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Abstract: In this article, we establish the weighted (k, s)-Riemann-Liouville fractional integral and
differential operators. Some certain properties of the operators and the weighted generalized Laplace
transform of the new operators are part of the paper. The article consists of Chebyshev-type inequalities
involving a weighted fractional integral. We propose an integro-differential kinetic equation using the
novel fractional operators and find its solution by applying weighted generalized Laplace transforms.
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1. Introduction

Fractional calculus history dates back to the 17th century, when the derivative of order
« = 1/2 was defined by Leibnitz in 1695. Fractional calculus has gained broad significance
in the last few decades due to its applications in various fields of science and engineering.
The Tautocrone problem can be solved using fractional calculus, as shown by Abel [1].
It also has applications in group theory, field theory, polymers, continuum mechanics,
wave theory, quantum mechanics, biophysics, spectroscopy, Lie theory, and in several
other fields [2-6]. Despite the fact that this calculus is ancient, it has gained attention
over the last few decades because of the interesting results derived when this calculus is
applied to the models of some real-world problems [7-14]. The fact that there are various
fractional operators is what makes fractional calculus special. Thus, any scientist working
on modeling real global phenomena can choose the operator that best suits the model.

The Riemann-Liouville, Griinwald-Letnikov, and Caputo and Hadamard defini-
tions [7,15,16] are some of the most well-known definitions of fractional operators, such
that their formulations include single-kernel integrals, and they are used to explore and an-
alyze memory effect problems, for example [17]. The fractional derivatives are represented
by the fractional integrals [7,10,15,18] in fractional calculus. There are several varieties of
fractional integrals, of which two have been studied extensively for their applications. The
first one is the Riemann-Liouville fractional integral defined for parameter f € R* by

0@ = g [ €= 0 Yottt p>0,80,
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inspired by Cauchy’s integral formula

¢ fy tp—1 1 6
dt ﬂ-n/) dt :4—7/ — )" Lo(t)dt,
J [ [T = s [PE -0 )

well-defined for n € N. The second is Hadamard’s fractional integral, which is defined by
Hadamard [19]

@0)@) = o [ 1055 W, ps0554

and is derived by the following integral:

/5 dty /t1 dty /" ' % = r(ln)/f(logg)nl@dt'

We start by recalling some related results and notions.

Definition 1 ([20]). The integral form of the k-gamma function is defined by
e} 7@}(
Q) = /ga—lerg, R(a) > 0
0

Clearly, T'(a) = limy_y1 T (a) and Ty (a) = k%*lr(%).

Definition 2. Let ®(a), R(B) > 0and k > 0, where we have the following k-beta function

/ i1 1—T “1gr.

Note that the relation between T’y and By functions is given by By («, B) = L ()l ()

Tp(atp) *

The (k, s)-Riemann-Liouville fractional integral (RLFI) [21] is given in the following
definition.

Definition 3. Suppose ¢ € Cla, b], then (k,s)-RLFI of order « is defined by

=% ¢ .
(:3a9)() = %/H (@ — i g(tdt, & € [a,b), (1)
where o,k > 0and s € R\{—1}.

Definition 4 ([22]). Suppose ¢ is a continuous function on [0,00) and s, € RT. Then for all
0<t<g<oo

(S) tx—;;(kJrk . .

(19590 = g @ [ -

Elp(t)dt, @)

where n = (o] + 1 and k > 0, is called a weighted (k, s)-Riemann Liouville fractional derivative,
provided it exists.
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Definition 5 ([23]). Let ¢, ¢ € [a, c0) be a real valued function such that (&) is continuous and
P'(&) > 0on [a,00). The generalized weighted Laplace transform of ¢ with weight function w
defined on [a, 00) is glven by

Li{o(x)}w) = [ e 0OV ODwx)g()y (v, ®
holds for all values of u.

Theorem 1 ([23]). The generalized weighted Laplace transform of D, ¢ exists and is given by
n—1
SH{OLP} (1) = u"S{P(E) }(u) — ) w1 Py(a).

k=0

Definition 6 ([23]). The generalized weighted convolution of ¢ and 1 is defined by

(@+§ 1)(§) =w™'() /f w(¥ (¥ (E) +¥(a) —¥(1))
X D(FL(F(Z) +¥(a) — () w(t)h(t)¥ (t)dt.

2. Weighted (k, s)-Riemann Liouville Fractional Operators

In the present section, we define the weighted (k, s)-Riemann Liouville fractional
operators and discuss some of their properties.

Definition 7. Let ¢ be a continuous function on [a, b]. Then, the weighted (k,s)-RLFI of order
is defined by

1-%.,-1 4 .
(w0 @) = ) et e teapn, telat], @

where o,k > 0, w(§) # 0and s € R\{—1}.

Remark 1. It should be noted that this integral operator covers many fractional integral operators.
(i) If we choose w() = 1, we obtain (k,s)-RLFI [21].

(ii)  If we choose s = 0 and w(&) = 1, k-RLFI is obtained [24].

(iii) Fork =1,s = 0and w({) = 1, it gives RLFI [7].

(iv) Fors — —1" and w(&) = 1, it is converted to the k-Hadamard fractional integral [25].

The following modification of Definition 4 is required to prove the claimed results.

Definition 8. The (k, s)-Riemann Liouville fractional derivative is defined as follows:
Let ¢ be a continuous function on [0,00) and s € R\{—1}. Then forall 0 < t < { < oo

K" 1 1 a—nk+k
R

dé{) /(gerl ts+1)”kT*”‘fltsq)(t)dt,

where n = [a] + 1 and a,k > 0, is called the (k,s)-Riemann Liouville fractional derivative,
provided it exists.
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Definition 9. Let ¢ be a continuous function on [0,00),s € R\{—1}, n = [a] + 1, a0,k > 0 and
w(&) #0. Then forall0 < t < & < oo

(9% w9)(§) = w 1 (§) (kg™ g) W ()G )(t), @)
where ifsgf % is a weighted (k,s)-RLFI.
It can also be written as
s+ 1) 0@
( +w¢)(€) Fk(nk—zx) (g dé—)

¢ n
< [CE = (g )t ©
a
Remark 2. It is worth mentioning that many other derivative operators can be represented as
special cases of (6).
(i)  Ifw(&) = 1is chosen, we obtain the (k, s)-Riemann-Liouville fractional derivative [22].
(i) Lets = 0and w(&) = 1, where it gives the k-Riemann-Liouville fractional derivative [26].

(iii) Fork =1,s = 0and w(¢) = 1, it reduces to the Riemann-Liouville fractional derivative [27].
(iv) It reduces to the k-Hadamard fractional derivative for s — —17, w(&) = 1[25].

Next, we present the space where the weighted (k, s)-Riemann-Liouville fractional
integrals are bounded.

Definition 10. Let ¢ be a function defined on [a,b]. The space X!,(a,b), 1 < p < o is the space
of all Lebesgue measurable functions for which || ¢ || x» < oo, where

/\
2

lol=[c+1 [ 1w@e@ P #ag]’, 1
w(§) #0,5 € Rand

|9 llxg= esssupa<e<y | w(5)@(E) |< co.

Noted that ¢ € X/, (a,b) @w(ij)go(g)(gs)% € Ly(a,b)forl1 < p <ocoand ¢ € X (a,b)
& w(8)@(¢) € Lo(a, b).

Theorem 2. Let« > 0,k > 0,1 < p < ocand ¢ € Xff,(a,b). Then {37, ¢ is bounded in
X% (a,b) and

N (S + 1)7%(1)5-&-1 _ as-&-l)%
Hi ‘jg*',wq) ||X"j’,S T(a+1) | ¢ HX‘{’] .

Proof. For1 < p < oo, we have

o (s+ 1) Fw(E)
1% Ja+w® llxr [S+1 / ‘w ¢) kT (a)

/g gs-&-l ts+1 1tsw(t)(p(t)dt’pgsd§} ll’

2—-% b
o !

X

/§(€s+17ts+1)%—1ts () dt‘ fjsdg}% @)
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Substituting &+ = v and #**! = u on the right side of (7), we obtain

: _(s+1>2‘?/
15350 I = o s

pst1

v N 1
/H(v—u)F_lw(us%l)go( % du‘ dv}p

By using Minkowski’s inequality, we have

: (+1°F /b / = o) (o] du]
350 It < Sy o L, @08 To@ingetndo] du
(S+1)/bs+1 e 1 (bs+1 u)(k 1)p+1 %
< S S d
S @) g (€0 @) | E—1)p+1 [
Applying Holder’s inequality, we obtain
~ s+ R T a1
% o+ w® lIxz < (())[/Hl (us1) @ (us+T) du] ’
a

Pt +1 (*-Dp+r1 1 1
<o =t ) 0l

where - 4+ = = 1. Further,

1,1
pq

IF 34

s+1 7
Pt w® iy < / ‘ t s+1)dt]”

bs+1 +1 _  N\(F-Dp+1 4 1
x {./aSH ((bs(i —Li))p—b—l ) du}q

(S—}-l)_%(bs—H s+1)

=

= kl"k(a)f || ¢ HX”
(s + 1)—%(bs+l _ as+l)%

For p = oo, we obtain

D F(p5TL — g5t E
@@ 0@ ST g g

Hence, we obtain the desired result. O

Theorem 3. Let ¢ be a continuous function on [0,00) and s € R\{—1} and w({) # 0, n =
[a] 4+ 1. Then for all 0 < a < &, we obtain

kgaw(i3g+ w(P)(C) = (P(g)r
where o,k > 0.
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Proof. Consider
197+ 0 (s w®) (€)
Gt e (9 Y
N kT (nk — ) e Q) k
g nk—a
< [CE =y ) (35 0 )y
1 a—nk+k 1 nk .
— (S +k12k<nk _“;) (C) (g— dg)nkn/ (és-&-l ys+1) 1y5w(y)
1) Fw! ;
(S + I{)Fk(:; (‘:) /ﬂy(strl o tSJrl)FiltSw(t)(t)dt
_ )"0 NE) s d
- o )€
é ‘: o nk—a
x /a orol /t e s L A A L ®)

By substituting z = ggﬂﬁ on the right side of (8), we obtain

s+1 ts+1

kgtfr w (i32+ w(P) (g)

IR VR () (&
k2T ()T (nk — a) a¢

< [F o e - ts+1>"-1[/f<1fz>%—1(z)"k;w

s+ D)mwl(E) (&
T K(w )Tk("k —a)7 dg

x / * B w()p(t) (@ — £ KBy (a, nk — a)]dt

1-n,,-1
_ (S—F}()rk(nc;;) (¢) (& g)nkn/ (t)go(t)((fs+l _ts+l)n—1dt

s 1-n,,-1
_ +1k)n1"(n) (©) (& Sdg)nkn /aétsw(t)q)(t)(gs+l_ts+l)n1dt,

)nkn

|t

)Hki’l

which gives
kguJr w(k‘jrfr a;(P) (6) = q)(g)

The inverse property is proved. O

Corollary 1. Let ¢ be a continuous function on [0,00) and s € R\{—1} and w(g) # O,

m=[B]+1,n=[a|+1 Thenforall0 <a<¢

108 LG5 0@ = (2P 0) (D),

where a, B,k > 0.

Corollary 2. (Semi-group property) Let ¢ be a continuous function on [0,00) and s € R\{—1},

w(@) #0,n=[a]+1,m=[B]+1and a + B < nk. Then forall 0 < a < ¢

108 LG9 9@ = (G2 0)(@),

where w, B,k > 0.
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Proof. By using Definition 9, we have

o8 GO0, @) = WOk d§> W@ G DL, L e)(©)
= w0 OkE §>" W@ GIE DL 9@ G )G,
By using Theorem 3, we have
08 LGOE 9@ = W i@k d§> w(@) GG,
= QKL () G P,

dg
which implies
0% (90 0@ = (2510 9) (@),
k~at,w\k¥ ot 0P ot w?

which is the required result. O

Corollary 3 (Commutative property). Let ¢ be a continuous function on [0,00) and a, p € R,
w(g) #0ands € R\{—1}. Then forall0 < a < ¢

108 LG9 (@) =98, (D8 ,0)(@).

Corollary 4 (Linearity property). Let ¢ be a continuous function on [0,00), k,a € RT,
w(g) #0ands € R\{—1}. Then forall0 < a < &

k:Dl,zJr w[lp(g) + Vh(g)] :i ©g+,wlp(§) + :uk@zfr wh(g)/
wheren € Nand n = [a] + 1.

Theorem 4. Let ¢ be a continuous function on [a,b], k > 0, w(&) # 0and s € R\{—1}

90, R (@) =5 3% L3P e(@)] =5 351F 0 (2),

foralla, B> 0and & € [a,b].

Proof. By using Definition 7 and Dirichlet’s formula, we obtain

,iszw[koqu)(c)]

_ (S+1) 1(‘:) /c(é—s—i—l _ts+l)% —1y4s ( )s~,5 ( )

- kl"k(zx) Wt w?
GRS s (9 N LT RNPI
= R L @ e e ()

kT

)T L
= enan -, Temeo

« /C(gerl _ ts+l)%fl<ts+1 s+1) s dedr. )
T

_B ¢
(et - iU [t =t e ] ar
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t5+17T s+1

By substituting y = ST e ON the right side of (9), we obtain

S~

ot w[k6a+ w(P( )]
1 e (@)
T RO (P)

¢ (ifSH _ TSH)#A
“J
a (s+1)

e (9
o kT (a + B)

= 317 0(0).

The proof is completed. [

kBy (&, B) TP w(T)@(T)dT

/5 (gerl _ Ts+1)#71Tsw(T>§1)(T)dT

Theorem 5. Let a, B, k > 0, w() # 0and s € R\{—1}. Then we have

s~B -1 st1_ st1yBory _ De(B)(EH! —a5+1)#’1w—1(§)
PN O (S [ (SR AR (s +1)ETg(a + B)

7

where Ty, denotes the k-Gamma function.

Proof. By using Definition 7, we obtain

Wh LT @@ —a

I .
_ (S+1]irk(;)) (6)/ﬂ (€s+1_ts+1)%7lts

% (§s+1 . as+1)€—1w—1(t)w(t)q)(t)dt. (10)

s+1_ys

By substituting y = éﬂw on the right side of (10), we obtain

Wb @@ - atE

_ DT @@ -t !
B kT (a)

1 " i
></0 (1—y)&y)Fdy

B (S—I—l) (§s+l s+l)
B KTy (a)

CTBET -t (@)
(s+1)kT(a + B) '

lxﬂi 1

gy (a,p)

This completes the proof. [
Corollary 5. Letk > 0, w(§) # 0and s € R\{—1}. Then, we have

(gs—&-l _ as-&-l)%—Zw—l (C)

(s 4+ 1)k (a + B)

W Gl (@) (M) = (11)
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Remark 3. Taking w(¢) = 1in Theorem 5 and Corollary 5, we obtain results of [21].

Remark 4. If we choose s = 0, k = 1 and w({) = 1 in Theorem 5 and Corollary 5, we obtain
results for Riemann Liouville.

3. Some New Chebyshev Inequalities Involving Weighted (k, s)-RLFI
Weighted (k, s)-RLFI formulations of Chebyshev-type inequalities are as follows:

Theorem 6. Let ¢ and  be two synchronous functions on [0, c0). Then for all t > a > 0 and the
weighted function w(&) # 0, the following inequalities for weighted (k, s)-RLFI hold:

S~ 1 S~NK S~Nn
ot wPP(t) = Wkdﬁ,w(t)kxlﬁ,ww(f) (12)

k‘jzﬁ,w

and

i3Z+,w¢lP(f)iﬁf+,w(1) H I (D3 (1)
B8 P (DR300 (D) +5 35 P (D33 00), 13)

Y]

where o, B > 0.

Proof. Since ¢ and ¢ are synchronous on [0, ), for all §, iy > 0, we have

(@) — o) (¥(S) —¢(y)) >0
PO P(&) + oW Y(y) = (@) p(v) + ()P (E). (14)

- _ «
Both sides of (14) are multiplied by % (#511 — &+ 171w (&) and integrating

w.r.t ¢ over (a,t), we obtain

S 17%6&)71 t u
(+2nm)(wﬂwﬂ—?“ﬁlfw@w@waﬁ

(S+1)1_%w71(t) ! s s %—1xs
e e NG S L oL s

1-%,,-1 t o
> g SO et e e e

s+1) " kw ! t «
+p()? +1k)Fk(1x) 4 /a (T = &1 w () p(g)de, (15)

which gives

130+ W) + oY (Y)ides (1) = p)iJe+ L@ (H) + @(W)iJ5+ LP(b).
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(s+1) kw1 (D)

Both sides of (15) are multiplied by K7 (@)

w.rt y over (a,t), we obtain

(B+1 — 1) %—1w(y)ys and integrating

o s+1 I=F o1t t a_
5ot zzrk((x) ® /a (T =y )y w(y)dy

S 1_%w’1 «

it S [t o ooty
-2 1 X

Rl G AR L O LY

s+1)kw ! t X
( +112Fk(zx) (t)/a(tSH‘F/S“)leSW(yw(y)dy.

+i3g+,wlp(t)
This can be written as
z:‘g‘*,wqolp(t)i‘?g‘*,w(l) +i JZ+,w§01/J(t)iJZ+,w(1)
>3 Tne wP(Did0s (1) +2 35+ L@ (B)iJ5+ L ¥(8)- (16)

On simplification, we obtain

2Ii3§+,w¢lp(t)li3§+,w(l) > 2i32+,w¢(t)iﬁg+,w¢(t)r

which can be written as

~ 1 ~ ~
(0 (0 2 i (O} )

B lsc‘/]aﬂw
This completes the proof of (12).

(s+1)1*€ar1(t) B
Both sides of (16) are multiplied by W(t”l — ) Lw(y)y® and inte-

grating w.r.t y over (a,t), we obtain

ot S [t

e, 113;,{55”(” [ =)ty
S O 113;,{55] O [y

980 E U e gt

which gives
8 o050, (1) +530, e (D532 (1)
>3 38 o @O0 (D) + 3% (033 (D).

The proof of (13) is done. O
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Theorem 7. Let ¢ and  be two synchronous functions on [0,00) and h(t) > 0. Then for all
t > a > 0, the following inequality holds:

a3 G 0
(s + 1)1 FTR (B + k)
w! (g) (ts+1 _ as+1) Zs~ v q)l,bh( )

(s+ 1) (e + k)
> T hlt >“f+w¢< £) 35 Pt >kdu+w¢< )
—3% (DRI ow() =138 Lew(DRI0. ()
Fidat W@t )S~§+ W) 3 30 (1T, @R (E), (17)
where o, p > 0 and w({) # 0.

Proof. Since the function ¢ and ¥ are synchronous on [0,00), h > 0, for all o, § > 0,
we have

This gives
P(E)P(OR(E) + e(y)yp(y)h(y)
> 9(Q)YW)h() + W) (E)h(E) — e(y)¥(y)h(E)
—@(Q)p(O)h(y) + e(S)p(Wh(y) + o(y)P(E)h(y) (18)

Both sides of (18) are multiplied by ()# (51 — gt

w.r.t ¢ over (a,t), we obtain

(s4+1) " Fw™

1 t
O [0 - )i 00@p@)p@n@)

-2 1 X
oy S [ e e

1-%.,-1 t u
> g S [ ez h +

(s+1)""Fwl(t)
ka(a)

-4 1 .
W)Y ) krk(;; ) /at(ts“—CS“)Tlé‘sw(é)h(C)dé‘

[ - e e@p@ne

17% -1 t o
n(y) D [ e i@

s e % t «
e e e A I SN GIGE

-2 1 X
+ont) ST [ - e tea@pio (19)
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B
-2 _
After multiplying both sides of (19) by %W

ing w.r.t y over (a,t), we obtain

(511 — y5+1)€*1w(y)y5 and integrat-

08 oph(D5E, [0 M@ (V)] 41 3%l 1@ (DIRE, gwh(h)
>898 (D50, () 45 3% Lgwh(D5, Jo(t) —53% (3L, Lo (D)
R (D50, h(D) 1% @(DRE. wh(D) 135 (5L, eh(h),

which implies

Wﬁ; (é) (ts+1 _ as+1>€72232+ w<PlPh(t>
(s+ 1) (s + ) ’
w (@) (51— as+1>%7223§+,w4)¢h(t)

(s4+ 1) k(a4 k)
>3 38 W Ph(DRI0, 0 (6) 45 3% Ph(DF0, (1) =3 3% Jh(E3AE, Lop(t)
—3% L@ (D50. h(1) 4538 L @(DR3E. Jwh(t) +5 3% (D53, eh(t).

Hence, the result is proved. O

Corollary 6. Let ¢ and ¢ be two synchronous functions on [0,00] and h > 0. Then for all
t > a > 0, the following inequality holds:

w (%) x
_ ts+1 _ as+1 ffzsﬁa h(t
(S—|—1)1ifrk(0(—|—k) ) k a*,w(/)lp ( )

Zi 3Z+,w¢h(t)i3g+,w¢(t) +Isc 3g+,w¢h(t)iﬁg+,w¢(t) 7% 3Z+,wh(t)i3fz‘+,w(plp(t)l (20)

where o, p > 0 and w() # 0.

Proof. If we replace j to & in Theorem 7, we obtain the result (20). O

Theorem 8. Let ¢ i and h be three monotonic functions defined on [0, oo| and satisfying the following

(9(8) = eW))($(S) = ¥(y))(h(&) = h(y)) = 0.

Then for all t > a > 0, the following inequality holds:

CU—; (¢) (ts+1 _ as+1)€*2iﬁg+ W PPh(t)
(s +1)! kT (B +k) ,
w—l((’;’) (ts-‘rl _ as+1)%_2i35+,w¢¢h(t)

s+ 1) (k)
>3 3% L Ph(DRI0, 0 (6) + 532 Ph(DF3D, Jo(t) —53% Jh(E3IE, Lop(t)
38 W5, h(D—53% @530, wh(t) — 535 ,w(Di3E, eh(t).

where w, B > 0 and w({) # 0.

Proof. Use the same argument as in the proof of Theorem 7. [



Fractal Fract. 2021, 5,118

13 of 18

Theorem 9. Let ¢ and  be defined on [0,00]. Then forallt > a > 0w() # 0, a, p > 0, the
following inequalities for weighted (k,s)-RLFI hold:

W*l(g) (terl o aerl)§72’s{‘~jrxJr (pZ(t)
at,w
(s + 1) Fre(B+ k)
w (¢) ;
_ sty E255P 0 2y
(s+1)17rk(zx+k)( o ()
> 238 (D530, () (21)

and
W8 LR WP 130 PR R > 208 Lep(D3E. Lew(t) (22)

Proof. Since (p(&) — $(y))* > 0 and (¢(&)i(y) — 9(y)$(Z))* > 0 using the same argu-
ment as the proof in Theorem 7, we obtain (22) and (21). O

Corollary 7. We have

w () a
_ 51 gs g —2s e 2(4 +s5ﬁ 24
(s+1)1_?Fk(uc+k)( ) [k a*,wq) ( ) k a*,ww ( )]
> 2038 9Bk L p(t) (23)
and
W W@ (DR 97 (1) = (35 ,op(0)]*. (24)

Proof. If we replace B to « in Theorem 9, we obtain the inequalities (23) and (24). O

Remark 5. If we set w({) = 1 in Theorems 6-9, then we obtain the inequalities of Theorems
3.1,3.2,3.4, and 3.5, respectively, given in [21].

Theorem 10. Let ¢ : R — R with $(¢) := [ w(t)F(t)dt, forall ¢ > a > 0,5 € R\{~1}.
Then o >k > 0and w(&) # 0, we have

~ 1g. Ay
WL 9(@) = L Ll T (@9 (25)
Proof. By using Definition 7 and the Dirichlet’s formula, we have
W W@ (©)P(@)]

(é) /g(gerl _ tsH)%*1tsw*1(t)w(t)¢(t)dt

a);—l(g) /;(gsﬂ a t5+1)%—1ts[/tus(p(u)a)(u)du]dt

a

_ D)) /j usfp(u)cu(u)[/j(‘fs+1 — i et du

= K39 (0)-

Hence, we obtained the desired result. O
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4. The Weighted Laplace Transform of the Weighted Fractional Operators

In this section, we apply the weighted laplace transformation to the new fractional
operators. For this purpose we need to substitute () = t**1 on the right side of (3), where

we have

o) = (s+1) [T Narp(n,

Ja

which holds for all values of u.

Proposition 1.

—~
Eaatsd
~—

, u>0.

Pl @@ —a) i ) =

<
~=

Proof. By using (26), we have

£${w—l(§>(§s+l _ as-i—l)%—l}(u)
= (s+1) /00 e,u(55+17as+1)(§s+1 _ u”l)%*l(jsdg.

By substituting t = (&1 — a¥*1) on the right side of (27), we obtain

Qw{a]*l( )(Cs+1_ s+1)%71}(u)
_/ ”ttk

ﬁ -1
=/ o % i g"“

1 [ «
= — e*”t(ut)Ffludt,
uk Jo

which gives the required result. [J

(26)

(27)

Theorem 11. Let ¢ be a piecewise continuous function on each interval [a, ] and of weighted

y-exponential order. Then
{595, 9) (@)} () = (s k) €5 {p(@)} u),
where k > 0, w(&) #0,s € R\{~1}.
Proof. By using Definitions 6 and 7 and Proposition 1, we have
S (135 ,9) O}
- (& 1,ﬁrk( L /a @ - () ()

(s+1)7 % %

= krk { s+1 _ts+1)%—1 *(JJ} (P(é)}(u)
= (sk;-kl )Tk { Cs-i—l —t5+1)%_1}(u) ‘J{(p({;’)}(u)
- (kﬁk% W e 9@

= ((s+1)uk) £ €5 {p(8) } (u).

This proves the claimed result. [

(28)
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Theorem 12. The Laplace transform of the weighted (k, s)-Riemann Liouville derivative is given by

G Dr @) (E) } ()
(s—l—l)_T (ku) ¥ £ (@)} (u

—WZﬂ"m“ﬂLW)VW (29)

Proof. By using Definition 9, Theorems 1 and 11, we obtain

S (98 ,0) (@)} 0)
= SR W G ) (0} )
~ S H)
- G )
= ()" (s k) "7 2592} ()
S WA ATy
= (s +1)"F (k) F 259} ()
T G ),
which gives the required series solution. [J

5. Fractional Kinetic Differ-Integral Equation

The fractional differential equations are significant in the field of applied science
and have gained interest in dynamic systems, physics, and engineering. In the previous
decade, the fractional kinetic equation has gained interest due to the discovery of its
relationship with the CTRW theory [28]. The kinetic equations are essential in natural
sciences and mathematical physics that explain the continuation of motion of the material.
The generalized weighted fractional kinetic equation and its solution related to novel
operators are discussed in this section. Consider the fractional kinetic equation given by

a5  N)(t) — Nog(t) =b(3h. ,N)(1), ¢ € L[0,00), (30)
with initial condition
w(0) (R34 2N)(0) =d, d >0, (31)

wherea > 0,a,b € R(a #0),k>0,n=[§] =1

Theorem 13. The solution of (30) with initial condition (31) is

-1 = g (s +1)pH0+mk a1 B
N(t) = dw ; b’ Ty oc+(zx+,3))(€ )
B0y (s nypr ekl g) o) (32)

u m=0
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Proof. Applying the modified weighted Laplace transform on both side of (30), we obtain

EoLGDE: W N)(B)H(u) — L5 {Nog (1)} (1) = BEGLGI5. N () }(w).

Using Theorems 11 and 12, we obtain

a(s +1)7F (k) E L {N(8)} () — kw(0) (G574 N) (0) — NoZy {p(1)} (w)
=b(s +1)F (uk) ¥ LF{N (D)} (u)

—k+/3 atp

—b(s+1)" %_k} C{N(t)} = akd + No L5 {p(t)} ()

(s+1)"*F (ku)~

u

(s+1) Tk< ku)~k

>

GAN(t)} = akd| —]
’ 0= b(s+1)° 2 (k)
(s+1)~"° (ku) ¥
- el
a—>b(s+ 1) (ku) 3
X NoLyg{e(t)} (u )
Taking ‘%(s + 1)*0‘7?/S (ku)*#‘ < 1, we obtain
SON(H)} =[kd[(s +1)F (ku)~F] +a 'No[(s + 1) "F (ku)~F])
0 b " _ (a—k+B)n _ (atB)n w
x ZO(E) (s+1)7 0 (ku)” + £{e(t)}(u)
n=
a— wy o b a—k+p)n (atp)n
= kd[(s+1)""F (ku)~t] ) (E)"(sﬂ)—#(ku)—%ﬁ
n=0
+a N [(s+1)"" (ku) 7]
— b —ktpin Sl
D MONCES e U STOHT
d Z (g)n(s n 1)_(n—k)(nk+1)+nﬁ (ku)_(w+ﬁk)n+u
n=0
No & b (a—k)(n+1)+np (a+p)n+a
LD DECLICES ) i ) I e A IO )
n=0
_ kd 2 (g)n(s + 1)7(lx—k)(nk+l)+nﬁ (ku)fowﬁk)nﬂ
n=0
NO 00 b n _(a+,B)n+a (P’l-‘rl) a+ﬁ)n+a w
D DGO RCE VN Ch S DA (O Lido®)}(u).
n=0
Applying inverse Laplace transform, we obtain
(a—k)(n+1)+np
g v ba(s+1) TR (atp)rra
Nt:d 1t ~\n S+1_ s+1 1
() w ()HZ:O(Q) rk((ﬂé'f‘ﬁ)n‘f'“) (g a ) k
No o b n n S~ n
+ =LY () s+ )G ) 0),
n=0

The proof of the result is completed. [
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6. Conclusions and Discussion

Fractional calculus is currently one of the most widely debated topics. In the present
article, we introduced the weighted versions of the (k, s)-RLF operators. We then inves-
tigated and examined their properties and found the weighted Laplace transform of the
new operators. Significantly, these operators reduce to notable fractional operators in the
literature. Other fractional operators, such as the Riemann-Liouville fractional operators
and Hadamard fractional operators, show up as special cases of these weighted fractional
operators with specific choices of weighted functions and operator functions. We have
developed the Chebyshev inequalities by involving the introduced fractional integral oper-
ator. We developed a fractional kinetic equation and the weighted Laplace transform used
to find the solution of the said model. The presented results motivate scientists to stimulate
more work in such directions.
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