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Abstract: In this paper, we introduce a new Caputo-type modification of the Erdélyi-Kober
fractional derivative. We pay attention to how to formulate representations of Erdélyi—-Kober
fractional integral and derivatives operators. Then, some properties of the new modification and
relationships with other Erdélyi-Kober fractional derivatives are derived. In addition, a numerical
method is presented to deal with fractional differential equations involving the proposed Caputo-
type Erdélyi—Kober fractional derivative. We hope the presented method will be widely applied
to simulate such fractional models.

Keywords: fractional integrals and derivatives; Riemann-Liouville fractional operator; Caputo
fractional operator; Erdélyi-Kober fractional operator; predictor—corrector method

1. Introduction

The fractional calculus theory has recently received considerable attention due to the
wide applications of fractional derivative operators in the mathematical modelling of many
realistic phenomena that involve non-locality and memory characteristics [1-6]. Fractional
derivative operators, which are usually defined via fractional integral operators, help to
collect useful information about the evolution of the materials and processes involved in
the phenomena. In the literature, many fractional derivative operators, such as Riemann-
Liouville, Hadamard, Caputo and Erdélyi-Kober fractional operators, have been proposed
and implemented. The Riemann-Liouville (R-L) fractional integral operator, which is one
of the most used and studied definitions, of order & > 0 is defined by [1-5]:

t
B0 = g [ 0= @ > M
In light of the above definition, the R-L and Caputo fractional derivative operators of
order & > 0 are defined by [1-5]:
1 ar
I'(n—a)dtr,

D f(t) = L"D"f(t) = r(nl_a)/at(f—T)”_“_lf(”)(T) dr, t>a, ()

D f(t) = D" f (1) = /at(f*T)"_”‘_lf(T) dr, t>a, (2

respectively, wheren —1 < « <nandn € N. Details and properties of the above operators
can be found in [1-6]. In fact, one can easily recognize, forn —1 <a <n,f>0and t > a,
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the following properties:
IR f(8) = P, 4)
and f +)
(a
I3, CDyf(t) = 2 (t—a). )

The Erdélyi-Kober (E-K) fractional integral operator, Iz, ., ,, of order « > 0, which is

a modification and extension of the R-L fractional integral operator, is described as [1,5,7]:

—p(a+17)
(Lay00.f) (1) ZPW/Q e — )l f(Tydr,  t>a>0, (6)

with p > 0 and 7 € R. The E-K fractional integral operator has been used to solve single,
double and triple integral equations that have spatial functions of mathematical physics
in their kernels. Some applications and properties of the E-K fractional integral operator
can be found in [1,5,8-18] and references therein. Based on the fractional integral operator
given in Equation (6), the E-K fractional derivative operator, D}_ ., ., of order @ > 0, where
n—1<a<mnp>0andy € R, is defined as: [1,5]

_ 1 d\»
(Opnf) O =7 (o) D (Byeal )0 2020 0)

a+50,1]

Using the principle that [T/, [ +j + %td%} ()= [t (p 1 d)"p(n+1)](.), an alter-
native characterization of the E-K fractional derivative operator can be formulated as [19]:

n
1
(Dg-&-;p,ﬁf)(t) H[U+J+ }(I+pr]+af)() t>a>0. (8)
1=
In particular, if o, p > 0,0 > 0,7 € Rand t > a > 0, we have the following properties:
(Ig+prylf+p71+ucf)( ): (;i_gr]f)( ) )
and .
(Du+;p, 11+,p,17f)( ) f( )/ (10)

for “sufficiently good” function f. For more details, properties and characteristics of the
E—K fractional integral and derivative operators given in Equations (6) and (7), respectively,
the reader is advised to refer to the work presented in [1,5,10,19]. A modification of the
E-K fractional derivative operator in the Caputo sense has been introduced in [19]. A brief
review of this modification is presented in the next section.

In view of Formula (5), the Caputo fractional derivative has many features similar
to integer-order derivatives, and so it is extensively used to model numerous real-life
problems in fractional calculus applications. The main objective of this study is to present
a Caputo-type adjustment of the E-K fractional derivative, which is somewhat similar
to the Caputo fractional derivative given in Equation (3). Then, we discuss some of its
properties and relationships with the E-K fractional integral and derivative operators given
in Equations (6) and (7). Furthermore, a novel predictor-corrector method for solving
Caputo-type E-K fractional differential equations (FDEs) is introduced.

2. Luchko and Trujillo’s Modification

In [19], Luchko and Trujillo define a Caputo-type adjustment of the E-K fractional
derivative operator and introduce some of its properties. Leta =0,n —1 <a <n,n € N,
p > 0and 7 € R. The modified E-K fractional derivative operator, D . 0117 of order a is
defined, according to Ref. [19], as:
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—_

n—

. 1.d
(DO = a1 L n )+ 5150 F) 0, >0 1)

.

That is,

—p(nty) ot - 1 d
o - p(nta)+p=1p _ el i
(*DO;p,qf)(t)*pr(nia) /0 T (t (|:| 1+77+]+pTdT)f>(r)dT. (12)

Define the space of functions C},,, where « € R,a > 0 and n € N, to be the set of
all functions f that can be expressed in the form f(x) = x?f(x), x > a, with p > « and
f1 € C"[a, ). Accordingly, depending on the previous definitions, we have the following
properties and relations.

Theorem 1. Leta = 0,n—1 < a <n,ne€ N,p >0andny € R. Ifﬁ > —p(n+1),
then the E-K fractional integral operator I,y is @ linear map of the space C) ﬁ into itself. If

B> —p(n+1)and f € C”ﬁ, then the E— Kfmctzonal derivative Dy, ., . f € Cy o, Moreover, if
B>—p(n+a+1)and f € Cj. B then the Luchko and Trujillo modification of the E-K fractional

derivative .Dg ., f € Co;ﬁ'

Theorem 2. Leta=0,n—1<a<nneN,p>0andy € R
1. IfBp>—p(np+1)and f € C) g then the E— K fractional derivative operator DG, , is
left-inverse of the E-K fractional integral operator Iy,

2. Ifp > —pp+a+1)and f € C";ﬁ, then the following relationship between the E-K
fractional integral and the Luchko and Trujillo’s modification of order o holds.

n—1
(6,0, «Doyp, f) (£) = f(t) — k;) pypt =Pk (13)
where 1
= lim tPUHk+D) ﬁ (n+i+1+ 1ti)f(t) (14)
Pe= thglot i=k+1 1 p dt

3. Iffecy B where B > —p(n + 1), then the following inverse property holds:

(*Dg;p,q Ig;p,qf) (t) = f(t) (15)

The proof of Theorems 1 and 2 is given in [19]. The main advantage of Luchko and
Trujillo’s modification is that the constants py, k = 0,1,--- ,n — 1, given in Equation (14),
are based on the integer-order derivatives of the function f and are not conditioned by the
initial values of the E-K fractional integrals at t = 0.

3. The New Modification

In this section, we introduce and provide some characteristics of a new Caputo-type
adjustment of the E-K fractional derivative. Initially, we investigate a useful connection
between the E-K fractional integral operator, I ., ,, given in (6) and the R-L fractional
integral operator, If, given in Equation (1).

Theorem 3. Leta > 0,p > 0and € R. Then,

(e £) () = (x5 (7 f(x1/9))) t>a>0. (16)

x:tP’

Proof. Applying the change of variables z = 7 to the E-K fractional integral formula
given in Equation (6) yields:
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(x7 D

(o)) = SR [ (80 — 2% 12 f(21/0) dz.
x—(atn)  rx a—
= (S a2t ) )

Comparing the above integral with the R-L fractional integral given in Equation (1),
the relation (16) can be, thus, derived. O

(17)

x=t0

Indeed, if n —1 < @« < mand n € N, we observe that the R-L fractional operator
given in Equation (2) can be produced from the fractional integral operator presented in
Equation (1) by replacing the operator I, with the composite operators D"I;/,*. Now, if
we replace the term x~*~7 by x 7, the operator I?, by the composite operators D"}, * and
the term x” by x”** in the right-hand side of Formula (16), we get:

(x"? D" I;ll’_lx (xW-HX f(xl/p))> I(n—a)

= (priy D" i (e — oy teplr) e (7 de

\ _ ( x_pn f;f,(x—z)"_”‘_lz”"""f(zl/'”) dz)
x=tP

=" (18)

’
x=tf

using the change of variables T = z!/¢, wheren —1 < a <n,n € N,p > 0and y € R.

Following the rule that (D" f(x))|, _,, = (W%D)"(f(tp)), we obtain:

_ n
(8 f(xl/p))) ‘x:tp — pl’(;ipja) (pﬂ}il D) fat(tP — gpyn=a—lop(y+a)+p=1£(7) dr,

_ 1 4\" _
—t p”(pwm) tp(h-&-?])([ng;z,’Haf)(t).

Consequently, the E-K fractional derivative operator given in Equation (7) can be
reformulated as:

(Diegnf) () = (x77 DI (215 f(:1/0)))

Now, in a similar manner, the suggested Caputo-type modification of the E-K frac-
tional derivative operator, Dz ., ,, can be defined by replacing the term x™*~7 by x77,
the operator I% by the composite operators I’, “D" and the term x by x7** in the right-
hand side of Formula (16) (i.e., interchanging the order of the operators D" and ;™ in

Formula (20)). So, using the conceptual relationship:

(Daipnf) () = (x’” I-*p" (x’l+“f(x1/p)))

(19)

,  t>a>0. (20)

x=tP

t>a>0, (21)

x=tP

we get

(Dipnf) () = <F(J;1727a) Jo(x = 2)"87ID" (2140 f(21P) dz) ‘x=tﬂ’ (22)
= (e 1 e = () (e () ar)

’
x=t¢

where T = z!/f, which suggests the following characterization.

Definition 1. Letn —1 <a <n,n € N, p > 0andn € R. The new Caputo-type modification

of the E-K fractional derivative operator, Dg. ., ., of order a is defined as:

—p7 t n
(Dg+;p,;7f)(t) = Pﬁ/a (0 — Pyl (p;_lD) Tp(’”“)f(r) dr, (23)

wheret > a > 0.
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(1840 D f)(8) = (x700 {wn (/) - g (e ) B, - (=) )
)

Remark 1. The new Caputo-type adjustment of the E-K fractional derivative operator, using (6)
and (22), can be reformulated as, wheren —1 <a <n,n € N,p > 0andn € R,

_ 1 n
(Dfs i ) (1) =t I8  tPUTe) (FD) U f(),  t>a>0.  (24)

Theorem 4. Leta > 0, n—1 < a < n,n &€ N,p >0,y € Rand f € C",. Then,

;B
(Dg‘ﬂpl,?f)(t) € Cg;ﬁ ifp> —p(n+a—n+1).

Proof. Assume that f(t) = tfi(t), where fi € C"[a,00) and p > B, then, using simple
calculations, we can obtain that

P (ta) (L

" oo(na) & ontk (K)
5=iD) T f() = T a0 ), 25)
p k=0

for some constants ¢y, ¢1, -+, ¢;—1. Now, from Theorem 1, we can observe that the

E-K fractional integral operator I, ., is a linear map of the space CS,.7 into itself
when v > —p(n7 4+ a +1). Therefore, using the relation (24), we can conclude that
tP" - (Diy ) () € Cg;ﬂ—pn if B—pn > —p(y+a+1),and so (D5, ,f)(t) € Cg;/5
if>—p(n+a+1)+pn O

We can easily observe that in the case of p = 1 our modification (D%, ot )(t), ac-

cording to Definition 1, reduces to + D%, 172 £(t), where D%, is the Caputo frac-
tional derivative operator presented in (3). Next, we investigate the main property of our
new modification.

Theorem 5. Leta > 0, n—1<a<nnée N, p>0n€RB>—-pn+a—n+1)

and f € CJ. g Then the following relationship between the E-K fractional integral, introduced in
Equation (6), and our adjustment of the E-K fractional derivative holds:

(4 0( o — 1
(I8 Dy f) (8) = f(2) = £7P10FD) Z a (27 £( UP))( )‘x:ap (0 —af)*. (26)
Proof. Firstly, we have (Df,,,,f)(t) € CS}B and B> —p(p+1)if B> —p(p+a—n+1),

and so (I, Dy, f) () € Cg;ﬁ. According to the conceptual relationships given in
Formulas (16) and (21), the following relation holds:

(Ing;p,iy Dg+;p,r]f) (t) = (xilxiﬂ Igﬂ {xﬂ (Dgﬁpﬂ?f) (xl/p) }) ‘x:tﬂl

27
= (e o (e e s )
X=
Following property (4), we get
(10 Dspnf)(B) = (37T D" (<7 (/) )| . (28)

2 (x — a), we obtain

~
—
R
N—
|

=2
gl

AN
\N
~ =

Using Theorem 2 and the fact that I/ D" f(x) =

7
x=tf

- 9)
= F() = P T L g0 (a0 - (10 — a0,
k=0

where g(x) = x17% f(x1/°). O
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Remark 2. In particular, given 0 < « < 1, the relation (26) reduces to

(Ig+ 01 Zé""';plﬂf) <t) = f(t) - up(lx+17)f(ﬂ) . tiP(a‘H'])_ (30)

Remark 3. Ifa = 0,0 > 0,7 € Rand 0 < « < 1 then the Luchko and Trujillo’s modification
and our adjustment of the E-K fractional derivative given in Formulas (12) and (23), when t > 0,
reduce to:

—p(+1)
(Dl )0 = Fts [ 000100 —2) o+ () + o () e, D)

and
£ ! (n+a)—1 - !
(Db )0 = gy fy *0 7 =) ol +)f @) o (D) v, (32)

respectively. Comparing (31) with (32), in general, we can conclude that they are not identical.
For example, if we take f(t) = 1 with the parameters a = 0, p > O O<a<landn = —ua
then, using Equations (31) and (32), we obtain (, Dj,, , f)(t) = (1 xy While (D, f) () = 0.
Therefore, the Luchko and Trujillo’s modification and our adjustment of the E-K fractional derivative
are not equivalent.

Remark 4. In particular, if0 <a <1,a>0,p >0, € R, B> —p(n+u), f € Cg;ﬁ and
8(t) = (Ifs,p,, f) (t) then, form the relation (10) and using Theorem 5, we get:

(Di1s098) (1) = Dy {8 () — af*HWg(a) - 7Pl (33)

So, since g(a) = 0, we obtain:
(Dg—&-pty a+p17f)() (Dg—&-pq a+p17f)() f(t) (34)

Remark 5. If we simplify the term (x"** f(xl/P)) () ‘x:ap in the relation (26), we can show that

(1%, .om Datsonf ) (t) depends on integer derivatives of the function f at a, which is the same case

in the relation (5).

Remark 6. If we take § = —a and p = 1 then the relation (26) reduces to:
o 1 o o
(Iu+1 —u a+l txf)() f()_Zﬁf(k)(a)O_a) :(I CD +f)() (35)

Hence, the relation between our modification and the E-K fractional integral, given in
Equation (26), can be considered as a generalization of the relation between the R-L integral
and the Caputo derivative, given in Equation (5).

Note that the property (10) holds if f € CC B where B > —p(n + 1), and that

B> —pn+1)if p > —p(y +a —n+1). Applying now the E-K fractional deriva-
tive operator, Dz, ., ,, to both sides of the relation (26), using the property (10), we gain the
following result.

Theorem 6. Leta > 0,n—1<a<nneN,p>0neR B>—p(y+a—n+1)and
fe Cg.ﬂ. Then the below relationship between our adjustment of the E-K fractional derivative
given in Definition 1 and the E-K fractional derivative given in Equation (7) holds:

(Dg+;p,77f)() Dg+pr]{f )=t~ plat) 2% 17+af 1/p))( )|x:ap-(tp—ap)k}. (36)
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dxF -
accordance with Theorem 6, the new adjustment of the E-K fractional derivative matches the E-K
fractional derivative given in Equation (7) (i.e., (Dg ., f)(t) = (Di 0, f) () ).

Remark 7. If we have [dk (x’7+“f(x1/P))} ‘ , = 0, forallk = 0,1,---n—1, then, in
X =a

Next, we give our new adjustment of the E-K fractional derivative for the function
f(t) = t’P(’H”‘)(tP—aP)”. Letn—1<a<nneN,p>0nceRv>n—1landv ¢ N.
Then, using the relation (21), we have, for t > g,

DY, (PO (10— ap)7} = {x—ﬂ I"%p" (x — ap)”} "
v x= (37)
— — v—n
:v(v—1)~~-(v—n—|—1){x 1IN (x —a) }x:tp'
Using the properties of the R-L integral operator, we get:
_ — F(U —n-+ 1) v—n
n—u _aP\VT _ 0
I (x —af) 71"(1)—04—#1)(9( a’) o (38)
Substituting (38) into (37), we obtain the result:
- F(U + 1) _ v—u
+ —
Ditsipy {t P (# —a)"} = Two_arn) =) (39)

The last problem that we consider here is to verify that our adjustment of the E-
K fractional derivative operator Dj is a left inverse to the E-K fractional integral

a+;0.
operator Iy ., .

Theorem 7. Leta > 0,n—1<a<nneN,p>0n€eR B>—p(y+a—n+1)and
fe C2~ﬁ' Then the following rule holds:

(Dg+;p,17 Ig+;p,11 f) (t) - f(t) (40)
Proof. Define the function h as h(x) = (I o | ) (x), then, using Theorem 3, we have:

XHp(P) = 1% {x f(xP)]. (41)

Following the R-L integral operator properties, for k = 0,1, - - -n — 1, we obtain:

k
£ (@HGI) = DI (1 G9)),
e @
= I {1 f(xe))
However, using the relation (16), we have (Igp*k {x f(xl/P)})’ , = o (atn—k)
x=t
(Ia"‘;];,]f) (t). Furthermore, because Ig;;};/qf € Cg;ﬁ and p(n +a—k) > p(p+a—n+1),
we can simply conclude that (I;‘p_k {x f(x1/P) }) ‘ € CY,. Thus,
— ;
[ik (x“’?h(xl/ﬂ))} — 0. (43)
dxk x=aP

Therefore, using Theorem 6, we obtain: (Dj ., ,h)(t) = (Dj,, ,h)(t), and so,

(Dg+;p,i7 Ig+;p,i7 f) (t) = (Dg—&-;p,ﬂ Ig—&-;p,ﬂ f) (t) = f(t) (44)
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Remark 8. By comparing the conceptual relationships presented in Equations (20) and (21), we
can notice that our adjustment of the E-K fractional derivative Dy ., , has reformulated the E-
K fractional derivative Dg. ., ., given in (7), by switching the arrangement of the integer-order
derivative operator D" with the fractional integral operator 1),

Integral equations with E-K fractional operators are often applicable in the theories
of neutron transport, radiative transfer, kinetic energy of gases and in the traffic theory.
Therefore, in view of the studied relationships and properties, we hope that the presented
Caputo-type modification of the E-K fractional derivative can be more successfully applied
in various fields of the above mentioned research and modelling.

4. Numerical Simulation of Caputo-Type E-K FDEs

In this section, we suggest a numerical method based on the predictor—corrector
methods [20-22] to solve numerically fractional differential equation involving the new
Caputo-type adjustment of the E-K fractional derivative. Novel fractional models have
been considered and numerical simulation results for such models using our algorithm
have been provided. For this section purpose, we consider the Caputo-type E-K FDE

(Dipqy) () = E(ty(t),  t>a>0, (45)

wheren —1<a<n,ne N,p>0,17€ Rand D} o is the new Caputo-type adjustment
of the E-K fractional derivative explained in Definition 1, with the initial conditions

yO@) =y, k=01, n—1 (46)

In the first place, let p > —p(7 +a« —n +1) and y € Cj5 then, by using Theorem 5,
the IVP consisting of the Caputo-type E-K FDE (45) and the initial conditions given in (46)
is exactly equivalent to the following integral equation

p—platn) ot to-1 1
y(t) = x(6) + oy [ T ) E Gy ), @7)
where
o) N L a1/ () K
x(t) =t Pt Zy(xﬁ y(x'0)) |x:ap-(tP—aP). (48)
k=0 "

Here the function F and the constants # and p are assumed so that a unique solution to
the IVP (45) and (46) exits in the interval [4, b]. Define the nonuniform gird in the interval
[a,b] with N + 1 non-equispaced nodes t, k =0,1,--- N, as

to = a,
{tm = (#W+nt*, k=01 ,N—1, 49)

such that h = W Next, we will numerically calculate the approximations vy,
k =0,1,---,N for the IVP (45) and (46) solution. The key step of our algorithm, as-
suming we have actually computed the approximations {y; ~ y(t;) }}‘:1, is that we need to

provide the approximation yy,1 ~ y(f;.1) via the equation:

tki‘ogxﬂﬂ by
Y(tks1) = x(ter1) +P%/ﬂ T"’l(t‘,‘;rl — )P E (1, y(1)) dT. (50)

Consequently, by following the derivation of the adaptive predictor—corrector al-
gorithm presented in [22], our predictor—corrector algorithm, to provide the numerical
approximation vy 1 ~ y(tx,1) for the IVP (45) and (46), can be described by the rule:

_ h k
Y1 =~ X(tq) + tkﬂaw) Tla+2) { Y ¢k Gt yj) + G(tk+1/y;€+1)}/ (51)
=0
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such that the predicted value y IR y”(tx,1) can be found out using the formula:

W o(a k a o
¥ () = X(te) + oy el L [+ 1 =" = =Gty @

with the weights ¢; ;1 described as:

jk+1 (k=) —2(k—j+ 1) 4 (k—j+2)%1  if1<
and G(t,y(t)) = tP"F(t,y(t)). It is easy to notice, for implementation purposes, that our
algorithm does not depend on the choice of the value of the parameters «, p and # and so,
its features are similar to those of the classical Adams—Bashforth-Moulton method. Hence,
our algorithm works successfully with respect to the numerical stability of the provided
approximations. Now, we consider Caputo-type E-K fractional models as test problems to
exhibit the effectiveness of the proposed numerical method.

Illustrative Example 1. Our first example deals with the Caputo-type E-K initial
value problem.

2

(D3‘+;pl,1y)(t) = mtp(zﬂx*'?) P+ $2p(2—a—1) y(0) =0, (54)

where Df, ., , is the Caputo-type E-K fractional derivative presented in Definition 1, p > 0,
0 <a <land#n < 2—a. The IVP (54) is solved by means of our predictor—corrector
algorithm for some certain values of the parameters «, p and 7. The exact solution of the
IVP (54) is y(t) = tP(2—2=1),

Approximate solutions of the IVP (54) are showed in Tables 1 and 2 when « = 0.9 at
t =0.5and & = 0.8 at t = 2, respectively. Numerical solutions are plotted in Figure 1 when
N = 400 over the interval [0,2.5]. From the numerical data shown in Tables 1 and 2 and
Figure 1, we can simply observe that the numerical approximate solutions produced using
our suggested algorithm are highly compatible with the exact solution. Moreover, from the
convergence of the approximate solutions displayed in Tables 1 and 2, we can notice the
characteristic of numerical stability of the suggested algorithm.

Table 1. Numerical solutions to the IVP (54) when o = 0.9 at t = 0.5.

N p=0751=05 p=075y3=075 p=12,y=05 p=129=0.75

10 0.73552811 0.83675341 0.60978689 0.75015782
20 0.73294176 0.83443228 0.60779681 0.74812129
40 0.73227833 0.83384798 0.60728140 0.74760629
80 0.73210512 0.83369643 0.60714619 0.74747258
160 0.73205940 0.83365652 0.60711041 0.74743736
320 0.73204726 0.83364593 0.60710090 0.74742802
640 0.73204403 0.83364310 0.60709837 0.74742553
1280 0.73204316 0.83364235 0.60709769 0.74742487
2560 0.73204293 0.83364215 0.60709751 0.74742469

Exact sol. 0.73204285 0.83364208 0.60709744 0.74742462
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Table 2. Numerical solutions to the IVP (54) when o« = 0.9 at t = 2.

N p=0757=05 p=0753=075 p=12,7=05 p=124=075

10 1.45427418 1.27374651 1.81147873 1.46634121

20 1.44285750 1.26622045 1.79532611 1.45714470

40 1.43998608 1.26428786 1.79143859 1.45482984

80 1.43922406 1.26376645 1.79042966 1.45421056
160 1.43901508 1.26362191 1.79015608 1.45403957
320 1.43895666 1.26358124 1.79008007 1.45399155
640 1.43894015 1.26356971 1.79005865 1.45397795
1280 1.43893546 1.26356642 1.79005257 1.45397407
2560 1.43893412 1.26356548 1.79005084 1.45397296
Exact sol. 1.43893358 1.26356510 1.79005014 1.45397252

Illustrative Example 2. Our second example covers the Caputo-type E-K initial
value problem.

" I'2np+2 —a L

where Dg_ ., is the Caputo-type E-K fractional derivative, p > 0,0 <a <Tandy +1 > a.

The exact solution of the IVP (55) is y(t) = t* (7+1-4) Numerical solutions of the IVP (55)
are plotted in Figure 2 when N = 400 over the interval [0, 4] for some certain values of the
parameters &, p and #. From the numerical data shown in Figure 2, we can notice that the
numerical approximate solutions produced using our suggested algorithm exactly match
the exact solution.
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Figure 1. Cont.



Fractal Fract. 2021, 5, 121

11 0of 13

y y
20F 20
1.5+ 1.5+
10+ 10k
05 05
0.0 0.5 1.0 1.5 20 25 0.0 0.5 1.0 1.5 20 25
(e)a =0.8,0=0751n=0.5 (f)a =0.8,p=0.75,7 = 0.85
y y
20+ 201
1.5 15
1.0 1.0
05 0.5
0.0 0.5 1.0 1.5 2.0 25 0.0 0.5 1.0 1.5 2.0 25

(ga=08p=12,1n=05

(h)a=08,0=12,17=0.85

Figure 1. Plots of numerical solutions to the IVP (54), when N = 400: (Red) Exact solution; (Blue) Predictor-corrector
algorithm numerical solutions.
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Figure 2. Plots of numerical solutions to the IVP (55), when N = 400: (Red) Exact solution; (Blue) Predictor-corrector
algorithm numerical solutions.

5. Concluding Remarks

In this paper, we suggested a new modification of the E-K fractional derivative in the
sense of the Caputo derivative. From the suggested fractional derivative formulation ap-
proach, some important properties and relationships with other E-K fractional derivatives
were derived. Then, a predictor corrector algorithm to simulate IVPs with the proposed
Caputo-type E-K fractional derivative numerically was introduced.

There are three important points to mention here. First, based on the relations (26)
and (36) and Remarks 2, 5 and 6, the proposed adjustment of the E-K fractional derivative
appears to be closer to ordinary derivatives than other E-K fractional derivatives. Second,
the E-K fractional derivatives are greatly affected by the value of the parameters «, p and 7,
which leads to additional degrees of freedom in the fractional models. Third, our numerical
test examples confirmed the validity and performance of the proposed predictor—corrector
algorithm, and we also simulated real illustrative examples. Therefore, based on these
points, it is hoped that the suggested fractional derivative will find useful implementations
in the field of fractional calculus in the future.
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