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Abstract: This article is mainly devoted to the study of the existence of solutions for second-order
abstract non-autonomous integro-differential evolution equations with infinite state-dependent delay.
In the first part, we are concerned with second-order abstract non-autonomous integro-differential
retarded functional differential equations with infinite state-dependent delay. In the second part, we
extend our results to study the second-order abstract neutral integro-differential evolution equations
with state-dependent delay. Our results are established using properties of the resolvent operator
corresponding to the second-order abstract non-autonomous integro-differential equation and fixed
point theorems. Finally, an application is presented to illustrate the theory obtained.

Keywords: second order differential system; state-dependent delay; integro-differential equations;
neutral system; cosine function of operators; resolvent operator

1. Introduction

Differential systems that exhibit state-dependent delay frequently emerge when mod-
eling physical phenomena. For this reason, research on different properties related to this
class of equations has gained great interest in recent years. The literature related to this
research topic is mainly dedicated to the study of functional differential systems with states
in spaces of finite dimension or first-order autonomous systems (systems determined by a
constant unbounded operator) with states in Banach spaces (the reader can review [1–17]
for recent advances in this matter). Nevertheless, the study of non-autonomous abstract
integro-differential systems of second-order with state-dependent delay using the prop-
erties of the resolvent operator associated with the homogeneous equation, as we will
carry out in this work, does not seem to have been addressed yet. The study of the non-
autonomous abstract Cauchy problems of first, second or fractional order via evolution
families are discussed by many authors. We only mention here [18–27].

On the other hand, neutral functional equations arise in various areas of applied
mathematics. For this reason, these equations have attracted the attention of numerous
researchers in recent times. In particular, neutral functional equations defined in Banach
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spaces are used to model heat flow problems in materials, in the study of the behavior
of visco-elastic materials, analysis of wave propagation in different media, and in the
modeling of various other natural systems. For very useful discussions about first and
second-order abstract integro-differential systems related to the current study, we can refer
to [28–32].

Motivated by the theory developed in the works mentioned previously, our objective
in this article is to study the existence of mild solutions for non-autonomous second-order
abstract integro-differential evolution equations with infinite state-dependent delay of the
following form:

z ′′(t) =A(t)z(t) +
∫ t

0
B(t, s)z(s)ds + E1(t, zρ(t,zt)), t ∈ V = [0, c], (1)

z0 =φ ∈ P , z ′(0) = x1 ∈ H, (2)

and the second-order non-autonomous neutral integro-differential evolution systems with
state-dependent delay of the following form:

d2

dt2 N(t, zt) =A(t)N(t, zt) +
∫ t

0
B(t, s)N(s, zs)ds

+ E1(t, zρ(t,zt)), t ∈ V = [0, c], (3)

with initial condition (2). In the above expressions, A(t) : D(A(t)) ⊆ H → H and
B(t, s) : D(B) ⊆ H → H are closed linear operators in a Banach space H. Let us consider
that D(B) is independent of (t, s). The function zt : (−∞, 0]→ H, zt(s) = z(t + s) belongs
to some abstract phase space P described axiomatically and E1, E2, N : [0, c]× P → H,
with N(t, ψ) = ψ(0) + E2(t, ψ), ρ : V ×P → (−∞, c] are appropriate functions.

The fundamental tool that we will use to study these problems is the existence of a
resolvent operator connected with the homogeneous system

z ′′(t) = A(t)z(t) +
∫ t

0
B(t, s)z(s)ds, t ∈ V = [0, c].

We subdivide this article into five sections. In Section 2, we include a few concepts
and results related to this work, which will be used throughout the text. In Section 3,
we present our results on the existence of mild solutions for the abstract second-order
non-autonomous integro-differential evolution equations with state-dependent delay (1)
and (2). In Section 4, we extend the theory developed in Section 3 to study the abstract
second-order neutral integro-differential evolution equation with state-dependent delay
(2) and (3). Finally, in Section 5, we apply our previous results to some specific models
described by partial differential equations with state-dependent delay.

2. Preliminaries

This section is dedicated to introduce a few concepts and essential results needed to
present our results. In the rest of this text, (H, ‖ · ‖) is a Banach space and A(t), B(t, s),
for 0 ≤ s ≤ t are closed linear operators defined on D(A) and D(B), respectively. We
assume that D(A) is dense in H. The space D(A) provided with the graph norm induced
by A(t) is a Banach space. We will assume that all of these norms are equivalent. A simple
condition for obtaining this property is that there exists λ ∈ ρ(A(t)), the resolvent set of
A(t), so that (λI − A(t))−1 : H → D(A) is a bounded linear operator. In what follows, by
[D(A)] we represent the vector space D(A) provided with any of these equivalent norms,
and we denote

‖z‖[D(A)] = ‖z‖+ ‖A(t)z‖, z ∈ D(A).

For Banach spaces (Z, ‖ · ‖Z) and (Y, ‖ · ‖Y), we denote by L(Z, Y) the Banach space
consisting of the bounded linear operators from Z into Y endowed with the uniform
operator topology. When Y = Z, we abbreviate the notation writing L(Z). In addition,
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we use Bp[z, Y] to symbolize the closed ball with center at z and radius p > 0 in Y. For a
bounded function z : [0, c]→ Y and b ∈ [0, c] by ‖z‖Y,b, we denote

‖z‖Y,b = sup{‖z(s)‖Y : s ∈ [0, b]}

or abbreviated ‖z‖b, when the space Y is clear from the context.
In recent times, there has been an increasing interest in studying the abstract non-

autonomous second-order initial value problem

z′′(t) =A(t)z(t) + f (t), 0 ≤ s, t ≤ c, (4)

z(s) =z0, z′(s) = z1, (5)

where A(t) : D(A) ⊆ H → H, t ∈ [0, c], is a closed linear operator densely defined and
f : [0, c]→ H is an appropriate function. Equations of this type have been considered in
several papers. The reader is referred to [33–40] and the references mentioned in these
works. In most of the works, the existence of solutions to the system (4) and (5) is related
to the existence of an evolution operator S(t, s) for the homogeneous system

z′′(t) = A(t)z(t), 0 ≤ t ≤ c.

Let us assume that for every z ∈ D(A), t 7→ A(t)z is continuous. Hereafter, we con-
sider that A(·) generates (S(t, s))0≤s≤t≤c, which was discussed by Kozak [41], Definition
2.1 (refer also Henríquez [42], Definition 1.1). We refer to these works for a careful study of
this issue. We only regard here that S(·)z is continuously differentiable for all z ∈ H with
derivative uniformly bounded on bounded intervals, which in particular implies that there
exists M1 > 0 such that

‖S(t + h, s)− S(t, s)‖ ≤ M1|h|,

for all s, t, t + h ∈ [0, c]. We define the operator C(t, s) = −∂S(t, s)
∂s

. Consider that f :

[0, c]→ H is an integrable function.
For each fixed 0 ≤ s ≤ c, we define the mild solution z : [s, c]→ H by

z(t) = C(t, s)z0 + S(t, s)z1 +
∫ t

s
S(t, τ) f (τ)dτ

for s ≤ t ≤ c. To avoid notations that make the text difficult to read, in this case we prefer
to implicitly leave z(·) depends on the initial value s.

Next, we consider the second-order integro-differential systems

z′′(t) = A(t)z(t) +
∫ t

s
B(t, τ)z(τ)dτ, s ≤ t ≤ c, (6)

z(s) =0, z′(s) = x ∈ H, (7)

for 0 ≤ s ≤ c. This problem was discussed in [43]. We denote ∆ = {(t, s) : 0 ≤ s ≤ t ≤ c}.
We now introduce some conditions fulfilling the operator B(·):

(B1) For each 0 ≤ s ≤ t ≤ c, B(t, s) : [D(A)]→ H is a bounded linear operator, for every
z ∈ D(A), B(·, ·)z is continuous and

‖B(t, s)z‖ ≤ b‖z‖[D(A)],

for b > 0 which is a constant independent of s, t ∈ ∆.

(B2) There exists LB > 0 such that

‖B(t2, s)z− B(t1, s)z‖ ≤ LP|t2 − t1|‖z‖[D(A)],

for all z ∈ D(A), 0 ≤ s ≤ t1 ≤ t2 ≤ c.
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(B3) There exists b1 > 0 such that∥∥∥∥∫ t

σ
S(t, s)B(s, σ)zds

∥∥∥∥ ≤ b1‖z‖,

for all z ∈ D(A).

Under these conditions, it has been established that there exists a resolvent operator
(V(t, s))t≥s associated with the systems (6) and (7). From now on, we are going to consider
that such a resolvent operator exists, and we adopt its properties as a definition.

Definition 1 ([43]). A family of bounded linear operators (V(t, s))t≥s on H is said to be a resolvent
operator for the systems (6) and (7) if it satisfies:

(a) The map V : ∆→ L(H) is strongly continuous, V(t, ·)z is continuously differentiable for all

z ∈ H, V(s, s) = 0,
∂

∂t
V(t, s)|t=s = I and

∂

∂s
V(t, s)|s=t = −I.

(b) Assume x ∈ D(A). The function V(·, s)x is a solution for the systems (6) and (7). This
means that

∂2

∂t2V(t, v)x =A(t)V(t, s)x +
∫ t

s
B(t, τ)V(τ, s)xdτ,

for all 0 ≤ s ≤ t ≤ c.

It follows from condition (a) that there are constants P > 0 and P̃ > 0 such that

‖V(t, s)‖ ≤ P, ‖ ∂

∂s
V(t, s)‖ ≤ P̃, (t, s) ∈ ∆.

Moreover, the linear operator

G(t, σ)x =
∫ t

σ
B(t, s)V(s, σ)xds, x ∈ D(A), 0 ≤ σ ≤ t ≤ c,

can be extended to H. Portraying this expansion by the similar notation G(t, σ), G : ∆→
L(H) is strongly continuous, and it is verified that

V(t, σ)x = S(t, σ) +
∫ t

σ
S(t, s)G(s, σ)xds, for all x ∈ H. (8)

It follows from this property that V(·) is uniformly Lipschitz continuous, that is, there
exists a constant LV > 0 such that

‖V(t + h, σ)− V(t, σ)‖ ≤ LV |h|, for all t, t + h, σ ∈ [0, c]. (9)

Let g : V → H be an integrable function. The non-homogeneous system

z ′′(t) = A(t)z(t) +
∫ t

0
B(t, s)z(s)ds + g(t), t ∈ V = [0, c], (10)

z(0) = x0, z ′(0) = x1, (11)

was discussed in [43]. We now introduce the concept of mild solution for the systems (10)
and (11).

Definition 2 ([43]). Assume x0, x1 ∈ H. The function z : [0, c]→ H given by

z(t) = −∂V(t, s)x0

∂s

∣∣∣
s=0

+ V(t, 0)x1 +
∫ t

0
V(t, s)g(s)ds,
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is called the mild solution for the systems (10) and (11).

It is clear that z(·) in Definition 2 is a continuous function.
On the other hand, to study a retarded functional differential equation with infinite

delay, we need to describe the system with states in an appropriately defined phase space.
In order to develop a general theory, and using the theory established in [44], in this article,
we will use an axiomatic definition of phase space. The phase space P is a vector space of
functions from (−∞, 0] into H endowed with a seminorm ‖ · ‖P that satisfies the following
conditions:

(A) If z : (−∞, η + c) → H, c > 0, η ∈ R is continuous on [η, η + c) and zη ∈ P , then for
every t ∈ [η, η + c), the following conditions hold:

(i) zt is in P .
(ii) ‖z(t)‖ ≤ K1‖zt‖P .
(iii) ‖zt‖P ≤ K2(t− η) sup{‖z(s)‖ : η ≤ s ≤ t}+ K3(t− η)‖zη‖P ,

where K1 > 0 is a constant; K2, K3 : [0, ∞) → [1, ∞), K2(·) is continuous, K3(·)
is locally bounded, and K1, K2, K3 are independent of z(·).

(A1) For z(·) in (A), t→ zt is continuous from [η, η + c) into P .

(B) P is complete.

A detailed theory about the properties of axiomatically defined phase spaces as above
is found in [44].

Finally, we complete these preliminary observations by recalling two theorems about
the existence of fixed points of applications that will be essential to establish the existence
results. The following Theorem 1 is known as the Leray–Schauder’s alternative theorem,
and Theorem 2 has been established by Krasnoselskii (see [45], II.6.9(C.4)).

Theorem 1 ([45], Theorem II.6.5.4). Assume E is a closed convex subset of a Banach space
(X, ‖ · ‖) and 0 ∈ E. Assume the map F : E→ E is completely continuous. Then the map F has a
fixed point in E or {z ∈ E : z = λF(z), 0 < λ < 1} is an unbounded set.

Incidentally, condition 0 ∈ E is not necessary. It is sufficient that the set E is not empty.
Specifically, if x0 ∈ E, by translation in x0, one can determine the subsequent result.

Corollary 1. Let E be a closed convex subset of a Banach space (X, ‖ · ‖) and x0 ∈ E. Assume
the map F : E → E is completely continuous. Then, F has a fixed point in E or {z ∈ E : z =
(1− λ)x0 + λF(z), for some 0 < λ < 1} is an unbounded set.

Theorem 2. Assume M is a closed, convex, and bounded subset of a Banach space (X, ‖ · ‖).
Assume F : M→ M is a continuous map of the form F = A + B, where A : M→ X is compact
and B : M→ X is a contraction. Then F has a fixed point.

3. Integro-Differential Systems

We are primarily focusing on the discussion about the existence of mild solutions
for the systems (1) and (2). The general framework for studying the mentioned topic is
as follows. We consider (V(t, s))t≥s is a resolvent operator for the systems (6) and (7).
Moreover, φ ∈ P and ρ : V ×P → (−∞, c] is a continuous function such that ρ(t, ψ) ≤ t,
for all t ∈ V and ψ ∈ P . For a function z ∈ C([0, c], H) such that z(0) = φ(0), we identify
z with its extending to (−∞, c], and it is determined by z(θ) = φ(θ) for θ ≤ 0. We also
introduce the set

N (ρ−) = {ρ(s, ψ) : (s, ψ) ∈ V ×P , ρ(s, ψ) ≤ 0}.

Comparing with the developments in [43], we establish the following concept of mild
solution for (1) and (2).
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Definition 3. A continuous function z : (−∞, c]→ H is said to be a mild solution for (1) and (2)
if z0 = φ ∈ P and

z(t) = −∂V(t, s)φ(0)
∂s

∣∣∣
s=0

+ V(t, 0)x1 +
∫ t

0
V(t, s)E(s, zρ(s,zs))ds, t ∈ V,

is satisfied.

Remark 1. In general, for a mild solution z(·) of (1) and (2), the derivative z′(0) does not
exist. However, it follows from [43] that if z(0) = φ(0) ∈ D(A), then z′(0) exists and
z′(0) = x1.

To reach our aim, we will introduce the required assumptions as follows:

(H1) The function N (ρ−)→ P , r → φr is well defined and continuous. Moreover, there
exists a bounded continuous function Jφ : N (ρ−) → [0, ∞) such that ‖φr‖P ≤
Jφ(r)‖φ‖P for all r ∈ N (ρ−).

(H2) The function E1 : V ×P → H fulfills the following conditions:

(i) For each ψ ∈ P , E1(·, ψ) : V → H is strongly measurable.
(ii) For every t ∈ V, E1(t, ·) : P → H is continuous.
(iii) There exists k : V → [0, ∞), which is integrable, and U : [0, ∞)→ [0, ∞), which

is a continuous and non-decreasing function such that

‖E1(t, ψ)‖ ≤ k(t)U(‖ψ‖P ), (t, ψ) ∈ V ×P .

(iv) For each t ∈ [0, c] and r > 0, W(t, r) = {V(t, s)E1(s, ψ) : s ∈ [0, t], ψ ∈
P , ‖ψ‖P ≤ r} is relatively compact in H.

Lemma 1 ([8], Lemma 3.1). Assume that z : (−∞, c] → H is continuous on [0, c] and
z0 = φ. Then,

‖zs‖P ≤ (K(3,c) + Jφ
0 )‖φ‖P + K(2,c) sup{‖z(s)‖; s ∈ [0, max{0, s}]}, s ∈ N (ρ−) ∪V,

where Jφ
0 = supr∈R(ρ−) Jφ(r), K(2,c) = supt∈[0,c] K2(t) and K(3,c) = supt∈[0,c] K3(t).

Theorem 3. If (H1) and (H2) are fulfilled, and

PK(2,c)

∫ c

0
k(s)ds <

∫ ∞

m

dτ

U(τ)
, (12)

where m = (K(2,c)K1(P̃ + 1) + K(3,c) + Jφ
0 )‖φ‖P + PK(2,c)‖x1‖, then there exists a mild solution

for (1) and (2) on V.

Proof. We introduce the set T (c) = {z ∈ C(V, H) : z(0) = φ(0)}. Clearly, T (c) is a
convex closed subset of C(V, H) for the uniform convergence topology. Define the map
Υ : T (c)→ T (c) as follows:

Υz(t) = −∂V(t, s)φ(0)
∂s

∣∣∣
s=0

+ V(t, 0)x1 +
∫ t

0
V(t, s)E1(s, zρ(s,zs))ds,

for t ∈ [0, c]. Clearly Υ : T (c) → T (c). In addition, as a consequence of our hypothe-
ses and applying the Lebesgue dominated convergence theorem, one can argue that Υ
is continuous.

We now establish that Υ is completely continuous. Assume p > 0 and set Bp = {z ∈
T (c) : ‖z(t)‖ ≤ p}.
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First, we show that Υ(Bp) is equicontinuous on [0, c]. Let z ∈ Bp. From Lemma 1,
we get

‖E1(s, zρ(s,zs))‖ ≤ k(s)U(‖zρ(s,zs)‖P )

≤ k(s)U
(
(K(3,c) + Jφ

0 )‖φ‖P + K(2,c)p
)

≤ C1,

for all s ∈ [0, c] and for some constant C1 > 0, which is independent of z. Therefore, using
(9), we obtain

‖Υz(t + h)− Υz(t)‖ ≤
∫ t

0
‖[V(t + h, s)− V(t, s)]E1(s, zρ(s,zs))‖ds

+
∫ t+h

t
‖V(t + h, s)E1(s, zρ(s,zs))‖ds

≤ (tLV + P)C1h,

for all t ∈ [0, c] and h ≥ 0 such that t + h ≤ c. From this, we conclude that Υ(Bp) is right
equicontinuous. By using the same process, one can easily prove the left equicontinuity.
Hence, Υ(Bp) is equicontinuous.

We now show that Υ(Bp)(t) is relatively compact for each t ∈ [0, c]. Consider z ∈ Bp.
From the mean value theorem, we infer that

Υz(t) ∈ −∂V(t, s)φ(0)
∂s

∣∣∣
s=0

+ V(t, 0)x1 + tco
(
V(t, s)E1(s, zρ(s,zs))

)
⊆ −∂V(t, s)φ(0)

∂s

∣∣∣
s=0

+ V(t, 0)x1 + tco(W(t, C1)),

where by co(R) we denote the convex hull of a set R. Using now condition (H2)(iv) and
Mazur’s theorem, we derive that Υ(Bp)(t) is relatively compact.

Consequently, collecting the preceding properties and by the Ascoli-Arzelà theorem,
we conclude that Υ is completely continuous.

Assume that zλ ∈ T (c) and zλ = (1 − λ)φ(0) + λΥzλ for λ ∈ (0, 1). Applying
Lemma 1, we can estimate

‖zλ(t)‖ ≤ K1(P̃ + 1)‖φ‖P + P‖z1‖+ P
∫ t

0

∥∥∥E1(s, zλ
ρ(s,zλ

s )
)
∥∥∥ds

≤K1(P̃ + 1)‖φ‖P + P‖x1‖+ P
∫ t

0
k(s)U

(
(K(3,c) + Jφ

0 )‖φ‖P + K(2,c)‖zλ‖max{0,ρ(s,zλ
s )}

)
ds

≤K1(P̃ + 1)‖φ‖P + P‖x1‖+ P
∫ t

0
k(s)U

(
(K(3,c) + Jφ

0 )‖φ‖P + K(2,c)‖zλ‖s

)
ds, (13)

where we have used ρ(s, zλ
s ) ≤ s for all s ∈ [0, c]. Let

βλ(t) = (K(3,c) + Jφ
0 )‖φ‖P + K(2,c)‖zλ‖t.

From the preceding estimate, we find that

βλ(t) ≤
(

K(2,c)K1(P̃ + 1) + K(3,c) + Jφ
0

)
‖φ‖P + PK(2,c)‖x1‖

+ PK(2,c)

∫ t

0
k(s)U

(
βλ(s)

)
ds. (14)

By denoting γλ(t), the right-hand side of (14), one can get

γ′λ(t) ≤ PK(2,c)k(t)U(γλ(t)).
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Therefore, ∫ γλ(t)

m

dτ

U(τ)
≤ PK(2,c)

∫ c

0
k(s)ds.

This inequality combined with the condition (12) allows us to conclude that {γλ : λ ∈
(0, 1)} is a bounded set and which means {zλ : λ ∈ (0, 1)} is a bounded set.

The existence of a fixed point z(·) of Υ is a consequence of Corollary 1. From the
definition of Υ, we find that z(·) is a mild solution for (1) and (2), and completes the
proof.

We need to introduce some additional conditions for continuing our study.

(H3) The function F1 : V ×P → H fulfills:

(i) For every ψ ∈ P , F1(·, ψ) : V → H is strongly measurable and F1(·, 0) is
integrable.

(ii) There exists a continuous function LF,1 : V → [0, ∞) such that

‖F1(t, ψ2)− F1(t, ψ1)‖ ≤ LF,1(t)‖ψ2 − ψ1‖P ,

for all ψ1, ψ2 ∈ P and t ∈ V.
(iii) There exists a positive continuous function LF,2 : V → [0, ∞) such that

‖F1(t, zt2)− F1(t, zt1)‖ ≤ LF,2(t)|t2 − t1|, t ∈ [0, c],

for all function z : (−∞, c] → H such that z0 = φ and z : [0, c] → H is
continuous.

(H4) There exists a function Lρ : V → [0, ∞) such that

‖ρ(t, ψ2)− ρ(t, ψ1)‖ ≤ Lρ(t)‖ψ2 − ψ1‖P ,

for all ψ1, ψ2 ∈ P and t ∈ V.

We mention that, in general, the function LF,2(·) depends on φ. Because in the most
part of this work we treat with a fixed function φ ∈ P , for the sake of brevity we omit the
dependence on φ. Furthermore, condition (H3)(iii) is very demanding. However, it is
easy to find examples of functions F1 that satisfy it.

Example 1. Assume Q : H → H is a bounded continuous function. We assume that ‖Q(x)‖ ≤ η
for all x ∈ H and that Q satisfies additional conditions, which depends on P , so that the map
F1 : P → H given by

F1(ψ) =
∫ 0

−∞
Q(ψ(θ))dθ,

is well defined and continuous. It is clear that

‖F1(t, zt2)− F1(t, zt1)‖ ≤
∫ t2

t1

‖Q(ψ(τ))‖dτ ≤ η(t2 − t1), t ∈ [0, c],

for all z : (−∞, c]→ H such that z0 = φ, z : [0, c]→ H is continuous and 0 ≤ t1 ≤ t2 ≤ c.

In what follows in this section, we will be concerned with the system

z ′′(t) = A(t)z(t) +
∫ t

0
B(t, s)z(s)ds + F1(t, zρ(t,zt)) + E1(t, zρ(t,zt)), t ∈ V, (15)

with initial condition (2). It is important to point out that the following Theorem 4 is
not an extension of Theorem 3 due to condition (H4). Fundamentally, this is because
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equations with state-dependent delay are intrinsically nonlinear even though the operators
involved in the equation can be linear. In the following statement, we maintain the general
conditions under which we are developing this section.

Theorem 4. If (H1)–(H4) are fulfilled,

PK(2,c)

∫ c

0
LF,1(s)ds + PK(2,c) lim inf

ζ→∞

U(ζ)

ζ

∫ c

0
k(s)ds < 1, (16)

and
PK(2,c)

∫ c

0
(LF,1(s) + LF,2(s)Lρ(s))ds < 1, (17)

hold. Then, there exists a mild solution for (15) with initial conditions (2) on V.

Proof. Let Υ1 : T (c)→ C(V, H) the map given by

Υ1z(t) =
∫ t

0
V(t, s)F1(s, zρ(s,zs))ds,

for t ∈ [0, c] and Υ̃ = Υ1 + Υ.
As our first step, we will show that there is p > 0 sufficiently large such that ‖φ(0)‖ ≤

p and Υ̃(Bp) ⊆ Bp, where Bp = {z ∈ T (c) : ‖z(t)‖ ≤ p, 0 ≤ t ≤ c}. Indeed, assuming
the contrary, we infer that for every p > 0 there exist zp ∈ Bp and tp ∈ V such that
p < ‖Υ̃zp(tp)‖. Then, using Lemma 1, one can conclude that

p < ‖Υ1(zp)(tp)‖+ ‖Υ(zp)(tp)‖

≤
∥∥∥∥−∂V(t, s)φ(0)

∂s

∣∣∣
s=0

∥∥∥∥+ ‖V(tp, 0)x1‖+
∫ tp

0

∥∥∥V(tp, s)F1(s, zp
ρ(s,zp

s )
)
∥∥∥ds

+
∫ tp

0

∥∥∥V(tp, s)E1(s, zp
ρ(s,zp

s )
)
∥∥∥ds

≤ K1(P̃ + 1)‖φ‖P + P‖x1‖+ P
∫ c

0
‖F1(s, 0)‖ds + P

∫ tp

0
LF,1(s)

∥∥∥zp
ρ(s,zp

s )

∥∥∥
P

ds

+ P
∫ tp

0
k(s)U

(∥∥∥zp
ρ(s,zp

s )

∥∥∥
P

)
ds

≤ K1(P̃ + 1)‖φ‖P + P‖x1‖+ P
∫ c

0
‖F1(s, 0)‖ds

+ P
∫ tp

0
LF,1(s)

(
(K(3,c) + Jφ

0 )‖φ‖P + K(2,c)‖zp‖c

)
ds

+ P
∫ tp

0
k(s)U

(
(K(3,c) + Jφ

0 )‖φ‖P + K(2,c)‖zp‖c

)
ds

≤ K1(P̃ + 1)‖φ‖P + P‖x1‖+ P
∫ c

0
‖F1(s, 0)‖ds

+ P
(
(K(3,c) + Jφ

0 )‖φ‖P + K(2,c)(p + ‖φ(0)‖)
) ∫ c

0
LF,1(s)ds

+ PU
(
(K(3,c) + Jφ

0 )‖φ‖P + K(2,c)(p + ‖φ(0)‖)
) ∫ c

0
k(s)ds, (18)

and hence

1 ≤ PK(2,c)

∫ c

0
LF,1(s)ds + PK(2,c) lim inf

ζ→∞

U(ζ)

ζ

∫ c

0
k(s)ds.

which contradicts the condition (16).
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As our next step, we prove that Υ1 is a contraction. Assume w, z ∈ T (c) and let
t1 = ρ(s, ws) and t2 = ρ(s, zs). We have to consider three possibilities essentially different
0 ≤ t1 ≤ t2; t1 < 0 ≤ t2 and t1 ≤ t2 ≤ 0. Let us consider the first alternative.

‖F1(s, zρ(s,zs))− F1(s, wρ(s,ws))‖ ≤ ‖F1(s, zt1)− F1(s, wt1)‖+ ‖F1(s, zt1)− F1(s, zt2)‖
≤ LF,1(s)‖zt1 − wt1‖P + LF,2(s)|t1 − t2|
≤ LF,1(s)K2(t1) max

0≤τ≤t1
‖z(τ)− w(τ)‖+ LF,2(s)LρK2(s) max

0≤τ≤s
‖z(τ)− w(τ)‖

≤ K(2,c)(LF,1(s) + LF,2(s)Lρ) max
0≤τ≤c

‖z(τ)− w(τ)‖.

For the second and third alternative, we can proceed similarly as above to obtain

‖F1(s, zρ(s,zs))− F1(s, wρ(s,ws))‖ ≤ K(2,c)LF,2(s)Lρ max
0≤τ≤c

‖z(τ)− w(τ)‖.

Thus, in the general case, one can affirm that

‖F1(s, zρ(s,zs))− F1(s, wρ(s,ws))‖ ≤ K(2,c)(LF,1(s) + LF,2(s)Lρ) max
0≤τ≤c

‖z(τ)− w(τ)‖.

Using these estimates, we get

‖Υ1z(t)− Υ1w(t)‖ ≤
∫ t

0
‖V(t, s)F1(s, zρ(s,zs))− V(t, s)F1(s, zρ(s,zs))‖ds

≤ PK(2,c)

∫ c

0
(LF,1(s) + LF,2(s)Lρ)ds max

0≤τ≤c
‖z(τ)− w(τ)‖.

It follows from (17) that Υ1 is a contraction. In particular, Υ1 is a continuous map.
Moreover, using the proof of Theorem 3, we know that Υ is continuous, which in turn
implies that Υ̃ also is continuous. Arguing in a similar way, we can affirm that the map Υ is
compact. Collecting these properties, we infer that hypotheses of Theorem 2 are fulfilled.
Hence, we conclude that Υ̃ has a fixed point z(·), which is a mild solution for (15) with
initial conditions (2).

4. Existence for Neutral Systems

This section is devoted to prove the existence of (2) and (3). In this section, we remain
within the general framework of hypotheses discussed in Section 3.

Remark 2. As explained in Remark 1, we should not expect that a mild solution to (2) and
(3) is differentiable. Therefore, to determine the concept of mild solution z(·) of (2) and (3),
we have to decide in which sense we are going to interpret z′(0). Comparing with what is
stated in Remark 1, in this case z′(0) does not depend only on φ(0), but also on E2(0, φ) and
d
dt

E2(t, zt)|t=0, whose existence will depend in turn on E2, φ and the properties of phase

space P . If we assume, formally, that
d
dt

E2(t, zt)|t=0 = ν1, this motivates us to specify the

initial conditions of (2) and (3) as z0 = φ, z′(0) = x1 and
d
dt

N(t, zt)|t=0 = x1 + ν1. In the

case that φ(0) + E2(0, φ) ∈ D(A) and the derivative
d
dt

E2(t, zt)|t=0 = ν1, this way of inter-

preting the mild solution of (2) and (3) determines exactly that z′(0) = x1. Consequently,
we define the concept of mild solution in terms of an arbitrary ν1 ∈ H.
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Definition 4. A function z : (−∞, c] → H is called a mild solution for (2) and (3) if z is

continuous on [0, c], z0 = φ ∈ P ,
d
dt

N(t, zt)|t=0 = x1 + ν1 and the integral equation

z(t) =− ∂V(t, s)[φ(0) + E2(0, φ)]

∂s

∣∣∣
s=0

+ V(t, 0)[x1 + y1]− E2(t, zt)

+
∫ t

0
V(t, s)E1(s, zρ(s,zs))ds,

is satisfied for t ∈ V.

To reach our aim, we consider appropriated conditions for the function E2.

(H5) The function E2 : [0, c]×P → H is continuous and fulfills:

(i) For each r > 0, the set {E2(·, ψ) : ‖ψ‖P ≤ r} is equicontinuous on [0, c] and, for
every t ∈ [0, c], the set {E2(t, ψ) : ‖ψ‖P ≤ r} is relatively compact in H.

(ii) There exist e1, e2 > 0 such that e2K(2,c) < 1 and

‖E2(t, ψ)‖ ≤ e1 + e2‖ψ‖P ,

for all t ∈ [0, c] and ψ ∈ P .
(iii) There exists a positive continuous function LE,2 : [0, c]× [0, ∞)→ [0, ∞) such that

‖E2(t, zt2)− E2(t, zt1)‖ ≤ LE,2(t, r)|t2 − t1|, t ∈ [0, c],

for all function z : (−∞, c]→ H such that z0 = φ and z : [0, c]→ H is continuous
with ‖z‖c ≤ r.

(H6) The function E2 : [0, c]×P → H is continuous and there exists L2 > 0 such that

‖E2(t, ψ1)− E2(t, ψ2)‖ ≤ L2‖ψ1 − ψ2‖P ,

for all t ∈ [0, c] and ψ1, ψ2 ∈ P .

Theorem 5. If (H1), (H2), (H5) are fulfilled, and

M2K(2,c)

∫ c

0
k(s)ds <

∫ ∞

m

dτ

U(τ)
,

where

M1 =
1

1− e2K(2,c)

[
(P̃ + 1)e1 +

(
P̃e2 + K1(P̃ + 1) + e2K(3,c)

)
‖φ‖P + P(‖x1‖+ ‖ν1‖)

]
,

M2 =
1

1− e2K(2,c)
P,

m =K(2,c)M1 + (K(3,c) + Jφ
0 )‖φ‖P ,

then there exists a mild solution for (2) and (3) on V.

Proof. We define Υ1 : T (c)→ C([0, c], H) by

Υ1z(t) = −∂V(t, s)E2(0, φ)

∂s

∣∣∣
s=0

+ V(t, 0)ν1 − E2(t, zt),

for t ∈ [0, c] and Υ̃ = Υ1 + Υ.
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Initially, we verify that Υ1 is completely continuous. Clearly, Υ1 is continuous. More-
over, it follows from (H5) that for each r > 0 and t ∈ [0, c], the set {E2(t, zt) : ‖z‖c ≤ r} is
relatively compact in H. In addition,

‖E2(t + h, zt+h)− E2(t, zt)‖
≤ ‖E2(t + h, zt)− E2(t, zt)‖+ ‖E2(t + h, zt+h)− E2(t + h, zt)‖
≤ ‖E2(t + h, zt)− E2(t, zt)‖+ LE,2(r)|h| → 0, h→ 0,

uniformly for z ∈ C([0, c], H) with ‖z‖c ≤ r. Due to Ascoli-Arzelà theorem, the set Υ1(Br)
is relatively compact in C([0, c], H).

Now, let zλ ∈ T (c) such that zλ = (1− λ)φ(0) + λΥ̃zλ for λ ∈ (0, 1). Using the
estimate (13), we get

‖zλ(t)‖ ≤ ‖Υ1zλ(t)‖+ K1(P̃ + 1)‖φ‖P + P‖x1‖

+ P
∫ t

0
k(s)U

(
(K(3,c) + Jφ

0 )‖φ‖P + K(2,c)‖zλ‖s

)
ds

≤P̃‖E2(0, φ)‖+ P‖ν1‖+ ‖E2(t, zλ
t )‖+ K1(P̃ + 1)‖φ‖P + P‖x1‖

+ P
∫ t

0
k(s)U

(
(K(3,c) + Jφ

0 )‖φ‖P + K(2,c)‖zλ‖s

)
ds

≤P̃(e1 + e2‖φ‖P ) + P‖ν1‖+ e1 + e2‖zλ
t ‖P + K1(P̃ + 1)‖φ‖P + P‖x1‖

+ P
∫ t

0
k(s)U

(
(K(3,c) + Jφ

0 )‖φ‖P + K(2,c)‖zλ‖s

)
ds

≤P̃(e1 + e2‖φ‖P ) + P‖ν1‖+ e1 + e2K(2,c) max
0≤τ≤t

‖zλ(τ)‖+ e2K(3,c)‖φ‖P + K1(P̃ + 1)‖φ‖P

+ P‖x1‖+ P
∫ t

0
k(s)U

(
(K(3,c) + Jφ

0 )‖φ‖P + K(2,c)‖zλ‖s

)
ds,

which implies that

max
0≤s≤t

‖zλ(s)‖ ≤ 1
1− e2K(2,c)

[
P̃(e1 + e2‖φ‖P ) + P‖ν1‖

+ e1 +
(

e2K(3,c) + K1(P̃ + 1)
)
‖φ‖P

]
+

1
1− e2K(2,c)

[
P‖x1‖+ P

∫ t

0
k(s)U

(
(K(3,c) + Jφ

0 )‖φ‖P + K(2,c)‖zλ‖s

)
ds
]

≤M1 + M2

∫ t

0
k(s)U

(
(K(3,c) + Jφ

0 )‖φ‖P + K(2,c)‖zλ‖s

)
ds.

Let
βλ(t) = (K(3,c) + Jφ

0 )‖φ‖P + K(2,c)‖zλ‖t.

From the preceding estimate, we obtain that

βλ(t) ≤K(2,c)M1 + (K(3,c) + Jφ
0 )‖φ‖P + K(2,c)M2

∫ t

0
k(s)U

(
βλ(s)

)
ds. (19)

By denoting γλ(t), the right-hand side of (19), one can get

γ′λ(t) ≤ M2K(2,c)k(t)U(γλ(t)).

Therefore, ∫ γλ(t)

m

dτ

U(τ)
≤ M2K(2,c)

∫ c

0
k(s)ds.
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As this inequality contradicts hypothesis (5), we infer that {γλ : λ ∈ (0, 1)} is a
bounded set, which provides {zλ : λ ∈ (0, 1)} is a bounded set in C([0, c], H). Applying
Corollary 1, we conclude that Υ̃ has a fixed point z(·), which is a mild solution for (2) and
(3) on V.

Theorem 6. If (H1), (H2), (H6) are fulfilled, and

L2K(2,c) + PK(2,c) lim inf
ζ→∞

U(ζ)

ζ

∫ c

0
k(s)ds < 1, (20)

then there exists a mild solution for (2) and (3) on V.

Proof. We keep the notations introduced in Theorem 5.
Initially, we will show that there is p > 0 sufficiently large such that ‖φ(0)‖ ≤ p and

Υ̃(Bp) ⊆ Bp, where Bp = {z ∈ T (c) : ‖z(t)‖ ≤ p, 0 ≤ t ≤ c}. In fact, assuming the
contrary, we infer that for every p > 0 there exist zp ∈ Bp and tp ∈ V such that

p < ‖Υ̃zp(tp)‖ ≤ ‖Υ1(zp)(tp)‖+ ‖Υ(zp)(tp)‖,

and using the estimate (18), we find that

p <P̃‖E2(0, φ)‖+ P‖ν1‖+ ‖E2(tp, zp
tp)‖+ K1(P̃ + 1)‖φ‖P + P‖x1‖

+ PU
(
(K(3,c) + Jφ

0 )‖φ‖P + K(2,c)(p + ‖φ(0)‖)
) ∫ c

0
k(s)ds

≤ K1(P̃ + 1)‖φ‖P + P̃‖E2(0, φ)‖+ P(‖x1‖+ ‖ν1‖) + max
0≤t≤c

‖E2(t, 0)‖+ K(3,c)‖φ‖P

+ L2K(2,c)p + PU
(
(K(3,c) + Jφ

0 )‖φ‖P + K(2,c)(p + ‖φ(0)‖)
) ∫ c

0
k(s)ds.

From this estimate, we find that

1 ≤ L2K(2,c) + PK(2,c) lim inf
ζ→∞

U(ζ)

ζ

∫ c

0
k(s)ds,

which contradicts the condition (20).
Furthermore, for w, z ∈ T (c), we find that

‖E2(s, zs)− E2(s, ws)‖ ≤ L2‖zs − ws‖P ≤ L2K(2,c)‖z− w‖c.

Since condition (20) implies that L2K(2,c) < 1, we conclude that Υ1 is a contraction.
Therefore, all the requirements of Theorem 2 are fulfilled with A = Υ and B = Υ1.

This allows us to conclude that Υ̃ has a fixed point z(·), and which is a mild solution for (2)
and (3) on V.

5. Applications

This section aims to illustrate the application of the theory developed in the previous
sections to the study of a wave motion of a bar located in [0, π] and with fixed ends.
Specifically, we will consider the following problem described by a second-order partial
integro-differential equation with the state-dependent delay of the following form

∂2

∂t2 z(t, y) =
∂2

∂y2 z(t, y) + a(t)z(t, y) +
∫ t

0
b(t− s)

∂2z(s, y)
∂y2 ds

+
∫ t

−∞
a0(τ − t)z

(
τ − ρ1(t)ρ2(‖z(t)‖), y

)
dτ, (t, y) ∈ [0, c]× [0, π], (21)

z(t, 0) = z(t, π) = 0, t ∈ [0, c], (22)
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z(θ, y) = φ(θ, y),
∂

∂t
z(t, y)|t=0 = h̄(y), θ ∈ (−∞, 0], y ∈ [0, π], (23)

where a, b : [0, c] → R, a0 : (−∞, 0] → R, ρ1 : [0, c] → [0, ∞) and ρ2 : [0, ∞) → [0, ∞) are
continuous functions, φ : (−∞, 0] × [0, π] → R and h̄ : [0, π] → R satisfy appropriate
conditions described below.

We model the systems (21) and (22) in the space H = L2([0, π]) endowed with its
classical inner product 〈·〉. Accordingly, we consider φ(θ, ·), h̄(·) ∈ H. We assume that P is
a phase space for functions with values in H. This implies that ρ : [0, c]×P → [0, ∞)) is
given by ρ(t, ψ) = t− ρ1(t)ρ(‖ψ(0)‖) is continuous such that ρ(t, ψ) ≤ t for all 0 ≤ t ≤ c.
Moreover, identifying φ(θ)(y) = φ(θ, y) for θ ∈ (−∞, 0] and y ∈ [0, π], consider φ ∈ P
has the following property: for every τ ∈ (−∞, 0], φτ ∈ P and the function (−∞, 0]→ P ,
s 7→ φτ , is continuous and there exists Jφ(τ) ≥ 0 such that ‖φτ‖P ≤ Jφ(τ)‖φ‖P . This
implies that condition (H1) is fulfilled. We define

E1(t, ψ) =
∫ 0

−∞
a0(θ)ψ(θ)dθ, ψ ∈ P .

We will assume that the map E1(t, ψ) is well defined and E1 is bounded linear. Hence,
there exists k > 0 such that

‖E1(t, ψ)‖ ≤ k‖ψ‖P .

We denote by A0 the operator given by A0z(τ) = z ′′(x) with domain

D(A) = {z ∈ H2([0, π]) : z(0) = z(π) = 0}.

Then, A0 is the infinitesimal generator of a cosine function of operators (C0(t))t∈R on
H associated with sine function (S0(t))t∈R. Additionally, A0 has discrete spectrum which
consists of eigenvalues −n2 for n ∈ N, with corresponding eigenvectors

wn(x) =
1√
2π

einx, n ∈ N.

The set {wn : n ∈ N} is an orthonormal basis of H. Applying this basis, we can
write that

A0z =
∞

∑
n=1
−n2〈z, wn〉wn,

for z ∈ D(A0), (C0(t))t∈R is given by

C0(t)z =
∞

∑
n=1

cos(nt)〈z, wn〉wn, t ∈ R,

and the sine function is

S0(t)z =
∞

∑
n=1

sin(nt)
n
〈z, wn〉wn, t ∈ R.

It is immediate from these representations that ‖C0(t)‖ ≤ 1 and that S0(t) is compact
for all t ∈ R.

We define A(t)z = A0z + a(t)z on D(A). Clearly, A(t) is a closed linear operator. There-
fore, A(t) generates (S(t, s))0≤s≤t≤c such that S(t, s) is compact, for all 0 ≤ s ≤ t ≤ c [43].

We complete the terminology by defining B(t, s) = b(t− s)A0 for 0 ≤ s ≤ t ≤ c on
D(A). Collecting these definitions, it is clear that we can represent the system (21) and
(23) in the abstract form (1) and (2). Furthermore, it is not difficult to see that conditions
(B1)–(B3) from Section 2 are fulfilled, which in turn implies that there exists a resolvent
operator (V(t, s))0≤s≤t≤c associated to (21)–(23). In addition, it follows from (8) that each
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operator V(t, s) is compact. This allow us to conclude (H2) is fulfilled with U(τ) = τ.

Since
∫ ∞

m

dτ

U(τ)
= ∞ for all m < ∞, we conclude that the condition (12) is also satisfied.

Therefore, the next proposition is a simple outcome of Theorem 3.

Proposition 1. Under the above conditions, there exists a mild solution for (21)–(23) with values
in H and defined on [0, c].

6. Conclusions

The main focus of this paper is on finding mild solutions for second-order abstract
non-autonomous integro-differential evolution systems with infinite state-dependent delay.
We initially studied the existence of solutions to second-order abstract evolution systems to
later expand the scope of our study to include the second-order abstract neutral evolution
systems in our analysis. The features of the resolvent operator analogous to second-order
integro-differential systems were used to arrive at our conclusions. Finally, we gave an
application to back up the discussion’s authenticity. We will focus on the existence of
mild solutions for second-order abstract non-autonomous stochastic integro-differential
evolution systems with infinite state-dependent delay as our future work.
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