theory [12], combinatorics [13], orthogonal polynomials [14], basic hyper-geometric
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functions [15], and other sciences like quantum theory [16,17], mechanics [18], and frac-
tional calculus [19–25]. For more recent studies about fractional calculus analysis and
applications, refer to [26–31].

The q-Taylor formula for functions of several variables with mean value theorems in q-
calculus was first used to develop a new method for solving systems of equations [32]. The
advantage of q-calculus is shown in the next example [32] where the a scheme involving
q-derivatives finds the solution, but the classical Newton–Kantorovich method fails to
do so 

|x2
1 − 4|+ e7x2−36 = 2,

log10

∣∣∣∣ 12x2
1

x2
− 6
∣∣∣∣+ x4

1 = 9.

For q = 0.9, the iterations converge to the exact solution as

(x1, x2)
T =

(√
3,

36
7

)T
.

The concept of the q-analogy of the gradient was first introduced in [33] for solving
systems of equations. It has some advantages with respect the classical method when the
functions are not differentiable. Further, the same concept of q-gradient was introduced in
the steepest descent method [34] to optimize single objective functions [35]. The parameter
q was generated by a Gaussian distribution with standard deviation σ that decreases by an
iterative process as

σ(k+1) = βσ(k),

with a starting standard deviation σ0 and the reduction factor β. The step length was
generated using the golden section search method [34]. However, the convergence prop-
erties of the steepest descent method with inexact line searches have been studied under
several strategies for the choice of the step length αk [36–38]. Recently, several modified
unconstrained optimization algorithms using the q-gradient have been proposed to solve
unconstrained optimization problems [10,19,39–41].

In this paper, we propose a q-gradient line search scheme that provides a q-descent
direction at every kth iteration. For this, a sequence

{
q(k)
}

[39] is taken to generate the
values of q, and the backtracking technique is utilized to find the step length without
requiring the bounded level sets or Lipschitz condition on the gradient of the function. We
also provide the convergence proof theoretically when step length is fixed without any
hypothesis on the level sets of the objective function. The advantage of using q-gradient is
shown by comparing our method with the method given in [36] based on the number of
iterations and function evaluations.

The paper is organized as follows. In the next section, some notations and definitions
for q-calculus and other prerequisites are provided, which are used throughout the paper.
In Section 3, the q-gradient descent algorithm is given, and its convergence analysis is
provided in Section 4. Numerical experiments are performed in Section 4, which is followed
by a section of concluding remarks.

2. Essential Preliminaries

We assume that R+ stands for the nonnegative real line, q ∈ (0, 1) is a real number,
and the q-integer [n]q is given as:

[n]q =


1− qn

1− q
, q 6= 1,

n, q = 1,
(1)
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for all n ∈ N. The expansion of (1 + x)n
q is:

(1 + x)n
q =

 1, n = 0,

(1 + x)(1 + qx) · · · (1 + qn−1x), n ≥ 1.
(2)

The q-derivative of xn with respect to x is:

Dqxn = [n]qxn−1.

The q-derivative of a function ψ : R→ R is given by

Dqψ(x) =
ψ(qx)− ψ(x)

qx− x
, (x 6= 0).

In the special case, Dqψ(0) = dψ(0)
dx .

If ψ is differentiable, then

lim
q→1

Dqψ(x) = lim
q→1

ψ(qx)− ψ(x)
(q− 1)x

=
dψ(x)

dx
.

The higher order q-derivatives of ψ are:

D0
qψ := ψ, Dn

q := Dq(Dn−1
q ψ), (n = 1, 2, 3, . . . ).

The q-derivative of a function is a linear operator [42] for any constants c1 and c2 as:

Dq
{

c1ψ1(x) + c2ψ2(x)
}
= c1Dqψ1(x) + c2Dqψ2(x).

Let ψ(x) be a continuous function on [a, b], where a, b ∈ R. Then, there exists q̂ ∈ (0, 1)
and x ∈ (a, b) [43] such that

ψ(b)− ψ(a) = Dqψ(x)(b− a), (3)

for all q ∈ (q̂, 1) ∪ (1, q̂−1). The q-partial derivative of function ψ : Rn → R at x ∈ Rn with
respect to xi is defined as (see ([35]):

Dqi ,xi ψ(x) =



1
(1− qi)xi

[
ψ(x1, x2, . . . , xi−1, xi, xi+1, . . . , xn)

−ψ(x1, x2, . . . , xi−1, qixi, xi+1, . . . , xn)
]
, xi 6= 0, qi 6= 1,

∂

∂xi
ψ(x1, x2, . . . , xi−1, 0, xi+1, . . . , xn), xi = 0,

∂

∂xi
ψ(x1, x2, . . . , xi−1, xi, xi+1, . . . , xn), qi = 1.

A function is called q-differentiable at a point if its q-partial derivatives are continuous.
A continuously q-differentiable function ψ is a function whose q-derivative function is also
continuous at the point. We now choose the parameter q as a vector; that is,

q = (q1, . . . , qi, . . . , qn)
T ∈ Rn.

Then, the q-gradient vector [35] of ψ : Rn → R is:

∇qψ(x)T =
[
Dq1,x1 ψ(x) . . . Dqi ,xi ψ(x) . . . Dqn ,xn ψ(x)

]
. (4)
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Let {q(k)i } [10,41] be a real sequence defined by

q(k+1)
i = 1−

q(k)i
(k + 1)2 , (5)

for each i = 1, . . . , n, where k = 0, 1, 2 . . . and 0 < q(0)i < 1. Of course, the sequence {q(k)i }
converges to (1, . . . , 1)T as k → ∞, so that the q-gradient reduces to the classic gradient
vector.

Proposition 1. If ψ(x) = a0 + xTa, where a0 ∈ R and a ∈ Rn, then for any x, q ∈ Rn,

∇q(k)ψ(x) = ∇ψ(x) = a.

Example 1. Consider a function ψ : R2 → R such that ψ(x) = 1
x1x2

. Then, the q-gradient is
given as

∇q(k)ψ(x) = − 1
x1x2


1

q(k)1 x1

1

q(k)2 x2

.

Definition 1 (q–Integral [42]). The q-analog of the integral is given by

∫ b

0
ψ(x)dqx = b(1− q)

∞

∑
k=0

ψ(bqk)qk. (6)

In the special case, it reduces to the classical integral
∫ b

0 ψ(x) dx, when q→ 1. It is right only
in the case [44] ∫ 1

0
x dqx = (1− q)

∞

∑
k=0

qk · qk =
1

1 + q
.

Definition 2 (q-Newton–Leibniz formula [42]). The q-anti-derivative of ψ(x) is

Fq(x) =
∫ x

0
ψ(t)dqt. (7)

In that manner, the q-Newton–Leibnitz formula is

∫ b

a
ψ(t)dqt = Fq(b)− Fq(a). (8)

Definition 3 (Quasi-Fejér Convergence [36]). A sequence {x(k)} is quasi-Fejèr convergent to a
set U ⊆ Rn if for every u ∈ U , there exists a non-negative, summable sequence {εk} ⊆ R such
that εk ≥ 0, ∑∞

k=0 εk < ∞ and∥∥∥x(k+1) − u
∥∥∥2
≤
∥∥∥x(k) − u

∥∥∥2
+ εk,

for all k.

In the next section, the q-gradient descent algorithm is presented for solving uncon-
strained optimization problems.
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3. A q–Gradient Descent Algorithm

We consider the unconstrained optimization problem:

min ψ(x), x ∈ Rn, (9)

where ψ : Rn → R is a continuously q-differentiable convex function. Note that min is
same as the max of −ψ(x). We choose a starting point x(0) ∈ Rn. The general iterative
scheme to solve (9) using the q-gradient is of the following form:

x(k+1) = x(k) + αkd(k)
q(k)

, (10)

where x(k+1) is a new iterative point, x(k) is the previous iterative point, and d(k)
q(k)

is a

q-descent direction given as:
d(k)

q(k)
= −∇q(k)ψ

(
x(k)

)
,

and αk ∈ R is called the step length can be computed by two main line search strategies:
exact line search and inexact line search. The exact optimal step length theoretically
cannot be found for practical computation, and it is expensive to generate the value of
αk. Therefore, the most frequently used technique in practice is inexact line searching for
finding the descent direction. When inexact line searches are performed then αk is assigned
a given predetermined value or through some finite iterative method. Note that existence
of a solution to the minimization problem (9) is implicitly assumed. The condition for the
existence of a solution [2] in the context of q-calculus is:

x(k) → x∗ ∈ Ω :=
{

x : ∇q(k)ψ(x) = 0
}

.

The following result presents the first-order necessary condition in the light of q-calculus.

Theorem 1. Let Ω be a subset of Rn and ψ be a first-order q-differentiable real valued function on
Ω. If x∗ is a local minimizer of ψ over Ω, then for any feasible q-direction d(k)

q(k)
at x∗, we have

(
d(k)

q(k)

)T
∇q(k)ψ(x∗) ≥ 0.

Proof. We consider x(α) := x∗ + αd(k)
q(k)
∈ Ω. For α = 0, we obtain x(0) = x∗. Define

the composite function f (α) = ψ(x(α)). Applying q-Taylor’s theorem to ψ(α) and taking
α = 0, we obtain

ψ(α) = ψ(0) + αψ′(0) + O(α).

We can write this as

ψ(α)− ψ(0) = αψ′(0) + O(α)

ψ(x∗ + αd)− ψ(x∗) = αψ′(0) + O(α),

and

ψ′(α) =
dq

dqα
ψ(x(α)) =

dq

dqα
ψ
(

x∗ + αd(k)
q(k)

)
=
(

d(k)
q(k)

)T
∇q(k)ψ

(
x∗ + αd(k)

q(k)

)
.

At α = 0 and when we have x∗ = x(0), then

ψ′(0) =
(

d(k)
q(k)

)T
∇q(k)ψ(x(0)).
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Therefore,

ψ
(

x∗ + αd(k)
q(k)

)
− ψ(x∗) = α

(
d(k)

q(k)

)T
∇q(k)ψ(x(0)) + O(α), (11)

where α ≥ 0. Since x∗ is a local minimizer of ψ over Ω, for α sufficiently small α > 0, we
can write

ψ(x∗) ≤ ψ
(

x∗ + αd(k)
q(k)

)
. (12)

From (11) and (12),

α
(

d(k)
q(k)

)T
∇q(k)ψ(x(0)) = ψ

(
x∗ + αd(k)

q(k)

)
− ψ(x∗) ≥ 0,

that is,

α
(

d(k)
q(k)

)T
∇q(k)ψ(x(0)) ≥ 0.

Since α > 0, then (
d(k)

q(k)

)T
∇ψ(x(0)) ≥ 0.

Since x(0) = x∗, then (
d(k)

q(k)

)T
∇q(k)ψ(x∗) ≥ 0.

This completes the proof.

We present the following result for the interior case in the context of q-calculus.

Corollary 1. Let Ω be a subset of Rn and ψ be a first-order q-differentiable real valued function on
Ω. If x∗ is a local minimizer of ψ over Ω and if x∗ is an interior point of Ω, then ∇q(k)ψ(x∗) = 0.

Proof. Since x∗ is a local minimizer of ψ over Ω, then for any feasible q-direction, we have(
d(k)

q(k)

)T
∇q(k)ψ(x∗) ≥ 0. (13)

Since x∗ is an interior point of Ω, then every q-direction is a feasible direction, therefore

−
(

d(k)
q(k)

)T
∇q(k) f (x∗) ≥ 0. (14)

From (13) and (14), we obtain(
d(k)

q(k)

)T
∇q(k)ψ(x∗) = 0.

For all d(k)
q(k)
∈ Rn, we obtain ∇q(k)ψ(x∗) = 0. This completes the proof.

Before writing an algorithm for the q-gradient descent method, we need the follow-
ing assumptions.

Assumption 1. We consider the two following assumptions:

1. Let ψ : Rn → R be convex and continuously q-differentiable.

2. The q-gradient of ψ with constant L > 0 satisfies the following condition:∥∥∇qψ(x)−∇qψ(y)
∥∥ ≤ L‖x− y‖, (15)

for all x, y ∈ Rn.
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Assumption 2. Let φ : R+ → R be such that:

1. φ is convex and continuously q-differentiable on [0, ∞),

2. φ(0) = 0 and φ′(0) < 1,

3. limv→0+
φ(v)

v2 > 0.

Note that (3) implies that φ′(0) ≥ 0, thus from (2), we obtain 0 ≤ φ′(0) < 1 and
from (1), φ is convex and continuously q-differentiable. Therefore, φ is non-decreasing.
The statement of the theorem given in [45] can be presented in the light of q-calculus as
given below.

Theorem 2. Let F : Rn ×R→ R such that

1. There exists (x◦, u◦) ∈ Rn ×R such that F (x◦, u◦) = 0,

2. F is continuous in a neighborhood of (x◦, u◦),

3. F is q-differentiable with respect to the variable u in (x◦, u◦) and

∂qF
∂qu

(x◦, u◦) 6= 0.

Then, there exists a neighborhood U (x◦) of x◦ and at least one function $ : U (x◦)→ R such
that $(x◦) = u◦ and

F (x, $(x)) = 0, (16)

for any x ∈ U (x◦).

4. If ∂qF
∂qu (., .) is continuous at (x◦, u◦), then the function $ is the only one that satisfies (16) and

is continuous at (x◦, u◦).

Note that the proof q-analogue of the above implicit function theorem is out of the
scope of the present research. For developing the algorithm, we need the following
proposition whose proof is given in the light of [36].

Proposition 2. Let
G =

{
x ∈ Rn | ∇q(k)ψ(x) 6= 0

}
,

and φ satisfy Assumption 2. Then,

1. For all x ∈ G, there exists a unique $(x) > 0 such that

ψ(x)− ψ
(

x− $(x)∇q(k)ψ(x)
)
= φ($(x))

∥∥∥∇q(k)ψ(x)
∥∥∥2

, (17)

and
ψ
(

x− u∇q(k)ψ(x)
)
+ φ(u)

∥∥∥∇q(k)ψ(x)
∥∥∥2
≤ ψ(x), (18)

if and only if 0 ≤ u ≤ $(x).

2. $ : G → R+ is continuous in G.

Proof.

1. We first prove (1). Fix x ∈ G, u ∈ R+ and define the function in the context of
q-calculus as:

F (x, u) = ψ
(

x− u∇q(k)ψ(x)
)
− ψ(x) + φ(u)

∥∥∥∇q(k)ψ(x)
∥∥∥2

. (19)
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From (1) of Assumption 2, F (x, .) is convex and continuously q-differentiable, and
when substituting u = 0 in (19), then we obtain

F (x, 0) = φ(0)
∥∥∥∇q(k)ψ(x)

∥∥∥2
.

From (2) of Assumption 2, we have φ(0) = 0, thus

F (x, 0) = 0. (20)

Applying q-derivative with respect to u to (19), then

∂qF
∂qu

= ∇qψ(x− u∇qψ(x))
(
−∇qψ(x)

)
+ φ′(0)‖∇qψ(x)‖2, (21)

Substituting u = 0 in the right hand side of above equation, we obtain

∂qF
∂qu

=
∥∥∥∇q(k)ψ(x)

∥∥∥2(
−1 + φ′(0)

)
, (22)

Since φ′(0) < 1, then
∂qF
∂qu

< 0. (23)

In addition,

F (x, u) ≥ ψ∗ − ψ(x) + φ(u)
∥∥∥∇q(k)ψ(x)

∥∥∥2
, (24)

where ψ∗ is the minimum function value of ψ. From (20) and (23), we conclude that
F (x, .) is negative in some interval to the right of zero, and from (24), (1) and (2) of
Assumption 2, we obtain

lim
u→∞

F (x, u) ≥ +∞. (25)

From Theorem 2 it follows that there exists $(x) > 0 such that F (x, $(x)) = 0. Using
the above value in (19), we obtain (17). Since F (x, .) is convex, therefore there exists a
uniqueness of $(x). Note that a convex function of a real variable can take a given
value different from its minimum point at most two different points while

F (x, .) = F (x, $(x)) = 0,

and from (20) and (23), the minimum point of F (x, .) is not zero. Thus, (1) of this
proposition is proved.

2. Let u(0) = $(x(0)) given by (1), for a given x(0) ∈ G. Then, we have that

F (x(0), u(0)) = 0,

F(., .) is continuous in a neighborhood of (x(0), u(0)) and from (21)

∂qF
∂qu

(
x(0), u(0)

)
= −∇q(k)ψ

(
x(0) − u(0)∇q(k)ψ(x(0))

)T
∇q(k)ψ(x(0))

+ φ′(u(0))
∥∥∥∇q(k)ψ(x(0))

∥∥∥2
. (26)

As F
(

x(0), .
)

is strictly increasing at u(0), we have that

∂qF
∂qu

(
x(0), u(0)

)
> 0.
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From (26) we observe that ∂qF
∂qu (., .), is continuous at

(
x(0), u(0)

)
and all the hypotheses

of Theorem 2 hold. Thus u is continuous at x(0).

We present the following Algorithm 1.

Algorithm 1: q-Gradient Descent (q-GD) Algorithm

Let objective function ψ : Rn → R, φ : R+ → R, the q-descent direction d(0)
q(0)

of the

search at the starting point x(0) ∈ Rn;

fix q(0)0 ∈ (0, 1) and ε = 10−6;
Set s0 ∈ (δ1, δ2) where numbers δ1 and δ2 are positive ;
for k = 0, 1, 2, . . . do

Set d(k)
q(k)

= −∇q(k)ψ(x(k));

if
∥∥∥∇q(k)ψ(x(k))

∥∥∥ < ε then

x∗ = x(k);

ψ∗ = ψ
(

x(k)
)

;

stop;
else

for j = 0,1,2, . . . do

if ψ
(

x(j) + αkd(j)
q(j)

)
> ψ

(
x(j)
)
+ φ(sj)

(
d(j)

q(j)

)T
g(j)

q(j) then

Set sj+1 =
sj

1+q(j) ;

else
αj = sj;
break;

end
end

end

Set x(k+1) = x(k) + αkd(k)
q(k)

;

end
for i = 0, 1, . . . , n do

Set q(k+1)
i = 1− q(k)i

(k+1)2 ;

end
end
Result: minimizer x∗ and minimum function value ψ∗.

Remark 1 ([36]). Two important facts about computing αk are presented below:

1. In Algorithm 1, the modified backtracking technique finds αk using only one inequality instead
of two inequalities required in [46]

2. We can find αk by another technique; we take positive numbers δ1 and δ2 such that

L
1 + M̂k

δ1 < 1− δ2, (27)

where
M̂k = max

1≤i≤n

{
q(k)i

}
,

so that step length αk can be computed using

δ1 ≤ αk ≤
1
L

(
1 + M̂k

)
(1− δ2), (28)
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here L > 0.

Note that we start our Algorithm 1 by taking s0 such that

δ1 < s0 < δ2, (29)

where δ1 and δ2 are two positive numbers. This proposed algorithm is well defined, then it
must be established that the following inequality used in Algorithm 1,

ψ
(

x(k) − sk∇q(k)ψ
(

x(k)
))
≤ ψ(x(k))− φ(sk)

∥∥∥∇q(k)ψ
(

x(k)
)∥∥∥2

, (30)

is satisfied after some finite number of steps. Note that every accumulation point of {x(k)}
is a minimizer of ψ. Since {ψ(x(k))} is non-increasing we have

ψ(x∗) ≤ ψ
(

x(k)
)

,

for all k with fixed x∗. The content of Theorem 5 will be argued later. The analysis of
backtracking used in Algorithm 1 to compute αk is shown below due to [36].

Proposition 3. The backtracking method of Algorithm 1 defined by Equations (29) and (30) stops
after a finite number of iterations with

min

δ1 ,
$
(

x(k)
)

1 + M̂k

 ≤ αk ≤ min
{

δ2 , $
(

x(k)
)}

. (31)

Proof. We present two cases for the value of s0:

1. s0 ∈
(

0, $
(

x(k)
))

,

2. s0 ≥ $
(

x(k)
)

.

1. From Equations (29) and (30), and (1) of Proposition 2, αk = s0 and iteration stops at
j = 0. Since s0 < δ2, and s0 < $(x(k)), then

αk = s0 < min
{

δ2 , $
(

x(k)
)}

,

and since s0 > δ1, then

s0 = αk ≥ min

δ1 ,
$
(

x(k)
)

1 + M̂k

.

2. There exists a unique t ∈ N, where t ≥ 1 such that(
1 + M̂k

)t−1
$
(

x(k)
)
< s0 ≤

(
1 + M̂k

)t
$
(

x(k)
)

. (32)

Then,
$
(

x(k)
)

1 + M̂k
<

s0(
1 + M̂k

)t ≤ $
(

x(k)
)

. (33)

From Equations (29) and (30), we have

sj = s0

(
1 + M̂k

)−j
,
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used in Algorithm 1 so the above inequality establishes that

$
(

x(k)
)

1 + M̂k
< st ≤ $

(
x(k)

)
. (34)

We now claim that αk = st. From Equation (34), we obtain st ≤ $(x(k)), and if
we assume

st−1 > $(x(k)),

then for t = 1, we obtain Case 2, so this assumption is true. Using Proposition 2, and
αk = st, the inequality (30) is satisfied, but this does not satisfy if αk = st−1. Note
that (31) follows from (34) and in fact, we have that st ≤ s0 < δ2.

The proof is complete.

The following proposition states that the q-gradient descent method moves in orthog-
onal steps whose proof is very similar to the proof of [2] (Proposition 6.1).

Proposition 4. If {x(k)}∞
k=0 is a q-gradient descent sequence for a given function ψ : Rn → R,

then for every k, the vector
x(k+1) − x(k),

is orthogonal to the vector x(k+2) − x(k+1).

Proof. The iterative formula of the q-gradient descent is:

x(k+1) − x(k) = −αk∇q(k)ψ
(

x(k)
)

, (35)

For k = k + 1, we obtain

x(k+2) − x(k+1) = −αk+1∇q(k)ψ
(

x(k+1)
)

. (36)

From (35) and (36), we obtain〈
x(k+1) − x(k), x(k+2) − x(k+1)

〉
=
〈
−αk∇q(k)ψ

(
x(k)

)
, −αk+1∇q(k)ψ

(
x(k+1)

)〉
. (37)

We need to show that〈
∇q(k)ψ

(
x(k)

)
, ∇q(k)ψ

(
x(k+1)

)〉
= 0.

Since αk ≥ 0 is a minimizer of

φk(α) = ψ
(

x(k) + αkd(k)
q(k)

)
− ψ

(
x(k)

)
− φ(sk)

(
d(k)

q(k)

)T
g(k)

q(k)
,

used in Algorithm 1, then from the first-order necessary condition, we have

dqφk(α)

dqα
= 0,

that is,
−∇q(k)ψ

(
x(k) − α∇qψ

(
x(k)

))
∇q(k)ψ

(
x(k)

)
= 0,

that is,

−∇q(k)ψ
(

x(k+1)
)(
∇q(k)ψ

(
x(k)

))T
= 0,

We obtain the desired result after putting the value of the above equation in (37).
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The above theorem implies that ∇q(k)ψ(x(k)) is parallel to the tangent plane to the
level set {

ψ(x) = ψ
(

x(k+1)
)}

,

at x(k+1) when q(k) → (1, . . . , 1)T as k→ ∞. Note that each approximate point generated
by the q-gradient descent algorithm decreases the corresponding objective function ψ.

Proposition 5. If
{

x(k)
}∞

k=0
is the q-gradient descent sequence for ψ : Rn → R and

∇q(k)ψ
(

x(k)
)
6= 0,

then
ψ
(

x(k+1)
)
< ψ

(
x(k)

)
.

Proof. We know that
x(k+1) = x(k) − αk∇q(k)ψ

(
x(k)

)
,

where αk ≥ 0 is the minimizer of

φk(α) = ψ
(

x(k) + αkd(k)
q(k)

)
− ψ

(
x(k)

)
− φ(sk)

(
d(k)

q(k)

)T
g(k)

q(k)
.

Therefore, for α ≥ 0, we have φk(αk) ≤ φk(α) for all α. For α = 0, we have

dqφk

dqα
= −

∥∥∥∇q(k)ψ
(

x(k)
)∥∥∥2

.

Since ∇q(k)ψ
(

x(k)
)
6= 0, then −

∥∥∥∇q(k)ψ
(

x(k)
)∥∥∥2

< 0. Thus,

dqφk

dqα
< 0.

There exists an α > 0 such that φk(0) > φk(α), for each α ∈ (0, α]. That is,

ψ
(

x(k+1)
)
= φk(αk) ≤ φk(α) < φk(0) = ψ

(
x(k)

)
.

Thus,
ψ
(

x(k+1)
)
< ψ

(
x(k)

)
.

This completes the proof.

4. Convergence Analysis

In this section, we present the convergence analysis of the proposed method with the
inexact line searches and the concept of quasi Fejér convergence.

Theorem 3. [36] If
{

x(k)
}

is quasi-Fejér convergence to a nonempty set U ⊆ Rn, then {x(k)} is

bounded. Furthermore, if an accumulation point x of {x(k)} belongs to U then lim
k→∞

x(k) = x.

Proof. The proof of the above theorem can be seen in [36].

Theorem 4. For Algorithm 1 it holds that
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1. There exists γ > 0 such that

ψ
(

x(k+1)
)
≤ ψ

(
x(k)

)
− γ

∥∥∥x(k+1) − x(k)
∥∥∥2

,

for all k ∈ N,

2. The {ψ(x(k))} is nonincreasing and convergent,

3.
∞

∑
k=0

∥∥∥x(k+1) − x(k)
∥∥∥2

< ∞.

Proof.

1. For Algorithm 1, we compute αk using inequalities (27) and (29). Note that∥∥∥x(k+1) − x(k)
∥∥∥2

= α2
k

∥∥∥∇qψ
(

x(k)
)∥∥∥2

.

Since αk > 0, we also have

φ(αk)

α2
k

∥∥∥x(k+1) − x(k)
∥∥∥2

= φ(αk)
∥∥∥∇qψ

(
x(k)

)∥∥∥2
.

Since
φ(αk)

∥∥∥∇qψ
(

x(k)
)∥∥∥2
≤ ψ

(
x(k)

)
− ψ

(
x(k+1)

)
,

thus
φ(αk)

α2
k

∥∥∥x(k+1) − x(k)
∥∥∥2
≤ ψ

(
x(k)

)
− ψ

(
x(k+1)

)
. (38)

We take

0 < ξ < lim
v→0+

inf φ(u)
u2 .

By definition of ξ, there exists θ > 0 such that if for a general case, the value of step
length α ∈ (0, θ), then

ξ <
φ(α)

α2 . (39)

However, for every k, we take the following two cases for choosing the step length as:

(i) If αk ∈ (0, θ), then from (39), we have φ(αk)

α2
k

.

(ii) If αk ≥ θ. In this case, by Proposition 3, we have that

αk ≤ min
{

δ2 , $
(

x(k)
)}
≤ δ2,

and it follows from (1) and (2) of Assumption 2 that φ is increasing, implying
φ(θ) ≤ φ(αk). Thus, we have

φ(θ)

δ2
2
≤ φ(αk)

α2
k

. (40)

From (38), we have

ψ
(

x(k+1)
)
≤ ψ

(
x(k)

)
− φ(αk)

α2
k

∥∥∥x(k+1) − x(k)
∥∥∥2

.
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From Equations (39) and (40) and using above inequality, we obtain

ψ
(

x(k+1)
)
≤ ψ

(
x(k)

)
− γ

∥∥∥x(k+1) − x(k)
∥∥∥2

,

where

γ = min

{
ξ,

φ(θ)

δ2
2

}
.

Thus, (1) of this theorem is proved. If we use Equations (29) and (30) to compute the
step length then from q-Newton–Leibniz formula [42]

ψ
(

x(k+1)
)
= ψ

(
x(k)

)
− αk

∥∥∥∇q(k)ψ
(

x(k)
)∥∥∥2

− αk

∫ 1

0

[
∇q(k)ψ

(
x(k) − uαk∇q(k)ψ

(
x(k)

))
−∇q(k)ψ

(
x(k)

) ]T
∇q(k)ψ

(
x(k)

)
dqu.

From (2) of Assumption 1, we obtain

ψ
(

x(k+1)
)
≤ ψ

(
x(k)

)
− αk

∥∥∥∇q(k)ψ
(

x(k)
)∥∥∥2

+ Lα2
k

∥∥∥∇q(k)ψ
(

x(k)
)∥∥∥2 ∫ 1

0
u dqu.

Using a special case of the q-integral [44], we obtain

ψ
(

x(k+1)
)
≤ ψ

(
x(k)

)
− αk

(
1− Lαk

1 + M̂k

)∥∥∥∇q(k)ψ
(

x(k)
)∥∥∥2

,

where we assume
M̂k = max

1≤i≤n

{
q(k)i

}
.

Since ∥∥∥∇q(k)ψ
(

x(k)
)∥∥∥2

=
1
α2

k

∥∥∥x(k+1) − x(k)
∥∥∥2

,

then

ψ
(

x(k+1)
)
≤ ψ

(
x(k)

)
− 1

αk

(
1− Lαk

1 + M̂k

)∥∥∥x(k+1) − x(k)
∥∥∥2

. (41)

From (28), we have

δ1 ≤ αk ≤
1 + M̂k
L (1− δ2),

then we obtain
1
αk

(
1− Lαk

1 + M̂k

)
≥ δ2

L(
1 + M̂k

)
(1− δ2)

.

From (41), we obtain

ψ
(

x(k+1)
)
≤ ψ

(
x(k)

)
− δ2

L(
1 + M̂k

)
(1− δ2)

∥∥∥x(k+1) − x(k)
∥∥∥2

.

where
δ2

L(
1 + M̂k

)
(1− δ2)

= γ.

Thus, (1) is proved.
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2. It follows from (1) using γ > 0.

3. By (1), there exist γ > 0 such that

r

∑
k=0

∥∥∥x(k+1) − x(k)
∥∥∥2
≤ 1

γ

(
ψ
(

x(0)
)
− ψ

(
x(r)
))
≤ 1

δ

(
ψ
(

x(0)
)
− ψ(x∗)

)
.

Suppose that r → ∞, we obtain

∞

∑
k=0

∥∥∥x(k+1) − x(k)
∥∥∥2

< ∞.

This completes the proof.

We also need to present the following proposition to prove the convergence of Algo-
rithm 1.

Proposition 6. Let

T =

{
z ∈ Rn : ψ(z) ≤ lim

k→∞
inf ψ

(
x(k)

)}
. (42)

Every point generated by Algorithm 1 is placed in T, making T nonempty. For any z ∈ T ,
we have ∥∥∥x(k+1) − z

∥∥∥2
≤
∥∥∥x(k) − z

∥∥∥2
+
∥∥∥x(k+1) − x(k)

∥∥∥2
,

then the sequence {x(k)} generated by Algorithm 1 is a quasi-Fejér convergence to a point x∗ ∈ T
with any αk > 0.

Proof. Given that z ∈ T , then

∥∥∥x(k+1) − z
∥∥∥2
−
∥∥∥x(k) − z

∥∥∥2
−
∥∥∥x(k+1) − x(k)

∥∥∥2

= −2
(
z− x(k)

)T(
x(k+1) − x(k)

)
.

Since x(k+1) − x(k) = −αk∇q(k)ψ(x(k)), then

∥∥∥x(k+1) − z
∥∥∥2
−
∥∥∥x(k) − z

∥∥∥2
−
∥∥∥x(k+1) − x(k)

∥∥∥2

= 2αk

(
z− x(k)

)T
∇q(k)ψ

(
x(k)

)
.

A function will be called a q-convex function if ψ satisfies the following inequality in
the light of q-calculus:

ψ(z)− ψ
(

x(k)
)
≥
(
z− x(k)

)T
∇q(k)ψ

(
x(k)

)
.

With the above inequality and (42), we obtain∥∥∥x(k+1) − z
∥∥∥2
−
∥∥∥x(k) − z

∥∥∥2
−
∥∥∥x(k+1) − x(k)

∥∥∥2

≤ 2αk

(
ψ(z)− ψ

(
x(k)

))
≤ 0,
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and from (3) of Theorem 2, we have

∞

∑
k=0

∥∥∥x(k+1) − x(k)
∥∥∥2

< ∞,

then we have that
{

x(k)
}

is a quasi-Fejér convergence to T ⊆ Rn with

∥∥∥x(k+1) − x(k)
∥∥∥2

= εk,

and from Theorem 3, {x(k)} is bounded. Further, it has an accumulation point x of {x(k)},
which is in T . Thus, limk→∞ x(k) = x.

Theorem 5. The sequence {x(k)} generated by Algorithm 1 converges in the sense of quasi-Fejér
convergence to a minimizer of function ψ : Rn → R.

Proof. From Proposition 6, limk→∞ x(k) = x∗ ∈ T , where T is a set of accumulation points
that are responsible for decreasing the objective function in every iteration. However,
we need to prove that x∗ ∈ T ∗, where T∗ is a set of minimizers that minimize the objec-
tive function. From Algorithm 1, suppose that x∗ 6∈ T ∗, then from the convexity of ψ,
x∗ ∈ G and ∥∥∥∇q(k)ψ(x∗)

∥∥∥ > 0.

From Proposition 2, $(x∗) > 0 and $
(

x(k)
)

converges to $(x∗). Thus, there exists k0

such that for all k ≥ k0, we have

v(x(k)) ≥ $(x∗)
1 + M̂k

, (43)

∥∥∥∇qψ
(

x(k)
)∥∥∥2
≥ 1

1 + M̂k

∥∥∥∇q(k)ψ(x∗)
∥∥∥2

. (44)

Let

σ =

(
min

{
δ1 ,

$(x∗)
1 + M̂k

})2 ∥∥∇qψ(x∗)
∥∥2

1 + M̂k
.

Then, for any k ≥ k0,∥∥∥x(k+1) − x(k)
∥∥∥2

= α2
k

∥∥∥∇q(k)ψ
(

x(k)
)∥∥∥2

.

Since

α2
k ≥

min

δ1 ,
$
(

x(k)
)

1 + M̂k


2

,

then

∥∥∥x(k+1) − x(k)
∥∥∥2
≥
(

min

{
δ1 ,

$(x(k))
1 + M̂k

})2∥∥∥∇q(k)ψ
(

x(k)
)∥∥∥2

. (45)

From Equations (43) and (45), we obtain

∥∥∥x(k+1) − x(k)
∥∥∥2
≥

min

δ1 ,
$(x∗)(

1 + M̂k

)2




2 ∥∥∥∇q(k)ψ(x∗)
∥∥∥2

M̂k
= σ > 0.
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This contradicts (3) of Theorem 4. Thus it is proved that x∗ ∈ T ∗. If we choose αk
using (27) and (28), then we have∥∥∥x(k+1) − x(k)

∥∥∥2
= α2

k

∥∥∥∇q(k)ψ
(

x(k)
)∥∥∥2

.

Since α2
k ≥ δ2

1 , then ∥∥∥x(k+1) − x(k)
∥∥∥2
≥ δ2

1

∥∥∥∇q(k)ψ
(

x(k)
)∥∥∥2

.

From (3) of Theorem 4, the continuity of ∇q(k) f (.), and δ1 > 0, used in the above

inequality, we obtain ∇q(k)ψ(x(k)) → 0 for k → ∞. Moreover, as q(k) → (1, . . . , 1)T , this
implies that

∇q(k)ψ
(

x(k)
)

,

is a good approximation of∇ψ
(

x(k)
)

[2]. Further, see the proof of Proposition 2.2 in [47] for
an affine function where the classical gradient and q-gradient of ψ are the same. For other
functions, Example 3.2 and Remark 3.3 can be seen again in [47]. Hence, the accumulation
point x∗ = x(k) is a minimizer of the function.

5. Experimental Results

We compared the numerical performance of our algorithm with the methodology
used in [36]. The stopping criteria were set as∥∥∥∇q(k)ψ

(
x(k)

)∥∥∥ ≤ ε,

where ε = 10−6 to terminate both the algorithms. Numerical results were compared
based on the number of iterations and number of function evaluations. The iteration was
stopped either when it satisfied the stopping criteria or when iteration counts were 500.
All problems were taken from [48] and computer codes were written in R language.

The numerical experiments were performed on an Intel Core i5-3210M CPU with
2.5 GHz, 4 GB of RAM and a 64-bit XXX (Intel, Santa Clara, CA, USA) to solve the
unconstrained minimization problems.

Example 2 ([49]). Consider a function ψ : R3 → R is given by

ψ(x) =
1
2

xTQx− bTx,

where

Q =

1 0 0
0 τ 0
0 0 τ

, b = −

1
1
1

.

We apply a q-gradient descent algorithm with a starting point

x(0) = (−3,−2,−1)T ,

on different values of τ = 2, 5, 10, 20, 50. We compared our method with the methodology
used in [36] and the numerical results are described in Table 1.

It is worth mentioning that the method given in this paper generates the least number
of iterations, and minimizer x∗ and minimum function value ψ(x∗) = ψ∗ are almost the
same for both methods.
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Table 1. Numerical results of Example 2.

τ x̄ q-Gradient Descent
ψ(x̄) GN IT

2 (−1.001E + 00,−5.000E− 01,−2.501E− 01)T −8.750E− 01 3.683E− 07 16
5 (−1.002E + 00,−2.000E− 01,−4.019E− 02)T −6.200E− 01 8.270E− 07 56

10 (−1.003E + 00,−1.000E− 01,−9.991E− 03)T −5.550E− 01 8.859E− 07 97
20 (−1.004E + 00,−5.000E− 02,−2.499E− 03)T −5.262E− 01 9.984E− 07 139
50 (−1.004E + 00,−2.000E− 02,−3.999E− 04)T −5.102E− 01 9.913E− 07 353

Classical Gradient Descent [36]
ψ(x̄) GN IT

2 (−1.001E + 00,−5.000E− 01,−2.498E− 01)T −8.750E− 01 4.068E− 07 15
5 (−1.003E + 00,−2.000E− 01,−3.993E− 02)T −6.200E− 01 8.345E− 07 71

10 (−1.004E + 00,−1.000E− 01,−1.012E− 02)T −5.550E− 01 9.782E− 07 134
20 (−1.006E + 00,−5.000E− 02,−2.497E− 03)T −5.262E− 01 9.640E− 07 215
50 (−1.010E + 00,−2.000E− 02,−4.272E− 04)T −5.101E− 01 9.843E− 07 588

Example 3 ([50]). Consider a function ψ : R2 → R such that

ψ(x) = x4
1 − 2x2

1x2 + x2
1 + x2

2 − 2x1 + 1.

With a starting point
x(0) = (−2,−2)T ,

Algorithm 1 shows improvement over the algorithm given in [36]. The numerical
results are shown in the following Tables 2 and 3, with abbreviations used in columns
as ‘gn’ norm of gradient, ‘n f ’ number of function evaluations, and step length computed
using the backtracking technique. We observe that our proposed algorithm converges to
the solution point in 28 iterations while the algorithm used in [36] converges to the same
solution point in 40 iterations. The graphs for both methods in terms of f e versus the
logarithm of the function value are provided in Figures 1 and 2. The three-dimensional
pictorial representation of Example 3 is shown in Figure 3.
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Table 2. Numerical output of Example 3 using Algorithm 1.

q-Gradient Descent

It ψ g2n n f

0 4.50000E + 01 5.53114E + 01 1
1 3.05531E + 00 3.83381E + 00 4
2 1.44344E + 00 2.45969E + 00 7
3 5.37577E− 01 1.48052E + 00 10
4 3.32689E− 01 8.22955E− 01 12
5 2.09224E− 01 7.95222E− 01 15
6 1.50867E− 01 5.00475E− 01 17
7 1.10048E− 01 5.35543E− 01 20
8 8.48946E− 02 3.57301E− 01 22
9 6.60685E− 02 3.64658E− 01 24

10 5.33656E− 02 2.90936E− 01 26
11 4.33762E− 02 2.65104E− 01 28
12 3.57854E− 02 2.51345E− 01 30
13 2.96786E− 02 1.99254E− 01 32
14 2.45786E− 02 2.26142E− 01 34
15 2.04572E− 02 1.51693E− 01 36
16 1.66695E− 02 2.10239E− 01 38
17 1.36586E− 02 1.14514E− 01 40
18 1.05164E− 02 2.01242E− 01 42
19 8.15978E− 03 8.24237E− 02 44
20 5.09294E− 03 2.12029E− 01 45
21 2.88677E− 03 4.64793E− 02 47
22 4.05728E− 04 8.80875E− 02 50
23 6.74352E− 05 7.16943E− 03 52
24 1.98233E− 05 1.75357E− 02 55
25 5.78355E− 06 2.33610E− 03 57
26 3.56220E− 06 6.21160E− 03 60
27 1.61834E− 06 1.41408E− 03 62
28 1.32663E− 06 3.28145E− 03 65

Figure 1. Number of function evaluations due to q-gradient descent algorithm for Example 3.
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Table 3. Numerical results of Example 3 using Classical Gradient Descent [36].

Classical Gradient Descent

It ψ g2n n f

0 4.50000E + 01 5.53173E + 01 1
1 3.05623E + 00 3.83810E + 00 4
2 1.44520E + 00 2.46074E + 00 7
3 5.38450E− 01 1.48336E + 00 10
4 3.33100E− 01 8.23444E− 01 12
5 2.09391E− 01 7.95583E− 01 15
6 1.51000E− 01 5.00572E− 01 17
7 1.10457E− 01 4.84543E− 01 19
8 8.61656E− 02 3.86837E− 01 21
9 6.78803E− 02 3.30047E− 01 23

10 5.44785E− 02 3.30855E− 01 25
11 4.40901E− 02 2.35325E− 01 27
12 3.51020E− 02 3.02819E− 01 29
13 2.81958E− 02 1.68607E− 01 31
14 2.07562E− 02 2.94811E− 01 33
15 1.54894E− 02 1.13592E− 01 35
16 6.31703E− 03 2.74534E− 01 37
17 2.67696E− 03 4.64201E− 02 39
18 1.88478E− 03 1.04102E− 01 41
19 1.35417E− 03 3.27922E− 02 43
20 9.76185E− 04 7.34138E− 02 45
21 7.13476E− 04 2.36981E− 02 47
22 5.22365E− 04 5.29427E− 02 49
23 3.86176E− 04 1.73832E− 02 51
24 2.85774E− 04 3.87568E− 02 53
25 2.12958E− 04 1.28821E− 02 55
26 1.58791E− 04 2.86713E− 02 57
27 1.19008E− 04 9.61596E− 03 59
28 8.92260E− 05 2.13709E− 02 61
29 6.71499E− 05 7.21554E− 03 63
30 5.05489E− 05 1.60174E− 02 65
31 3.81590E− 05 5.43511E− 03 67
32 2.88110E− 05 1.20540E− 02 69
33 2.17989E− 05 4.10562E− 03 71
34 1.64954E− 05 9.09882E− 03 73
35 1.25020E− 05 3.10790E− 03 75
36 9.47621E− 06 6.88380E− 03 77
37 7.19130E− 06 2.35637E− 03 79
38 5.45769E− 06 5.21692E− 03 81
39 4.14574E− 06 1.78870E− 03 83
40 3.14931E− 06 3.95878E− 03 85

Dolan and Moré [51] presented an appropriate technique to demonstrate the perfor-
mance profiles, which is a statistical process. The performance ratio is presented as:

ρp,s =
r(p,s)

min
{

r(p,s) : 1 ≤ r ≤ ns

} , (46)

where r(p,s) refers to the iteration and function evaluations for solver s spent on problem
p, and ns refers to the number of problems in the model test. The cumulative distribution
function is given as:

Ps(τ) =
1

np
size

{
p ∈ ρ(p,s) ≤ τ

}
, (47)
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where Ps(τ) is the probability that a performance ratio ρ(p,s) is within a factor of τ ∈ R.
That is, for a subset of the methods being analyzed, we plot the fraction ρs(τ) of problems
for which any given method is within a factor τ of the best. We use this tool to show the
performance of Algorithm 1. First, we solved 28 test problems with different starting points
and stored the number of iterations and number of function evaluation values in Table 4.
In fact, Figures 4 and 5 show that the q-Gradient Descent method solves about 86% and
79% of 28 test problems [48] with the least number of iterations and function evaluations,
respectively. We can conclude that the proposed method is superior.

Figure 2. Number of function evaluations due to Classical Gradient Descent algorithm for Example 3.

Figure 3. Performance profile for number of function evaluations based on Table 4.
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Figure 4. Performance profile for number of iterations based on Table 3.

Figure 5. Graphics of Example 3.
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Table 4. Numerical results of 28 test problems.

Sl. No. Problem Name Starting Point
q-Gradient Descent (q-GD) Classical Gradient Descent (CSD) [36]

N I FE N I FE

1 Booth (3.000E− 01, 6.000E + 00)T 7 16 7 15
2 Aluffi Pentini (−1.000E + 00, 7.000E− 01)T 3 8 4 9
3 Bohachevsky (8.000E− 01, 5.000E− 01)T 9 30 9 30
4 Branin (1.800E + 00, 1.500E + 00)T 19 43 20 52
5 Colville (1.000E + 00, 1.000E + 00, 1.000E + 00, 8.000E− 01)T 163 347 498 1012
6 Csendes (−1.300E + 00, 2.500E + 00)T 5 19 6 27
7 Ackley2 (2.300E + 00, 1.600E + 00)T 2 26 2 36
8 Csendes (−1.600E + 00, 1.600E + 00)T 3 14 3 15
9 Cubic (1.300E + 00,−1.300E + 00)T 61 197 251 645

10 Deckkers Aarts (2.000E + 00, 1.200E + 00)T 8 48 73 348
11 Dixon Price (−1.000E + 00,−2.000E + 00)T 19 44 24 53
12 Himmelblau (1.000E + 00, 4.000E + 00)T 10 52 11 36
13 Leon (8.000E− 01, 1.400E + 00)T 64 153 284 595
14 diagonal4 (−1.300E + 00,−1.500E + 00, 1.300E + 00, 1.500E + 00)T 4 8 3 6
15 Zakharov (2.300E + 00,−1.500E + 00)T 8 18 8 18
16 FH1 (1.000E− 02, 1.000E− 02)T 19 51 33 76
17 Zakharov (−2.000E + 00, 2.500E + 00)T 8 18 8 18
18 Three Hump Camel (3.000E + 00, 5.000E + 00)T 18 45 19 45
19 Six Hump Camel (−1.000E + 00,−3.000E + 00)T 9 24 9 24
20 Matyas (−1.000E + 00,−3.000E + 00)T 3 7 2 6
21 FH2 (1.010E + 00, 1.000E− 02)T 22 48 25 51
22 Raydan 1 (1.000E + 00, 1.000E + 00)T 3 9 9 9
23 Raydan 2 (1.000E + 00,−1.000E + 00)T 4 7 4 7
24 Hager (1.000E + 00,−1.000E + 00)T 5 11 6 12
25 Generalized Tridiagonal 1 (1.200E + 00, 1.700E + 00)T 26 74 29 60
26 Extended Tridiagonal 1 (1.200E + 00,−2.700E + 00)T 28 63 34 73
27 BDEXP (1.000E + 00, 1.000E + 00, 1.000E + 00, 1.000E + 00)T 4 16 4 16
28 BDQRTIC (1.000E + 00, 1, 1.2, 1, 1.3, 1)T 15 42 16 44

6. Conclusions

A q-gradient descent optimization algorithm was presented to solve unconstrained
optimization problems. The approach was based on the q-gradient vector in place of the
classical gradient to present the algorithm. The quasi-Fejér convergence of the algorithm
was proved. The algorithm sometimes declares a fixed point that is not the solution, but
it is very close to it because of using the q-derivative. Further, examples and numerical
results demonstrate the improvement of the proposed method over the classical method.
Our future work will include applying the q-gradient to the accelerated gradient descent
method for unconstrained optimization.
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