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Abstract: In this paper, we studied the well posedness for a new class of optimization problems with
variational inequality constraints involving second-order partial derivatives. More precisely, by using
the notions of lower semicontinuity, pseudomonotonicity, hemicontinuity and monotonicity for a
multiple integral functional, and by introducing the set of approximating solutions for the considered
class of constrained optimization problems, we established some characterization results on well
posedness. Furthermore, to illustrate the theoretical developments included in this paper, we present

some examples.

Keywords: well posedness; constrained variational control problem; monotonicity; pseudomono-
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1. Introduction

The notion of well posedness represents a useful mathematical tool by ensuring the
convergence of a sequence of approximate solutions to the exact solution of some optimiza-
tion problems. Starting with the work of Tykhonov [1] for unconstrained optimization
problems, various types of well posedness for variational problems have been considered
(see, for instance, Levitin-Polyak well posedness [2-5], extended well posedness [6-14]),
L-well posedness [15], a-well posedness [16,17]). Moreover, the concept of well posedness
can be useful to study some related problems, such as variational inequality and fixed point
problems [18-22], hemivariational inequality problems [23], complementary problems [24],
equilibrium problems [25,26], Nash equilibrium problems [27] and variational inclusion
problems [28]. Recently, the study of well posedness for vector variational inequalities and
the associated optimization problems was formulated by Jayswal and Shalini [29]. On the
other hand, an important and interesting extension of variational inequality problems is
that of multidimensional variational inequality problems and the corresponding multi-time
optimization problems (see [30—40]).

Motivated by the aforementioned research works, in this paper we analyze the well
posedness of a new class of constrained optimization problems governed by multiple inte-
gral functionals involving second-order partial derivatives. To this aim, first we introduce
new forms for the concepts of monotonicity, lower semicontinuity, pseudomonotonicity
and hemicontinuity associated with a multiple integral functional. Furthermore, we define
the set of approximating solutions for the considered optimization problem and establish
some characterization theorems on well posedness. The main novelty elements of this
paper are represented by the following: the mathematical framework is based on infinite-
dimensional function spaces, multiple integral functionals, the presence of second-order
partial derivatives, and innovative proofs of the main results. The aforementioned ele-
ments are completely new in the area of well-posed variational control problems. Most of
the previous works in this field have been studied in classical finite-dimensional spaces,
without taking into account the new notions mentioned above.

This paper is organized as follows. Section 2 provides the concepts of monotonicity,
pseudomonotonicity, hemicontinuity and the lower semicontinuity of a multiple integral
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functional, and an auxiliary lemma. Section 3 investigates the well posedness for the
considered constrained optimization problem. Concretely, we establish that well posedness
and the existence and uniqueness of a solution are equivalent in the aforementioned
problem. Furthermore, some examples are formulated throughout the paper to highlight
the theoretical elements. Finally, in Section 4, we present the conclusions and provide
further developments.

2. Preliminaries

Throughout this work, we consider the following mathematical tools and notations:
let Q) be a compact set in R” and Q) > ¢ = (%), « = 1,m; consider A as the space of
da 9%
g 1= agmag
speed and partial acceleration, respectively; also, consider U ass the space of C'-class control
functions u : O — R¥, and consider A x U as a closed, convex and non-empty subset of
A xU, (a,u)]3n = given, endowed with the scalar product:

C*-class state functions a : QO — R" and a, := denote the partial

(o), (0,0)) = [ [0(2)b(@) +u(Z) - w(@)]dg

no kKo
= [ i@ @+ L@@ @i vow, b e Axu
i= j=

and the induced norm, where d7 = d' - - - d{"™ denotes the volume element on R™.

Consider J?(R™, R") as the second-order jet bundle associated with R™ and R”. Taking
the scalar continuously differentiable function f : J*(R™,R") x R¥ — R, we introduce the
following multiple integral-type functional:

F:AxU — R, F(au) :/Qf(é,ﬂ(C),ﬂzx(C)rﬂm(é)/”(5))‘15'

At this moment, we are able to introduce the following constrained variational control
problem (in short, CVCP), given as follows (we use the notation (77, (¢)) := (¢, a(7), ax(0),

agy (8),u(Z))):

(CVCP) Minimize /Q Fran(0))dg

subject to (a,u) € ©,

where O is the solution set of the controlled variational inequality problem (in short, CVIP): to
find a pair (a,u) € A x U such that:

(CVIP) /Q {%(na,u(g))(b(g) — g(é)) + %(na,u(g))Da(b(C) _ a(g))
1 of
B ) dag, e €)DG (0(8) — a(0))

+ L )@@ - w@))ac 20, Vb0 e axy,

where D/%;7 := Dg(D,), and n(p,v) is the Saunders’s multi-index notation (see Saun-
ders [41], Treantd [40]).
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More precisely, the feasible solution set for (CVIP) is given by

0= {(u) eaxt: [ [6@) -a@) L (@)

£ DuB(Q) ~ D) 2L (a2 + (0(0) ) L (D)
1 of
G h O~ “(5»@(%#(6))}% >0,

V(b,w) € A x U}.

+

Next, we define the notions of monotonicity and pseudomonotonicity for the aforemen-
tioned multiple integral functional.

Definition 1. The multiple integral functional F(a,u) = / f(704,4())d( is called monotone on
o)
A x U if the following inequality holds:

of of
L@ 6@ (& (a0~ Z )
+(0) - 00 (L (@) - L (@)

+Du(a(0) = 00 (32 () = 5L ((0))
1 of of
+ mDéy(a(g) —b(0)) (E)am(n”’”(g)) - aam(nblw(g))ﬁdg >0,

V(a,u), (b,w) € AxU.

Definition 2. The multiple integral functional F(a,u) = / f(704,4(0))d( is called pseudomono-
Q
tone on A x U if the following implication holds:

[ (@@ = 5@) & (r0(0)) + (1(0) = 0(0) & (r1,0(0))

D4 (a() — b(0)) 3 ()

1 af

= [ [@© ~ @)L (rau @) + (40) ~ 0(0) & (@)

+Du(a(0) ~ b(0)) o (au(£)

o

+— D2 (a(g) ~ b(2))

of
n(B,y) 7(7Ta,u(€))]d§ >0, V(au)(bw)e AxU.

0agy

Let us give an example of a multiple integral-type functional which is not monotone
but is pseudomonotone.

Example 1. Consider n =k =1, m = 2, and Q = [0,3]?. We define:

f(na,u(g)) = 2sin11(§) + u(C)g”(g)
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and show, in accordance with Definition 2, that the multiple integral functional F(a,u) =
/ f(74,u(2))dC is pseudomonotone on A x U = CHQ,[-1,1]) x CYH(Q,[-1,1]). Indeed,
Q

we have:
0

[ (@@ = 5@) & (r0(0)) + (1(0) = 0(0) 3 (r1,0(0))

oa
+Du(al0) ~ (D)) o (m10(0))

o

1 f
i P (0 = bO) 52 (e (@) ]
= [ [26a(2) = b(&)) cosbl@) + (u(&) — w(£)) (*® + w(@)e* @] ag = 0,

V(a,u),(bw) e AxU

= [ [@@) = @)L (aa@) + (D) ~ 0(0) & (0 (0)

oa
D, (a(0)  b(0)) 32 (o (§))

1

5y Dhla(0) ~ D) e (a2

+ aum

= [ [2(a(@) = b(&)) cosa(@) + (u(&) — w(@)) (e ©) +u()e" )] dg > 0,
V(a,u),(b,w) € AxU.

However, it is not monotone on A x U in the sense of Definition 1, because:

[0 ~ 0@ (L (@) - Lmnt@)

= [ [26a(0) = b(©))(cosa() — cosb(2)
+(u(Q) ~ (@) (©)e" @ + O —w(g)e D — @] ag # o,
V(a,u),(bw) € AxU.

Then, in accordance with Usman and Khan [42], we define the concept of hemicontinu-
ity for the considered multiple integral-type functional.

Definition 3. The functional F(a,u) = /Q f(74,u(C))Ag is hemicontinuous on A x U if the

application:

6F 6F

0 5e©)), 0<a<

A <<<a<z>,u<é>> — (b(©)w(0)), (
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is continuous at 0%, for V(a, u), (b,w) € A x U, where:

OF af f L o Of

(MA(O: aa<7'fawu(€)>_Daa(namu;\@))"'m P19ag, (Ttap,u, (0)) € A,

0= Lo @) 1
A

ay:=Aa+(1— /\)b, uy = Au+(1-2A)w.

The following lemma is an auxiliary result for proving the main results derived in the
present paper.

Lemma 1. Consider F(a,u) = / f(74,u(8))Ag is pseudomonotone and hemicontinuous on
A x U. The pair (a,u) € A x U is a solution for (CVIP) if and only if (a, u) is a solution for the
following variational inequality problem:

[ [06@ @) 2 (00 + () ~ 1(0) & (m0,0(2)

+D4(b(2) — a(0)) 32 (m30(0))

1 of
+WD%5’Y(Z7(€) - a(é))%(ﬂblw(é))}dg >0, V(b,w) cAxU.

Proof. Consider that the pair (a,u) € A x U is the solution for (CVIP). As a consequence,
it results that:

[ 0@ = @) & (0 @) + @(0) ~ 1(0) & (@)

FDLb(D) ~ 0(D) - (maa(0))

o

1 of
mD%(b(g) —ﬂ(g))%(mi,u(é))}dg >0, V(bw)eAxU.

By using the pseudomonotonicity property of the considered multiple integral functional
(see Definition 2), the previous inequality involves:

+

[ [06@ @) 2 (00 + ()~ 1(0) L (r00(2)

+D4(b(2) — a(0)) 32 (m30(0))

D3, (6(0) ~ a(0)) sl (myu(0))] 42 > 0, W(bw) € Ax UL

gy

41
n(B,v)

Conversely, assume that:

0@ @) 2 (300 + (0() 1) L (r0,0(2)
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For A € (0,1] and (b,w) € A x U, we define:
(br,wpy) =((1—=A)a+Ab, (1 —ANu+ Aw) € A x U.
Thus, the above inequality implies:

[ 1020 = )2 (74, 10,0) + (040) = 10 2 (71,20, (0))

D4 (02() — (D)) 3 (71, (0)

1 d
tag Ph 0O @) @)]d 20, () axu

By considering A — 0, we obtain:

[ 0@ = @) & (0 @) + @(0) ~ 1(0) & (@)

D (b(E) — () 2 (0u0)
1 0
+M@wD%W®—M@54¢maoﬂ%za V(bw) € Ax U,

which proves that (a, u) solves (CVIP). This completes the proof of this lemma. [

Now, we give the definition of lower semicontinuity for the multiple integral functional

Fla,u) = [ f(mau(@))dc.

Definition 4. The multiple integral functional F(a,u) = / f(714,,(0))d( is called lower semi-
Q
continuous at a point (ag, ug) € A x U if:

Jof roan(@)dg < lim - in [ ft()dE

3. Well Posedness Associated with (CVCP)

In this section, by considering the notions introduced in Section 2, we study the well
posedness for the considered class of constrained optimization problems (CVCPs). To this
aim, we introduce the following definitions and notations.

Denote by S solution set of (CVCP), namely:

s={@weaxul [ flru@)ic< inf [ fu(0)dC and
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Consider the set of approximating solutions of (CVCP), for 0,1 > 0, as follows:

S(e,0) ={(au)eaxu] /Qf(na,u(g))d§< inf /fﬂbw 0))dl + o and

(bw)e®
[ [06© ~a@) 2 (t0a0)) + (0(0) = 1(2) & (00(0))

+ D4 (b(0) — a(0)) 32 (mau(£))

1 af
+ mesy(b@) - a(é))%

Remark 1. For (0,1) = (0,0), we obtain S = S(o,1), and for (o,1) > (0,0), we obtain
S C S(o,1).

(ﬂa,u(g))]dg—l—l >0, V(b,w) € A x u}.

Definition 5. The sequence {(an,u,)} is an approximating sequence for (CVCP) if there exists
1ty — 0 (a sequence of positive real numbers) as n — oo, such that:

lim sup/ f(7au,(C))dg < inf /f T, (C

n—00 (bw)e® JO
" S 0@ = 000 Z a0, (00) + (000) = 100 2 (0,0, 0)
[  (tag LA
Da(b(0) — 00 (0)) 2 (a0 (0)
* gy P ~ (@) o (@] 410 20, Wbw) € Axu
are fulfilled.

Definition 6. The constrained optimization (CVCP) is well posed if:

(i) it admits a single solution (ag, ug);
and (ii) each approximating sequence of (CVCP) converges to (ag, ).

Furthermore, denote by “diam B” the diameter of the set B and it is defined as follows

diam B = sup ||x —y||.
x,yeB

The next theorem represents a first characterization result on the well posedness for
(CVCP).

Theorem 1. Consider that F(a,u) = / f(74,,(Q))dq is lower semicontinuous, monotone and
Q

hemicontinuous on A x U. The constrained optimization problem (CVCP) is well posed if and

only if:
S(o,1) # @,¥Yo,1 > 0and diam S(o,1) — 0as (o,1) — (0,0).

Proof. Consider (CVCP) is well posed. In consequence, it admits a single solution (4, i) €
S. By using the inclusion § C §(o,1), Yo, > 0, we obtain S(0,1) # @, Yo, > 0. Now,
contrary to the result, suppose that diam S(o,1) - 0 as (¢,¢) — (0,0). Consequently,
there exists r > 0, a positive integer m, 0y, 1, > 0 with 0y, 1, — 0, and (a,, u,), (a),,u),) €
S(0n, 1y) such that:

[(an, un) = (@y,up) | > 7, Vn=m. (1)
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Since (an, uy), (a),,u},) € S(0y, 1y), we obtain:

| o @)g < in [ f(m0,0(0)dC + 0,

(bw)e®

[ 10© = (@) Z (a0, ©) + @00 = 0(0) B (10,0, 0))

D(B(E) — an(£)) S0 (1, (£)

o

1 2

d

g PO ~ () 5 (o @)]dE 4 20, Wb w) € Axu

and:
S g (€0 < iné [ F0(6))dE + 0,
[ 10@ = 60 Z 4 ©) + @0 — 00 B (14,,)
D4 (b(0) = 8,0 2 (71 0)

1 d

g PO ~ O 5 (g O] d + w20, Vw) e Axu

Clearly, it follows that {(a,,u,)} and {(a},,u},))} are two approximating sequences for
(CVCP) which converge to (,i) (by hypothesis, the problem (CVCP) is well posed).
By computation, we obtain:

[(an, 1n) = (@, 1) |
a, i) + (a, 1) — (ay, u,) |
M+ 1@ @) = (ay, w)ll <o,

which contradicts (1), for some ¢ = r. It follows that diam S(c,¢) — 0 as (c,¢) — (0,0).
Conversely, let {(an, un)} be an approximating sequence for (CVCP). Therefore, there
exists a sequence of positive real numbers 1, — 0 as n — oo such that the inequalities:

= || (an, un) —

(
< |[(an, un) — (@, 1

lim sup/ f(7a,u,(C))dE < inf /f Ty (C (2)

n—00 (bw)e®
[ 0@ = @) 2 (t0,0,(00) + (0(0) - un@))%(mn,un(g))

£D(b(0) ~ an(0)) 2L (3,1, (0))

o

1 of
+RE%D%WO—%@D$QMMWQH%+MEQ V(bw)e AxU (3)

hold, involving that (a,, u,) € S(0y, 1) (see 0, — 0 as n — 00, a sequence of positive real
numbers). By considering diam S(0y, tn) — 0as (0y, t,) — (0,0), we obtain that {(a,, u,)}
is a Cauchy sequence which converges to some (7,1) € A x U as A x U is a closed set.

By using the monotonicity property of / f(74,,(0))dl on A x U, for (a, 1), (b,w) €
0

A x U, we have:
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+m@@—mawigmﬂm—igmmoﬁ
+n(f7)Déxa@>—wwo><;Z;<au@»——;Z;<nmxg»>}d§>o

or, equivalently:

1 _ d
+ oty D 0 — O 35~ (raa(@))] e <0 (5)
By using (4) and (5), it results that:
[ [06@ 2@ 2 (300 + (0() ~ 10) Z (r0,0(2)

+Du(b(2) — ﬁ(C))%(ﬂb,w(C))

457 DB (00) = 1(0) 3 (0 (0] > 0.

n(B,y

Now, we use Lemma 1 to obtain:

[ 0@ =) Z (raa@) + (@) - 1(0) & (raa@))

D, (b(0) a(0)) 32 (maa(4))
1 of
ot D (00 — 8(0) 35 ~(maa(@)] ¢ 2 0 ”

which implies that (a, i) € ©.
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Since the functional / f(714,4())d is lower semi-continuous, we conclude:
Q
[ (@) < lim inf [ (0,0, (0))dC < lim sup [ f(a,u, ().
By (2), the previous inequality can be written as
o f / 7T 7
/ f a, u ® gle o f b, w ( )

As a consequence, by (6) and (7), we obtain that (4, i7) is the solution for (CVCP).
Let us prove that (a,1) is the single solution for (CVCP). Suppose that (a1,u;) #
(ay,uy) are two solutions for (CVCP). Then:

0 < ||(a1,u1) — (a2, uz)|| < diam S(o,t) = 0as (o,1) — (0,0),
which is not possible. The proof is now complete. [J

The second main result of this paper is contained in the next theorem.

Theorem 2. Consider F(a,u) = / f(714,(Q))Ag is lower semicontinuous, monotone and hemi-

continuous on A x U. The constrained optimization problem (CVCP) is well posed if and only if it
admits a solution.

Proof. Consider that (CVCP) is well posed. In consequence, it has a solution (ay, ).
Conversely, consider that (CVCP) has a solution (ag, 1), that is:

/fnﬂouo )¢ < inf /f T, (¢

(bw)e®

[ [0@ ~ a0@) 2 (agu @) + (0(0) - uo@)%(mm(a))

+Dy (b(g) - aO(é))% (nao,uo (é))

1L 2 of
- — L >
+ 7 D (00 — a0(0) 5 = (e (©)]d 20, W(bw) € AxU, ()
but (CVCP) is not well posed. Therefore, by Definition 6, there exists an approximating
sequence {(a,,u,)} of (CVCP) (which does not converge to (ap, u9)), that is the following
inequalities hold:

tim sup | f(ta,0,(0)dg < inf [ flm(0)d

n—oo (bw)e® JO

and:
[ 0@ = @) 2 (0,0, 00) + ()~ 100(0)) 3 (a0, (0))

D(b(0) ~ an(0)) L (3,1, (0))

o

1 af
+WD/237(17(C) —ﬂn(g))@

Furthermore, to prove the boundedness of {(ay, u,)}, we proceed by contradiction. Sup-
pose, in contrast to the result, {(an, u,)} is not bounded, that is, ||(an, un)|| — +oo as

and (ay, up) = (ag, uo) + 6 [(an, un) —

(o ()] 40 +14 >0, V(bw) € Ax U (9)

n — +oo. Let us consider §,, = (s 00) — (a0, 50 |
n,Un) — (40, UQ
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(ap, 1g)]. We can see that {(a,, u,)} is bounded in A x U. If necessary, passing to a subse-
quence, we may consider that:

(an,un) — (a,u) weakly in A x U # (ap, up).

It is easy to check that (a, u) # (ag, up) thanks to ||6,[(an, un) — (a9, up)]|| =1, foralln € N.
Since (ag, up) is a solution of (CVCP), the inequalities in (8) are satisfied. By Lemma 1, we
obtain:

/fnaouo )il < inf /frchw

(bw)e®

[ 0@ ~ @) 3 (@) + (0(2) - uo<a>>%<nb,w<g>>

+Du(b(2) — 0(0)) 22 (14(2)

o

4L
n(B,v)

By using the monotonicity property of the multiple integral functional / f(704,4())dZ on
0
A x U, for (ay,uy), (b,w) € A x U, we have:

0
D3, (00) ~ 80(2)) 32 (mu@)] 4L 20, ¥ibw) € AxU (10

[0 = 600 (3 (i (00) = S o))
+H00) = 0(0)) (35 (o 0) = S (000
+D2(00(0) = 5(0)) (5 (T 0) — 5 (0(0)))

+n(ﬁ,v

or, equivalently:

k )Déy(ﬂn(é) —b(0)) (af(ﬂan,un Q) — af(ﬂbw(g))>}d§ >0,

0a gy 0 gy

[ 10© = (@) Z (a0 ) + @00~ 0(0) & (10,0, 0))

Da(b(0) — 00 (0)) 32 (a0 (0)
1 af
+me§’y(b(g) - an(é))%(ﬂ'umun (g))] dg

D5 (b(0) €)@ a1)

+
n(B,y
Combining with (9) and (11), we have:
[ [0@ ~ @) & (,0(0)) + @(0) — 0n(0) L (002

£D(b(0) ~ an(2)) L (my,0(0))

o
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1 of
———D3 — — > — A .
5,7 PO = @) g = (o @)]d 2 =, V(b,w) € AxU
Because of 6, — 0 as n — oo (by the assumption that {(a,, u,)} is not bounded), so, we
can take 19 € N be large enough such that §,, < 1, for all n > ng. Then, by multiplying the
previous inequality and (10) by J, > 0 and 1 — J,; > 0, respectively, we obtain:

[ 10 = @) 2 (0(0)) + (@) — wn @) 3 (100))

D4 (b(2) — (@) 3 (11 (2))

aiif(ﬂb,w(g))}dé > —1,, V(b,w)e AxU, Vn > ny.
By

+,1(;,7)D§v<b<g> —au(®)

Since (an, un) — (a,u) # (ag, uo) and (an, un) = (ao, o) + (an, wy)|[(an, un) — (ao, ug)], we
have:

[ 0@ ~ @) & (1,00 + (@) — w(@) 2L (10(0))

£Du(b(E) ~a(0)) 2L (4 (2)

o

1 af
+WD/25’Y(b(€) - a(g))%(nb,w(g))}dg
= tim [ [0 (@) L (0(0) + @(0) — (@) 2 (1,0(0))

FDL(B(D) — 20(0)) oL (m10(0))

14

57 D (0) = 30(0) g (m0(0) ] 2
> —r}grgoln =0, VY(bw)eAxU.

By considering the lower semicontinuity of the considered functional, and taking into
account Lemma 1, we have:

| frau@nac < int [ (),

(bw)e®
L1060 2@ 2 (000)) + (0(0) ~ (@) &L (00 (2)
D4 (b() ~ a()) 2L (00 (0))
1 af
oy D@ —2O) g~ (rau@)|d 20, Yow) e AxU. (12)

We obtain that (a, u) is a solution of (CVCP), which contradicts the uniqueness of (ag, i).
In consequence, {(a,, u,) } is abounded sequence with a convergent subsequence {(ay,, iy, ) }
which converges to (4,1) € A x U as k — 0. Now, by Definition 1, for (a,, 1y, ), (b,w) €
A x U, we have (see (11)):

0@ = 0@ a1, ) + 0(0) = 10y (0) 2 (0, 0)

Da(0(0) = a0y (©)) 32 (T (0)
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57 DB (00) = a0, () 3 (a (0)] 0

n(.B/ Y By

< [ [6@) ~ 00 0) Z (r(0)) + @(0) — 0n ()3 (1,0(0))

+DA(b(E) — 0y (0)) 3 (00(3))

1 of
+ i DB (00) — an(0) 3o~ (oo (0) . (13)
Furthermore, on behalf of (9), we can write that:
tim [ [(6(0) = 0, (0) 3 (g, (00) + () = 10, (D) 5 (a1, )
D4 (b(E) 0 (0)) 32 (o, (0)
2 _ 9f
457 D (0 — a0 (0) ag, T, (6))] 48 2 0. (14)
Combining (13) and (14), we have:
tim [ [(6(0) - a0, (0) & (7,0(0)) + @(0) ~ 100 )2 (1,0(0))
Da(b(0) — a0y (0)) 32 (130 (2))
1 af
+ ot D (00 = an(0) 3 = (0 (0] 2 0
= [ [6@) = @) 2L (100 + (@) ~ 4@ 3L (30(0))
D4 (b(0) ~ A(0) 52 (m3,0(5))
> o
45y D (b0~ 2(0) ag, o (@)]dE 20

By considering the lower semicontinuity of the considered functional, in accordance with
Lemma 1, we have:

| frua@ndc < inf [ flmale

(bw)e®

[ [eo@-a@nZ <mu<g>>+<w<@>—a(@))%m,a(m

D4 (b(0) — a(0)) 32 (maa(4))
2 N
B 7 Db (@) —a(@) oy, (0 (0)]d 2 0,

implying that (&, i) is a solution for (CVCP). Therefore, (a,,, un, ) — (a, 1), thatis, (ap,, 1ty ) —
(ao, up), involving (an, u,) — (ao, up) and the proof is complete. [

In the following illustrative example, we present an application of Theorems 1 and 2,
as well.
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Example 2. Let us consider n =k =1, m = 2, and Q = [0,3]2. We define:

F(au(§)) = 3u*(Q) +¢"© —a(7)

and consider the following constrained variational control problem:

(CVCP-1) Minimize, ) /Q F(ran(0))dC
subject to
| [60(8) = u(€)u(@) + (1(2) = a(@)) () ~1)]dg > 0, ¥(b,w) € Ax L,
(a,u)|0 = 0.

We have § = {(0,0)}. Moreover, we have that the functional / f(ra,u(0))dg is
QO

monotone, hemicontinuous and lower semicontinuous on A x U = C*(Q, [-10,10]) x
C!(Q, [-10,10]). In consequence, all hypotheses in Theorem 2 hold, therefore the optimiza-
tion problem (CVCP-1) is well posed. Furthermore, since S(c,:) = {(0,0)}, we obtain
S(o,1) # @ and diam S(o,1) — 0as (0,t) — (0,0). Consequently, by using Theorem 1,
we obtain that the constrained optimization problem (CVCP-1) is well posed.

4. Conclusions and Further Developments

In this paper, we investigated the well posedness for a new class of constrained opti-
mization problems governed by second-order partial derivatives. Concretely, by using the
monotonicity, lower semicontinuity, pseudomonotonicity and hemicontinuity of multiple
integral functional, we proved that the well posedness of the constrained optimization
problem under study is characterized in terms of existence and uniqueness of solution.
Furthermore, the theoretical developments have been accompanied by some examples.

Some further developments associated with the present paper are the following: to
formulate the necessary and sufficient optimality conditions for the considered optimiza-
tion problems, to establish some duality results, and to study the well posedness for similar
classes of control problems by using fractional derivatives.
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