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Abstract: The discrete delta Caputo-Fabrizio fractional differences and sums are proposed to dis-
tinguish their monotonicity analysis from the sense of Riemann and Caputo operators on the time
scale Z . Moreover, the action of Q− operator and discrete delta Laplace transform method are
also reported. Furthermore, a relationship between the discrete delta Caputo-Fabrizio-Caputo and
Caputo-Fabrizio-Riemann fractional differences is also studied in detail. To better understand the
dynamic behavior of the obtained monotonicity results, the fractional difference mean value theorem
is derived. The idea used in this article is readily applicable to obtain monotonicity analysis of other
discrete fractional operators in discrete fractional calculus.

Keywords: delta caputo-fabrizio fractional operators; υ-monotonicity analysis; fractional difference
mean value theorem

1. Introduction

In recent years increasing research attention has been devoted to the study of dis-
crete fractional calculus (DFC) and its various models. Moreover, DFC has been suitably
characterized the term “memory” especially in physics, economics, mathematics, biology,
engineering, control etc., and its study is not only interesting from a purely mathemat-
ical point of view, but has been found extremely useful for modeling super-diffusion
processes, which naturally appear in many applications in biology, probability, physics,
economics, medicine and ecology (see [1–4]). Additionally, there are some recent works on
variable-order fractional difference equations such as [5–10] in discrete fractional calculus.

Recently, several authors have begun to study monotonicity analysis in the context
of discrete fractional calculus, especially in fractional difference equations. They have
often obtained some υ-increasing and υ-decreasing results for the discrete nabla and delta
operators. Additionally, there are many discrete models that have been studied in their
research articles. Atici and Uyanik [11] obtained several monotonicity analysis results for
the discrete nabla Riemann–Liouville fractional operators on the time scale Z . Moreover,
Suwan et al. [12] obtained some new results for the discrete delta Riemann–Liouville
fractional operators on the time scale hZ . For the discrete nabla Attangana–Baleanu frac-
tional operators, several monotonicity analysis results were obtained by Abdeljawad and
Baleanu [13] on the time scale Z , and Suwan et al. [14] on the time scale hZ . Abdeljawad
and Abdallaa [15] used the dual identities to obtain some monotonicity results for the
discrete nabla and delta Riemann–Liouville and Caputo fractional operators on the time
scale Z . Goodrich et al. [16] obtained some analysis results including monotonicity for
the discrete fractional operators with exponential kernels. Recently, Mohammed et al. [17]
established new monotonicity results for discrete generalized nabla Attangana–Baleanu
fractional operators with discrete generalized Mittag–Leffler kernels on the time scale Z .
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Motivated by the article [18], this article is devoted to a detailed study of discrete
delta Caputo–Fabrizio (CF) fractional operators, the associated monotonicity analysis
of the operators, related concepts such as the discrete delta Laplace transform method,
the relationship between the Riemann and Caputo operators, and fractional difference
mean value theorem. However, Abdeljawad and Baleanu [18] have established different
results for discrete nabla CF fractional operators due to the difference in the kernels of
discrete delta and nabla CF fractional operators; however, their results are not in detail.

Specifically, the structure of this article is as follows. We discuss the discrete delta
CF fractional differences in Section 2. We derive the discrete delta CF fractional sums and
we present some related properties in Section 3, then pass to monotonicity analysis of the
discrete delta operators in Section 4, first discrete delta Caputo-Fabrizio-Caputo (CFC)
operators and then discrete delta Caputo-Fabrizio-Riemann (CFR) operators. In Section 5,
we investigate the discrete fractional difference Mean Value Theorem (MVT) based on the
monotonicity results. Section 6 is devoted to discussion and conclusion of our article.

2. Preliminaries and Basic Concepts

We first indicate the definitions of the discrete delta CF fractional operators that we
will consider in this article.

Definition 1 (see [19]). Let λ = − ν
1−ν , ν ∈ [0, 1) and a, b ∈ R. Let ∆ρ(w) = ρ(w+ 1)− ρ(w)

be the forward difference operator and ∇ρ(w) = ρ(w) − ρ(w − 1) be the backward difference
operator. Then, for any function ρ defined on Ga := {a, a + 1, . . .}, the left discrete delta CFC and
CFR fractional differences are, respectively, defined by

(
CFC

a∆νρ
)
(w) =

N (ν)

1− ν

w−1

∑
`=a

(∆`ρ)(`)(1 + λ)w−σ(`)

=
N (ν)

1− 2ν

w−1

∑
`=a

(∆`ρ)(`)(1 + λ)w−`, (1)

and (
CFR

a∆νρ
)
(w) =

N (ν)

1− ν
∆w

w−1

∑
`=a

ρ(`)(1 + λ)w−σ(`)

=
N (ν)

1− 2ν
∆w

w−1

∑
`=a

ρ(`)(1 + λ)w−`. (2)

Additionally, for any function ρ defined on bG := {. . . , b− 1, b}, the right discrete delta CFC
and CFR fractional differences are, respectively, defined by

(
CFC∆ν

bρ
)
(w) =

N (ν)

1− ν

b

∑
`=w+1

(−∇`ρ)(`)(1 + λ)`−σ(w)

=
N (ν)

1− 2ν

b

∑
`=w+1

(−∇`ρ)(`)(1 + λ)`−w, (3)

and (
CFR∆ν

bρ
)
(w) =

N (ν)

1− ν
(−∇w)

b

∑
`=w+1

ρ(`)(1 + λ)`−σ(w)

=
N (ν)

1− 2ν
(−∇w)

b

∑
`=w+1

ρ(`)(1 + λ)`−w, (4)

where a normalizing positive constant N (ν) satisfying N (0) = N (1) = 1.
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Remark 1. By comparing Definition 1 and Definition 1 of [18], we can notice a few differences
between the discrete delta and nabla CF fractional operators, e.g., their kernels. This and further
differences in their properties confirm that our results in this article are quite different from those
obtained in [18]. To see further differences, we advise readers to read both articles.

Remark 2 (see [19]). From Definition 1, we can note the following limiting cases:

(i) As ν→ 0, we have(
CFC

a∆νρ
)
(w)→ ρ(w)− ρ(a), and

(
CFC∆∆ν

bρ
)
(w)→ ρ(w)− ρ(b),(

CFR
a∆νρ

)
(w)→ ρ(w), and

(
CFR∆∆ν

bρ
)
(w)→ ρ(w).

(ii) As ν→ 1, we have(
CFC

a∆νρ
)
(w)→ ∆ρ(w), and

(
CFC∆∆ν

bρ
)
(w)→ −∇ρ(w),(

CFR
a∆νρ

)
(w)→ ∆ρ(w), and

(
CFR∆∆ν

bρ
)
(w)→ −∇ρ(w).

Definition 2 (see [20] [Q−operator action]). Let ρ be defined on Ga ∩ bG := {a, a + 1, a +
2, . . . , b− 2, b− 1, b} with a < b and a ≡ b (mod 1), then the Q−operator action of ρ is used
to connect the left and right fractional differences and sums, and it is defined by (Q f )(w) =
ρ(a + b− w).

In the following we apply the Q−operator for the new fractional differences stated in
Definition 1.

Proposition 1. For the fractional differences in Definition 1, one can obtain the following transformation:

(i)
(
Q CFC

a∆νρ
)
(w) =

(
CFC∆∆ν

bQρ
)
(w),

(ii)
(
Q CFR

a∆νρ
)
(w) =

(
CFR∆∆ν

bQρ
)
(w).

Proof. These follow immediately by applying theQ−operator on the fractional differences
in Definition 1 and using the fact that −∇

(
Qρ(w)

)
= Q

(
∆ρ(w)

)
.

It is of interest to recall the discrete delta Laplace transform.

Definition 3 (see [1]). The discrete delta Laplace transform for a function ρ defined on Ga is
defined by

La
{

ρ(w)
}
(s) =

∞

∑
k=0

ρ(a + k)
(s + 1)k+1 .

Definition 4 (see [1]). Let ρ, g : Ga → R be two functions and s ∈ R, ν ∈ (0, 1). The discrete
delta convolution transform of a function ρ with g is defined by

(ρ ∗ g)(w) =
w−1

∑
`=a

ρ(w− σ(`) + a)g(`). (5)

Moreover, the discrete delta Laplace transform of (ρ ∗ g)(w) is given by

La
{
(ρ ∗ g)(w)

}
(s) = La

{
ρ(w)

}
(s) · La

{
g(w)

}
(s). (6)
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Lemma 1 (see [1]). For ` 6= −1 and w ∈ Ga, we have

La

{
(1 + `)w−`

}
(s) =

1
s− `

(for |s + 1| > |`+ 1|),

In particular, when ` = 0, we have

La
{

1
}
(s) =

1
`

(for |s + 1| > 1).

Lemma 2 (see [1]). For any function ρ defined on Ga, we have

La
{

∆ρ
}
(s) = s La

{
ρ
}
(s)− ρ(a).

3. Discrete Delta Caputo–Fabrizio Fractional Sums

To derive the discrete delta CF fractional sums corresponding to the discrete delta CF
fractional differences in Definition 1, we consider the delta fractional difference equation:(

CFR
a∆νρ

)
(w) = u(w). (7)

In the light of (2) and (4), we can rewrite (7) as follows:

N (ν)

1− ν
∆w

{
ρ(w) ∗ (1 + λ)w−a

}
=
(

CFR
a∆νρ

)
(w) = u(w). (8)

Taking discrete Laplace transform on both sides of (8), and then using (6) and Lemma 2,
we obtain

La

{(
CFR

a∆νρ
)
(w)
}
(s) =

N (ν)

1− ν

(
s La

{
ρ(w) ∗ (1 + λ)w−a}(s)− ρ(w) ∗ (1 + λ)w−a

∣∣∣
w=a

)
=
N (ν)

1− ν

sF(s)
s− λ

= U(s), (9)

where F(s) = La
{

ρ
}
(s) and U(s) = La

{
u
}
(s). It follows that

F(s) =
1− ν

N (ν)
U(s) +

ν

N (ν)
s U(s).

Taking inverse Laplace transforms on both sides, we obtain

ρ(w) =
1− ν

N (ν)
u(w) +

ν

N (ν)

w−1

∑
r=a

u(r).

This allows us to define the following discrete delta CF fractional sums.

Definition 5 (Left discrete delta Caputo–Fabrizio fractional sums). Let ν ∈ (0, 1) and ρ be
defined on Ga, then we define the left discrete delta CF fractional sum as follows:

(
CF

a∆−νρ
)
(w) =

1− ν

N (ν)
ρ(w) +

ν

N (ν)

w−1

∑
`=a

ρ(`)
(
∀ w ∈ Ga

)
. (10)

By applying the Q−operator on both sides of the fractional sum (10), we obtain

Q
(

CF
a∆−νρ

)
(w) =

1− ν

N (ν)
ρ(a + b− w) +

ν

N (ν)

a+b−w−1

∑
`=a

ρ(`).
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Changing the variable s := a + b− r, it follows that

Q
(

CF
a∆−νρ

)
(w) =

1− ν

N (ν)
ρ(a + b− w) +

ν

N (ν)

b

∑
r=w+1

ρ(a + b− r)

=
(

CF
a∆−νQ ρ

)
(w).

Thus, the following definition is valid.

Definition 6 (Right discrete delta Caputo–Fabrizio fractional sums). Let ν ∈ (0, 1) and ρ be
defined on bG, then we define the right discrete delta CF fractional sum as follows:

(
CF∆−ν

b ρ
)
(w) =

1− ν

N (ν)
ρ(w) +

ν

N (ν)

b

∑
`=w+1

ρ(`)
(
∀ w ∈ bG

)
. (11)

Proposition 2. For ν ∈ (0, 1), we have

(i)
(

CF
a∆−ν CFR

a∆νρ
)
(w) = ρ(w) and

(
CFR

a∆ν CF
a∆−νρ

)
(w) = ρ(w)

(
∀ w ∈ Ga

)
,

(ii)
(

CF∆−ν
b

CFR∆ν
bρ
)
(w) = ρ(w) and

(
CFR∆ν

b
CF∆−ν

b ρ
)
(w) = ρ(w)

(
∀ w ∈ bG

)
.

Proof. The proofs follow directly from Definitions 1, 5 and 6.

The relationship between discrete delta CFC and CFR fractional differences are given
in the following proposition:

Proposition 3. For λ = − ν
1−ν , ν ∈ (0, 1), we have

(i)
(

CFC
a∆νρ

)
(w) =

(
CFR

a∆νρ
)
(w)− N (ν)

1−ν ρ(a)(1 + λ)w−a (
∀ w ∈ Ga

)
,

(ii)
(

CFC∆ν
bρ
)
(w) =

(
CFR∆ν

bρ
)
(w)− N (ν)

1−ν ρ(b)(1 + λ)b−w (
∀ w ∈ bG

)
.

Proof. By taking the Laplace transform to (1), we obtain

La

{
(∆ρ(w)) ∗ (1 + λ)w−a

}
(s)

=
N (ν)

1− ν
La
{

∆ρ(w)
}
(s) · La

{
(1 + λ)w−a}(s)

=
N (ν)

1− ν

sF(s)
s− λ

− N (ν)

1− ν

ρ(a)
s− λ

= La

{(
CFR

a∆νρ
)
(w)
}
(s)︸ ︷︷ ︸

using (9)

−N (ν)

1− ν

ρ(a)
s− λ

. (12)

Taking inverse Laplace transforms and using Lemma 1, we obtain the result for the
first item. The second item can be proved by applying the action of the Q−operator on the
first item.

The following lemmas are essential in order to proceed.

Lemma 3. Let λ = − ν
1−ν , ν ∈

(
0, 1

2

)
and w ∈ Ga, we have

1.
(

CF
a∆−ν(1 + λ)w

)
(w) = (1−ν)(1+λ)a

N (ν)
;

2. ∆`(1 + λ)w−` = −λ(1 + λ)w−`−1;

3.
(

CF
a∆−ν∆ρ

)
(w) =

(
∆ CF

a∆−νρ
)
(w)− ν

N (ν)
ρ(a);

4. ∆(1 + λ)w = λ(1 + λ)w;
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5.
(

CFR
a∆ν(1 + λ)w

)
(w) = N (ν)

1−ν (1 + λ)w−1[1 + λ(w+ 1− a)
]
;

6.
(

CFR
a∆ν1

)
(w) = N (ν)

1−ν (1 + λ)w−a.

Proof. Since the proof of items (2) and (4) are easy and direct, we only prove only prove
the items (1), (3), (5), and (6) as follows.

(1) We use the definition (10) for ρ(w) := (1 + λ)w to obtain

(
CF

a∆−ν(1 + λ)w
)
(w) =

1− ν

N (ν)
(1 + λ)w +

ν

N (ν)

w−1

∑
`=a

(1 + λ)`

=
1− ν

N (ν)
(1 + λ)w +

ν

N (ν)

[
(1 + λ)a 1− (1 + λ)w−a

1− (1 + λ)

]
=

1− ν

N (ν)
(1 + λ)w +

ν

N (ν)

(1 + λ)a − (1 + λ)w

−λ

=
1
N (ν)

[(1− ν)(1 + λ)w + (1− ν)(1 + λ)a − (1− ν)(1 + λ)w]

=
(1− ν)(1 + λ)a

N (ν)
,

which is the desired result.

(3) Again, we use the definition (10) for ρ(w) := ∆ρ(w) to obtain

(
CF

a∆−ν∆ρ
)
(w) =

1− ν

N (ν)
∆ρ(w) +

ν

N (ν)

w−1

∑
`=a

∆ρ(`)

=
1− ν

N (ν)
∆ρ(w) +

ν

N (ν)
[ρ(w)− ρ(a)]

= ∆

[
1− ν

N (ν)
ρ(w) +

ν

N (ν)

w−1

∑
`=a

ρ(`)

]
− ν

N (ν)
ρ(a)

=
(

∆ CF
a∆−νρ

)
(w)− ν

N (ν)
ρ(a),

which is the required result.

(5) Here we use the definition (2) for ρ(w) := (1 + λ)w and we obtain

(
CFR

a∆ν(1 + λ)w
)
(w) =

N (ν)

1− ν
∆w

w−1

∑
`=a

(1 + λ)`(1 + λ)w−`−1 =
N (ν)

1− ν
∆w

w−1

∑
`=a

(1 + λ)w−1

=
N (ν)

1− ν
∆w

[
(w− a)(1 + λ)w−1

]
=
N (ν)

1− ν

[
(w+ 1− a)(1 + λ)w − (w− a)(1 + λ)w−1

]
=
N (ν)

1− ν
(1 + λ)w−1[1 + λ(w+ 1− a)],

which is the stated result.
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(6) Definition (2) with ρ(w) := 1 leads to

(
CFR

a∆ν1
)
(w) =

N (ν)

1− ν
∆w

w−1

∑
`=a

(1 + λ)w−`−1

=
N (ν)

1− ν

(
1 +

w−1

∑
`=a

(1 + λ)w−` −
w−1

∑
`=a

(1 + λ)w−`−1

)

=
N (ν)

1− ν

(
1 + λ

w−1

∑
`=a

(1 + λ)w−`−1

)

=
N (ν)

1− ν

(
1 + λ(1 + λ)w−a−1 + λ

w−1

∑
`=a+1

(1 + λ)w−`−1

)

=
N (ν)

1− ν

(
1 + λ(1 + λ)w−a−1 + λ

w−a−2

∑
j=0

(1 + λ)j

)

=
N (ν)

1− ν

(
1 + λ(1 + λ)w−a−1 + λ

1− (1 + λ)w−a−1

1− (1 + λ)

)
=
N (ν)

1− ν
(1 + λ)w−a,

which is the end of the proof.

4. Results on Discrete Monotonicity Analysis

In this part, we focus on implementing monotonicity analysis for the discrete delta CF
fractional operators.

Definition 7 (see [11,14,15,21]). Let 0 < ν ≤ 1 and ρ : Ga → R be a function satisfying
ρ(a) ≥ 0. Then, ρ is called an ν-increasing function on Ga, if

ρ(w+ 1) ≥ ν ρ(w)
(
∀w ∈ Ga

)
,

and ρ is called an ν-decreasing function on Ga, if

ρ(w+ 1) ≤ ν ρ(w)
(
∀w ∈ Ga

)
.

Remark 3. Note that

• If ν = 1 in Definition 7, then increasing and ν-increasing concepts coincide, and decreasing
and ν-decreasing concepts coincide.

• If ρ(w) is increasing on Ga, then ρ(w+ 1) ≥ ρ(w) for all w ∈ Ga, and thus ρ(w) is ν-increasing
on Ga. Moreover, if ρ(w) is decreasing on Ga, then ρ(w+ 1) ≤ ρ(w) for all w ∈ Ga, and thus
ρ(w) is ν-decreasing on Ga.

Remark 4. It should be noted that 1 + λ = 1−2ν
1−ν > 0 for each ν ∈

(
0, 1

2

)
.

Theorem 1. If a function ρ : Ga → R satisfies ρ(a) ≥ 0 and
(

CFR
a∆νρ

)
(w) ≥ 0 for each w ∈ Ga

and ν ∈
(

0, 1
2

)
, then ρ(w) is

(
ν

1−ν

)
–increasing.

Proof. Rewriting
(

CFR
a∆νρ

)
(w) as follows:

(
CFR

a∆νρ
)
(w) :=

N (ν)

1− ν
∆χ(w), where χ(w) :=

w−1

∑
`=a

ρ(`)(1 + λ)w−`−1.
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Now, based on the assumption, we have

χ(w+ 1)− χ(w) = ρ(w) + λ
w−1

∑
`=a

ρ(`)(1 + λ)w−`−1

= ρ(w)− ν

1− ν

w−1

∑
`=a

ρ(`)(1 + λ)w−`−1 ≥ 0. (13)

We shall proceed by induction on w ∈ Ga. First, by substituting w = a into (13), we see
that ρ(a) ≥ 0. Again, by substituting w = a + 1 into (13) yields

ρ(a + 1)− ν

1− ν
ρ(a) ≥ 0,

this implies that ρ(a + 1) ≥ ν
1−ν ρ(a) ≥ 0. Assume that

ρ(k + 1) ≥ ν

1− ν
ρ(k) ≥ 0 ∀ k, w ∈ Ga such that k < w. (14)

Then, we will try to show that ρ(w+ 1) ≥ ν
1−ν ρ(w). Use identity (13) by replacing w by

w+ 1 to obtain

ρ(w+ 1)

=
ν

1− ν

w

∑
`=a

ρ(`)(1 + λ)w−`

=
ν

1− ν

[
(1 + λ)w−aρ(a) + (1 + λ)w−a−1ρ(a + 1) + · · ·+ (1 + λ)ρ(w− 1) + ρ(w)

]
=

ν

1− ν

[
(1 + λ)w−aρ(a) + (1 + λ)w−a−1ρ(a + 1) + · · ·+ (1 + λ)ρ(w− 1)

]
︸ ︷︷ ︸

≥0 by (14) and Remark 4

+
ν

1− ν
ρ(w)

≥ ν

1− ν
ρ(w).

Thus, the result is proved.

Theorem 2. If all notations given in Theorem 1 are satisfied and(
CFC

a∆νρ
)
(w) ≥ −N (ν)

1− ν
ρ(a)(1 + λ)w−a (

∀ w ∈ Ga and ν ∈ (0, 0.5)
)
,

then ρ(w) is
(

ν
1−ν

)
–increasing.

Proof. This follows immediately from Proposition 2 and Theorem 1.

The following results are the decreasing analogues of Theorem 1 and Theorem 2,
respectively.

Proposition 4. If a function ρ : Ga → R satisfies ρ(a) ≤ 0 and
(

CFR
a∆νρ

)
(w) ≤ 0 for each

w ∈ Ga and ν ∈
(

0, 1
2

)
, then ρ(w) is

(
ν

1−ν

)
–decreasing.

Proposition 5. If a function ρ : Ga → R satisfies ρ(a) ≤ 0 and(
CFC

a∆νρ
)
(w) ≤ −N (ν)

1− ν
ρ(a)(1 + λ)w−a (

∀ w ∈ Ga and ν ∈ (0, 0.5)
)
,

then ρ(w) is
(

ν
1−ν

)
–decreasing.
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Moreover, the following results are the strictly increasing (or strictly decreasing)
analogues of Theorem 1 (or Proposition 4) and Theorem 2 (or Proposition 5), respectively.

Proposition 6. If a function ρ : Ga → R satisfies ρ(a) > 0 (or ρ(a) < 0) and
(

CFR
a∆νρ

)
(w) > 0(

or
(

CFR
a∆νρ

)
(w) < 0

)
for each w ∈ Ga and ν ∈

(
0, 1

2

)
, then ρ(w) is

(
ν

1−ν

)
–strictly increasing(

or
(

ν
1−ν

)
− strictly decreasing

)
, respectively.

Proposition 7. If a function ρ : Ga → R satisfies ρ(a) > 0 (or ρ(a) < 0) and(
CFC

a∆νρ
)
(w) >

−N (ν)

1− ν
ρ(a)(1 + λ)w−a (

∀ w ∈ Ga and ν ∈ (0, 0.5)
)
,

or (
CFC

a∆νρ
)
(w) <

−N (ν)

1− ν
ρ(a)(1 + λ)w−a (

∀ w ∈ Ga and ν ∈ (0, 0.5)
)
,

then ρ(w) is
(

ν
1−ν

)
–strictly increasing

(
or
(

ν
1−ν

)
− strictly decreasing

)
, respectively.

Theorem 3. Let ρ : Ga → R be a function with ρ(a) ≥ 0 and increasing on Ga+1. Then, we have(
CFR

a∆νρ
)
(w) ≥ 0

(
∀ w ∈ Ga and ν ∈ (0, 0.5)

)
.

Proof. The result will be proved if we can show that χ(w) is increasing on Ga, where
χ(w) is as before. We proceed by induction on w ∈ Ga. The w = a case of (13) leads to
χ(a + 1)− χ(a) = ρ(a) ≥ 0 by assumption. Now let us assume the result is true for k < w,
i.e., χ(k + 1)− χ(k) ≥ 0 for each k, w ∈ Ga such that k < w, and prove it for k = w, i.e.,
χ(w+ 1)− χ(w) ≥ 0.

Considering the assumption, ρ(w) is increasing on Ga, it follows that

ρ(w+ 1) ≥ ρ(w) ≥ ρ(a) ≥ 0 (∀ w ∈ Ga). (15)

Then, by using (13) yields

χ(w+ 1)− χ(w) = ρ(w)− ν

1− ν

w−1

∑
`=a

ρ(`)(1 + λ)w−`−1

= ρ(w)− ν

1− ν
ρ(w− 1)− ν

1− ν

w−2

∑
`=a

ρ(`)(1 + λ)w−`−1

= ρ(w)− ν

1− ν
ρ(w− 1)

+
ν

1− ν

(
w−2

∑
`=a

(
ρ(w− 1)− ρ(`)

)
(1 + λ)w−`−1 −

w−2

∑
`=a

ρ(w− 1)(1 + λ)w−`−1

)
.
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It should be remarked that ρ(w − 1) − ρ(`) ≥ 0 since ρ(w) is increasing on Ga+1.
For each ` = a, a + 1, . . . , t− 1, it follows that

χ(w+ 1)− χ(w) ≥ ρ(w)− ν

1− ν
ρ(w− 1)− ν

1− ν

w−2

∑
`=a

ρ(w− 1)(1 + λ)w−`−1

= ρ(w)− ν

1− ν
ρ(w− 1)

w−1

∑
`=a

(1 + λ)w−`−1

= ρ(w) + λρ(w− 1)
w−1

∑
`=a

(1 + λ)w−`−1

= ρ(w)− ρ(w− 1)︸ ︷︷ ︸
≥0 by (15)

+ρ(w− 1) + λρ(w− 1)
w−1

∑
`=a

(1 + λ)w−`−1

≥ ρ(w− 1)

[
1 + λ

w−1

∑
`=a

(1 + λ)w−`−1

]

= ρ(w− 1)

[
1 + λ

(w−a)−1

∑
k=0

(1 + λ)k

]

= ρ(w− 1)
[

1 + λ
1− (1 + λ)w−a

1− (1 + λ)

]
= ρ(w− 1)(1 + λ)w−a ≥ 0 (∀ w ∈ Ga),

where we use (15), Remark 4 and the geometric series sum formula. Thus, we have shown
that χ(w) is increasing as required.

Theorem 4. With all notation given in Theorem 3, we have(
CFC

a∆νρ
)
(w) ≥ −N (ν)

1− ν
ρ(a)(1 + λ)w−a (

∀ w ∈ Ga and ν ∈ (0, 0.5)
)
.

Proof. This is immediate from Proposition 2 and Theorem 3.

The decreasing analogues of Theorem 3 and Theorem 4 are given in the following
propositions, respectively.

Proposition 8. Let ρ : Ga → R be a function with ρ(a) ≤ 0 and decreasing on Ga+1. Then,
we have (

CFR
a∆νρ

)
(w) ≤ 0

(
∀ w ∈ Ga and ν ∈ (0, 0.5)

)
.

Proposition 9. Let ρ : Ga → R be a function with ρ(a) ≤ 0 and decreasing on Ga+1. Then,
we have (

CFC
a∆νρ

)
(w) ≤ −N (ν)

1− ν
ρ(a)(1 + λ)w−a (

∀ w ∈ Ga and ν ∈ (0, 0.5)
)
.

Furthermore, the strictly increasing (or strictly decreasing) analogues of Theorem 3 (or
Proposition 8) and Theorem 4 (or Proposition 9) are given in the following
propositions, respectively.
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Proposition 10. Let ρ : Ga → R be a function with ρ(a) > 0 (or ρ(a) < 0) and strictly
increasing (or strictly decreasing) on Ga+1. Then, we have(

CFR
a∆νρ

)
(w) > 0

(
∀ w ∈ Ga and ν ∈ (0, 0.5)

)
,

or (
CFR

a∆νρ
)
(w) < 0

(
∀ w ∈ Ga and ν ∈ (0, 0.5)

)
,

respectively.

Proposition 11. Let ρ : Ga → R be a function with ρ(a) > 0 (or ρ(a) < 0) and strictly
increasing (or strictly decreasing) on Ga+1. Then, we have(

CFC
a∆νρ

)
(w) >

−N (ν)

1− ν
ρ(a)(1 + λ)w−a (

∀ w ∈ Ga and ν ∈ (0, 0.5)
)
,

or (
CFC

a∆νρ
)
(w) <

−N (ν)

1− ν
ρ(a)(1 + λ)w−a (

∀ w ∈ Ga and ν ∈ (0, 0.5)
)
,

respectively.

5. Fractional Difference Mean Value Theorem

The monotonicity results of the previous section can be applied to reformulate the
discrete fractional MVT. First, we recall that

(
CF

a+1∆−ν CFR
a+1∆νρ

)
(w) = ρ(w). However,

the next result contains an initial condition ρ(a) and it will be a useful tool to obtain the
discrete fractional difference MVT.

Theorem 5. For ν ∈ (0, 1), we have(
CF

a+1∆−ν CFR
a∆νρ

)
(w) = ρ(w) + λρ(a)

(
∀ w ∈ Ga

)
. (16)

Proof. Using Definition 1 and Lemma 3, we have

(
CF

a+1∆−ν CFR
a∆νρ

)
(w+ 1) = CF

a+1∆−ν

(
N (ν)

1− ν
∆w

w−1

∑
`=a

ρ(`)(1 + λ)w−`−1

)

=
N (ν)

1− ν
CF

a∆−ν∆w

(
w

∑
`=a+1

ρ(`)(1 + λ)w−`−1 + ρ(a)(1 + λ)w−a−1

)

=
(

CF
a+1∆−ν CFR

a+1∆νρ
)
(w) + λ

N (ν)

1− ν
ρ(a) CF

a∆−ν(1 + λ)w−a−1

= ρ(w) + λ
N (ν)

1− ν
ρ(a)(1 + λ)−a−1 CF

a+1∆−ν(1 + λ)w

= ρ(w) + λρ(a).

Hence, the result.

Corollary 1. Let g be a function defined on Ga with g(a) > 0 and strictly increasing on Ga+1.
Then, for each ν ∈

(
0, 1

2

)
, we have

g(w) + λg(a) > 0
(
∀ w ∈ Ga

)
.
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Proof. Since g is strictly increasing and g(a) > 0, we know from Proposition 10 that(
CFR

a∆νg
)
(w) > 0.

Applying CF
a+1∆−ν to the above inequality and using Theorem 5, we see that

g(w) + λg(a) > 0.

Thus, we have proved the result as required.

Theorem 6 (Fractional difference MVT for the CFR case). Let ρ and g be two functions defined
on Ga ∩ bG such that g is strictly increasing and g(a) > 0, and let ν ∈

(
0, 1

2

)
and a < b with

a ≡ b (mod 1), then, there exist x1, x2 ∈ Ga ∩ bG with(
CFR

a∆νρ
)
(x1)(

CFR
a∆νg

)
(x1)

≤ ρ(b) + λρ(a)
g(b) + λg(a)

≤

(
CFR

a∆νρ
)
(x2)(

CFR
a∆νg

)
(x2)

. (17)

Proof. First, from Proposition 10 and Corollary 1, we can see that the denominators in (17)
are all positive. We proceed by contradiction. Suppose that (17) is not true. Then, either

ρ(b + 1)− λρ(a)
g(b) + λg(a)

>

(
CFR

a∆νρ
)
(w)(

CFR
a∆νg

)
(w)

(
∀w ∈ Ga ∩ bG

)
, (18)

or

ρ(b) + λρ(a)
g(b) + λg(a)

<

(
CFR

a∆νρ
)
(w)(

CFR
a∆νg

)
(w)

(
∀w ∈ Ga ∩ bG

)
. (19)

Considering Proposition 10, the inequality (18) can be rewritten as

ρ(b) + λρ(a)
g(b) + λg(a)

(
CFR

a∆νg
)
(w) >

(
CFR

a∆νρ
)
(w).

We apply the fractional sum operator CF
a+1∆−νg to both sides of the above inequality at

w = b and use the (16) to obtain

ρ(b) + λρ(a) > ρ(b) + λρ(a),

which is a contradiction. Analogously, inequality (19) will lead to contradiction. Thus,
the result is proved.

In the next theorem, we give the result of
(

CF
a+1∆−ν CFC

a∆νρ
)
(w) as we did for the CFC

case in Theorem 5.

Theorem 7. For ν ∈
(

0, 1
2

)
, we have(

CF
a+1∆−ν CFC

a∆νρ
)
(w) = ρ(w)− ρ(a)

(
∀ w ∈ Ga

)
. (20)

Proof. We begin using the relationship in Proposition 3:(
CFC

a∆νρ
)
(w) =

(
CFR

a∆νρ
)
(w)− N (ν)

1− ν
ρ(a)(1 + λ)w−a (

∀ w ∈ Ga
)
. (21)
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By applying CF
a+1∆−ν to both sides of (21), we have:(

CF
a+1∆−ν CFC

a∆νρ
)
(w) =

(
CF

a+1∆−ν CFR
a∆νρ

)
(w)− N (ν)

1− ν
ρ(a)

(
CF

a+1∆−ν(1 + λ)w−a
)
(w)

Using Theorem 5 and Lemma 3 (1), we have:(
CF

a+1∆−ν CFC
a∆νρ

)
(w) = ρ(w) + λρ(a)− N (ν)

1− ν
ρ(a) · (1 + λ)−a 1− ν

N (ν)
(1 + λ)a+1

= ρ(w)− ρ(a),

which is the end of the proof.

Remark 5. As we have discussed in our recently published article [22], it is impossible to obtain
fractional difference MVT for the CFC case, i.e., the following inequalities(

CFC
a∆νρ

)
(x1)(

CFC
a∆νg

)
(x1)

≤ ρ(b)− ρ(a)
g(b)− g(a)

≤

(
CFC

a∆νρ
)
(x2)(

CFC
a∆νg

)
(x2)

(22)

do not hold true. The main reason for this is that the discrete delta CFC fractional difference(
CFC

a∆νg
)
(w) is not clear whether it is greater than zero or not by means of Proposition 11.

6. Conclusions

To obtain the mean value theorem with discrete fractional difference terms, mono-
tonicity analysis is considered for the discrete delta Caputo–Fabrizio fractional operators.
Before analysing the monotonicity results, the discrete delta Caputo–Fabrizio fractional
differences are introduced and the discrete delta CF fractional sums are investigated on the
time scale Z . Additionally, the discrete right operators are found by applying action ofQ−
operator to the corresponding discrete left operators. Besides that, the discrete delta Laplace
transform technique is applied to find a correlation between the discrete delta CFC and CFR
fractional differences. We see that a function ρ : Ga → R is

(
ν

1−ν

)
-increasing, when ρ(a) ≥ 0

and
(

CFR
a∆νρ

)
(w) ≥ 0

(
or by the correlation

(
CFR

a∆νρ
)
(w) ≥ −N (ν)

1−ν ρ(a)(1 + λ)w−a
)

for

w ∈ Ga and ν ∈
(

0, 1
2

)
. Conversely, we see that

(
CFR

a∆νρ
)
(w) ≥ 0

(
or
(

CFR
a∆νρ

)
(w) ≥

−N (ν)
1−ν ρ(a)(1 + λ)w−a

)
for w ∈ Ga and ν ∈

(
0, 1

2

)
for w ∈ Ga and ν ∈

(
0, 1

2

)
, when the

function ρ is increasing on Ga+1 and ρ(a) ≥ 0. These results finally lead to obtaining the
fractional difference mean value theorem.

Some of the ideas used in the current paper are similar to those for previously existing
models of discrete fractional calculus with various singular- and nonsingular-type kernels;
however, this is the first time that the discrete delta Caputo–Fabrizio fractional operators
have been used in this way to construct fractional difference mean value theorem and
monotonicity analysis. Previous contributions in this direction have included using discrete
nabla Caputo–Fabrizio fractional operators to construct difference mean value theorem [18],
using discrete nabla Atangana-Baleanu fractional operators to construct difference mean
value theorem [13], and using discrete nabla Caputo and Riemann fractional operators to
construct difference mean value theorem [15].

In the future, researchers can extend the results of this paper by considering other
types of discrete fractional calculus. The work here is set within the discrete delta Ca-
puto–Fabrizio model, but it may be possible to extend it, applying the same arguments in
some general class of discrete fractional operators, to obtain further results which would
be useful in the direction of monotonicity analysis.
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