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Abstract: Although stochastic fractional partial differential equations have received increasing at-
tention in the last decade, the parameter estimation of these equations has been seldom reported in
literature. In this paper, we propose a pseudo-likelihood approach to estimating the parameters of
stochastic time-fractional diffusion equations, whose forward solver has been investigated very re-
cently by Gunzburger, Li, and Wang (2019). Our approach can accurately recover the fractional order,
diffusion coefficient, as well as noise magnitude given the discrete observation data corresponding
to only one realization of driving noise. When only partial data is available, our approach can also
attain acceptable results for intermediate sparsity of observation.

Keywords: parameter estimation; stochastic PDE; fractional diffusion; fractional derivative; maxi-
mum likelihood estimation; pseudo-likelihood approach

1. Introduction

Stochastic fractional partial differential equations (SFPDEs) have received a fair
amount of attention in the last decade. Research in that direction involves constructing new
SFPDE models, proving well-posedness of model solution, and developing new numerical
solution methods. Some of the SFPDEs can be written in the following general form:

∂
β
t u(x, t) = −c(−∆)α̃(x)/2u(x, t) + f (x, t) + εI1−β

t (σ(u)Ẇ(x, t)), (1)

where β is the order of Caputo fractional time derivative, c is diffusion coefficient, α̃(x)
is the spatially variable order of fractional Laplacian, f (x, t) is a prescribed source term
and I1−β

t is fractional time integration operator, Ẇ(x, t) is a space-time white noise, and
ε is the magnitude of the noise. Mijena and Nane [1] proved the existence and unique-
ness of mild solutions to the space-time fractional nonlinear PDE (1) with β ∈ (0, 1),
α̃(x) ≡ α, and a Lipschitz continuous σ(·). Anh, Leonenko, and Ruiz-Medina [2] de-
rived the weak-sense Gaussian solution to the SFPDE (1) with β ∈ (0, 1), σ(·) ≡ 1, and
pseudo-differential operator (−∆)α̃(x)/2. Gunzburger, Li, and Wang [3] proposed a time
discretization scheme for stochastic time-fractional PDE (1) with β ∈ (0, 1), α̃(x) ≡ 2, and
σ(·) ≡ 1. Some other authors considered SFPDEs that differ from the general form (1).
Bolin, Kirchner, and Kovács [4] presented a numerical solution method for an elliptic
SFPDE (κ − ∆)βu(x) = W(x), where W(x) is a Gaussian white noise. Anh, Olenko, and
Wang [5] constructed a SFPDE to model the evolution of a random tangent vector field
on the unit sphere. Mohammed citemohammed2021approximate and Xia and Yan [7]
considered FPDEs driven by multiplicative Brownian motion and fractional Brownian
motion, respectively.

In contrast to the rapid development of numerical solution to forward problems,
parameter estimation for SFPDEs has not yet been fully investigated, although there have
been many works on parameter estimation for SPDEs [8–11]. Cialenco, Lototsk, and
Pospisil [12] and Cialenco [13] studied the parameter estimation of diffusion coefficient and
Hurst index for standard (integer-order) diffusion driven by additive and multiplicative
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fractional noises. When the fractional ingredient in the driving noise is excluded, the
equations they considered are more like stochastic integer-order PDEs, which are not of the
concern of current study. Geldhauser and Valdinociun [14] did consider a SFPDE, and they
estimated the order of fractional Laplacian in the context of optimal control.

Parameter estimation for deterministic and stochastic FPDEs are different. Inversion
for deterministic FPDEs often involves solving forward problems, while inversion for
stochastic FPDE does not. Specifically, for deterministic FPDEs, once the source term
f (x, t) and initial/boundary conditions are known, one can solve forward problems under
different equation parameters, and after utilizing certain inversion techniques such as
regularizing nonlinear least squares [15], surrogate models [16–18] and physics-informed
deep learning [19], one can select the parameters that reconstruct the observation of u
as the estimated parameters. For stochastic FPDEs, however, one does not know the
specific realization of noise that corresponds to the observation, and thus cannot solve
the forward problems even though other conditions are prescribed. Maximum likelihood
estimation (MLE) is a powerful means to handle the parameter estimation problems for
SPDEs, which can bypass solving forward problems. To the best of our knowledge, there
are very few reports on MLE and its variants for parameter estimation of SFPDEs. On the
other hand, there have been some efforts on theoretical analyses, such as consistency and
asymptotic efficiency, for maximum likelihood estimators for parameters in SPDEs, for
example, in [8,11], but the corresponding numerical studies are fewer than the theoretical
studies.

In this paper, we propose a pseudo-likelihood estimation approach for SFPDE (1)
with β ∈ (0, 1), α̃(x) ≡ 2, and σ(·) ≡ 1. We extend the pseudo-likelihood approach for
solving stochastic ordinary differential equations (SODEs) to SFPDEs, despite the fact that
the extension is not trivial. The paper is organized as follows. Section 2 introduces the
SFPDE we consider and defines the parameter estimation problem. Section 3 elaborates on
pseudo-likelihood approach for the SFPDE, before which we briefly review the approach
for SODEs since it inspires us. Section 4 demonstrates some numerical results for fabricated
observation data. The last section gives some remarks on the proposed approach.

2. Parameter Estimation Problem

We consider a one-dimensional stochastic time-fractional diffusion problem [3]
∂tu(x, t)− c ∆∂1−α

t u(x, t) = f (x, t) + ε ∂tW(x, t), (x, t) ∈ (0, 1)2,
u(0, t) = u(1, t) = 0, t ∈ (0, 1),
u(x, 0) = η(x), x ∈ (0, 1),

(2)

where u(x, t) is a space-time distribution of concentration of certain particles, the diffusion
coefficient c > 0, the fractional order α ∈ (0, 1), and the initial condition η(x) and the source
term f (x, t) are prescribed. The stochastic fractional PDE is driven by a space-time white
noise ∂tW(x, t) := Ẇ(x, t), which is the time derivative of a cylindrical Wiener process
W(x, t) in L2((0, 1)) defined by [20]

W(x, t) =
+∞

∑
j=1

φj(x)Wj(t), (3)

with φj(x) being the normalized eigenfunction of negative Laplacian −∆, i.e., φj(x) =√
2 sin(jπx) for x ∈ (0, 1) and {Wj(t)}+∞

j=1 being independent one-dimensional Wiener
processes. The positive constant ε before the white noise determines the noise magnitude.
The domain of Laplacian ∆ is {ψ ∈ H1

0((0, 1)) : ∆ψ ∈ L2((0, 1)). The left-sided Caputo
fractional time derivative is considered:

∂1−α
t ψ(x, t) =

1
Γ(α)

∫ t

0
(t− s)α−1∂sψ(x, s)ds, α ∈ (0, 1), (4)
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where Γ(α) is the Gamma function. Note that for ψ(x, 0) = 0 the left-sided Caputo
fractional time derivative is equivalent to left-sided Riemann–Liouville fractional time
derivative. Moreover, applying fractional integration operator ∂α−1

t to both hand sides of
Equation (2) yields an equivalent equation

∂α
t u(x, t)− c∆(u(x, t)− η(x)) = ∂α−1

t ( f (x, t) + εẆ(x, t)), (5)

in which we have used the identity (cf. Lemma 2.22 in [21]) ∂α−1
t ∂1−α

t ψ(x, t) = ψ(x, t)−
ψ(x, 0).

The parameter estimation problem can be defined as follows. Given the concentration
data ū(xi, tn) observed at space-time grid points (xi, tn), we will find the parameters (c, α, ε)
that maximize the probability that such concentration data are observed. Notice that we do
not know what specific sample (or realization) of the white noise Ẇ(x, t) corresponds to the
current observation, but we only know the observation. We will estimate the magnitude ε
of the noise only utilizing the observation.

3. Pseudo-Likelihood Approach

In this section, we first review the pseudo-likelihood approach for parameter estima-
tion of stochastic ODEs discussed in Section 3.2 of [22] and then embark on the extension
of the approach to stochastic PDEs.

3.1. Pseudo-Likelihood Estimation for Stochastic ODEs

We take the parameter estimation of the following Black-Scholes equation as an
example:

∂tX(t) = θ1X(t) + θ2X(t)Ẇ(t), θ1 ∈ R, θ2 > 0, (6)

with deterministic intial value X(t0) = x0 and Wiener process W(t). Given the observation
X̄(tn) for n = 1, 2, · · · , N, we will estimate the parameters (θ1, θ2).

Denote by pθ1,θ2(x2, s2|x1, s1) (s1 < s2) the conditional density of the random variable
X(s2) given X(s1), and the likelihood function for the observation {X̄(tn)} is

L(θ1, θ2) =
N

∏
n=1

pθ1,θ2(X̄(tn), tn|X̄(tn−1), tn−1). (7)

The MLE (θ̂1, θ̂2) satisfies

(θ̂1, θ̂2) = arg min
θ1,θ2

{− log L(θ1, θ2)}. (8)

When the explicit form of conditional density is known, the corresponding approach is
called exact-likelihood approach. For instance, as the conditional density for Black–Scholes
equation is the density of a log-normal random variable [22], we can employ the exact-
likelihood approach to infer the parameters. For general diffusion processes, however, the
conditional density may not be known explicitly. In this case, we can infer parameters
using pseudo-likelihood approach instead.

To make pseudo-likelihood estimation, we need to discretize the SODEs first. We still
consider the Black–Scholes equation, and discretize it using the Euler scheme

X(tn)− X(tn−1) = θ1X(tn−1)∆t + θ2X(tn−1)(W(tn)−W(tn−1)), (9)

for n = 1, 2, · · · , N. As the increment of the Wiener process W(tn)−W(tn−1) is a normal
random variable with zero mean and variance tn − tn−1, namely, W(tn) −W(tn−1) ∼
N(0, ∆t), we see that the residual X(tn)−X(tn−1)− θ1X(tn−1)∆t := Yn is a normal random
variable

Yn ∼ N(0, θ2
2X2(tn−1)∆t). (10)
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Thus, the probability we jointly observe Ȳn = X̄(tn) − X̄(tn−1) − θ1X̄(tn−1)∆t is
determined by the density,

qθ1,θ2(y = Ȳn) =
1√

2πθ2
2X̄2(tn−1)∆t

exp

{
−1

2
Ȳ2

n

θ2
2X̄2(tn−1)∆t

}
. (11)

Then, the joint probability we observe {X̄(tn)}N
n=1 is

L̃(θ1, θ2) =
N

∏
n=1

qθ1,θ2(Ȳn). (12)

The pseudo-likelihood estimation satisfies

(θ̂1, θ̂2) = arg min
θ1,θ2

{− log L̃(θ1, θ2)}. (13)

The conditional density qθ1,θ2 in pseudo-likelihood (12) generally differs from the true
conditional density pθ1,θ2 in (7) as mentioned in preceding paragraphs. The approximation
q to p is good when the sampling step ∆t is very small. For example, for N(∆t)3 → 0 as
N → +∞ the maximum likelihood estimator built upon pseudo-likelihood is consistent
and asymptotically normal [23].

3.2. Pseudo-Likelihood Estimation for Stochastic PDEs

We now consider the parameter estimation of fractional order α, diffusion coefficient c,
as well as noise magnitude ε in problem (2) by leveraging the pseudo-likelihood approach
we reviewed in the last subsection. Recalling that the first step we implement the approach
is to discretize the Black–Scholes equation using the Euler scheme, we, first of all, need to
seek a proper discretization scheme for our stochastic fractional PDE.

3.2.1. Spatio-Temporal Discretization Scheme

We adopt the time discretization scheme proposed in [3] and central difference for
temporal and spatial discretizations, respectively. For the computational domain {(x, t) :
(x, t) ∈ (0, 1)2} of problem (2), we denote by xi =

i
Nx

, i = 0, 1, · · · , Nx the spatial grid and
by tn = n

Nt
, n = 0, 1, · · · , Nt the temporal grid. The problem (2) can be discretized as

Un
i −Un−1

i
∆t

− c (∆t)α−1
n

∑
j=0

bn−j,1−α

U j
i+1 − 2U j

i + U j
i−1

(∆x)2

= Fn
i + ε

M

∑
j=1

φj(xi)
Wj(tn)−Wj(tn−1)

∆t
, (14)

for n = 1, 2, · · · , Nt, i = 1, 2, · · · , Nx − 1, and U0
i := η(xi). The grid function Un

i approxi-
mates u(xi, tn) and Fn

i := f (xi, tn). We truncate the infinite series expression of cylindrical
Wiener process (3) to the first M terms. For convenience, we let M = Nx. The increment
of Wiener process Wj(tn)−Wj(tn−1) is a normal random variable, namely, Z̃j(tn−1) :=
Wj(tn)−Wj(tn−1) ∼ N(0, ∆t). Letting Zj(tn−1) ∼ N(0, 1) yields Z̃j(tn−1) = Zj(tn−1)

√
∆t.

The Caputo fractional time derivative is approximated by using the convolution quadrature
scheme [24,25] (also known as Grünwald–Letnikov approximation):

∂1−α
t ψ(x, tn) =

1
(∆t)1−α

n

∑
j=0

bn−j,1−αψ(x, tj), (15)



Fractal Fract. 2021, 5, 129 5 of 21

where bj,α, j = 0, 1, 2, · · · are the coefficients in the power series expansion (1− z)α =

∑+∞
j=0 bj,αzj. There exists an iterative formula for computing these coefficients: b0,α = 1, and

bk,α =
(

1− α+1
k

)
bk−1,α, k ≥ 1.

Rearranging the discretization scheme (14) yields the following matrix form:

(I− c(∆t)αA)Un = Un−1 + Fn∆t

+ c(∆t)α
n−1

∑
j=0

bn−j,1−αAUj + ε
√

∆tΦzn−1(ω), (16)

with Un := [Un
1 , Un

2 , · · · , Un
Nx−1]

T, Fn := [ f (x1, tn), f (x2, tn), · · · , f (xNx−1, tn)]T, and Φ :=
[φj(xi)] ∈ R(Nx−1)×M for i = 1, 2, · · · , Nx − 1 and j = 1, 2, · · · , M. The matrix A is the
difference matrix for central difference:

A :=
1

(∆x)2


−2 1
1 −2 1

. . . . . . . . .
1 −2 1

1 −2

 ∈ R(Nx−1)×(Nx−1). (17)

The column vector zn(ω) := [Z1(tn−1), Z2(tn−1), · · · , ZM(tn−1)]
T ∈ RM is a realiza-

tion of standard Gaussian random vector corresponding to a specific sample point ω ∈ Ω
which is a probability sample space for the random vector. Moreover, z0, z1, · · · , zNt−1 are
mutually independent standard Gaussian vectors.

Solving the linear system (16) for each Un gives the numerical solution to the forward
problem driven by a specific realization of white noise:

Z(ω) :=
√

∆tΦ[z0(ω0), z1(ω1), · · · , zNt−1(ωNt−1)] ∈ R(Nx−1)×Nt (18)

with ω := {ω0, ω1, · · · , ωNt−1}. We next solve the inverse problem that given the obser-
vation Ū := [Ū0, Ū1, · · · , ŪNt ], we estimate the parameters (α, c, ε). Before proceeding on
pseudo-likelihood approach, we first clarify two types of observation we consider in the
paper:

(i) Full observation. We denote by Ū∆x,∆t := {ū(i∆x, n∆t)} for integers i, n the discrete
observation of concentration in the computational domain {(x, t) : (x, t) ∈ (0, 1)2}. A
full observation is defined as the case where the spatial sampling step ∆x and temporal
sampling step ∆t are taken to be the smallest values that are allowed in practice. Due
to the limitation of economic cost of placing concentration sensors and restriction of
measurement precision of sensors, in reality, the spatial and temporal steps cannot
be arbitrarily small. We denote by ∆0x and ∆0t the smallest steps that are allowed in
practice. The full observation is the most ideal case for parameter estimation, as we
can extract most information from an observation. We assume that usually one can
accurately estimate parameters from such an observation.

(ii) Partial observation. Sometimes we cannot achieve a full observation due to shrinking
budget and geological constraints for placing sensors. For example, when monitoring
wells have to be digged for measuring contaminant concentration in groundwater,
the budget for placing sensors has been halved for certain reason and the remain-
ing budget only allows a less dense spatial distribution of monitoring wells. We
suppose that there exists a full observation Ū∆0x,∆0t, from which we can accurately
estimate model parameters. Then, the partial observation is defined as a subset of
Ū∆0x,∆0t, namely, Ūrx∆0x,rt∆0t for sampling ratios rx, rt ∈ N+. When the sampling ratios
rx = rt = 1, the partial observation is the same as the full observation.
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3.2.2. Pseudo-Likelihood Estimation for Full Observation

Given the full observation Ū∆0x,∆0t, we aim at finding optimal parameters α, c, and
ε that make it most likely that we see such an observation. Recalling the discretization
scheme (16) for problem (2) and denoting B := I − c(∆t)αA, we now define a random
vector Yn as

Yn := Un − B−1

(
Un−1 + Fn∆t + c(∆t)α

n−1

∑
j=0

bn−j,1−αAUj

)
= ε
√

∆tB−1Φzn−1(ω).

(19)

Analogue to (10), we easily see that the residual vector Yn is a Gaussian random
vector,

Yn ∼ N(0, ε2∆tB−1ΦΦTB−T). (20)

We let Ūn := [ū(∆0x, n∆0t), ū(2∆0x, n∆0t), · · · , ū((N0x − 1)∆0x, n∆0t)]T with N0x =
1/∆0x. Given the full observation Ū∆0x,∆0t, the corresponding observation of Yn is

Ȳn = Ūn − B−1
0

(
Ūn−1 + Fn∆0t + c(∆0t)α

n−1

∑
j=0

bn−j,1−αA0Ūj

)
(21)

where B0 := I− c(∆0t)αA0 and

A0 :=
1

(∆0x)2


−2 1
1 −2 1

. . . . . . . . .
1 −2 1

1 −2

 ∈ R(N0x−1)×(N0x−1). (22)

The probability that we make such observation is determined by the density

qα,c,ε(y = Ȳn) =
1

(2π)(N0x−1)/2|ε2∆0tB−1
0 ΦΦTB−T

0 |1/2

· exp

{
−1

2
(Ȳn)T(B−1

0 ΦΦTB−T
0 )−1Ȳn

ε2∆0t

}
(23)

Then, the joint probability we observe {Ūn}N0t
n=1 (N0t := 1/∆0t) is

L̃(α, c, ε) =
N0t

∏
n=1

qα,c,ε(y = Ȳn). (24)

The pseudo-likelihood estimation can be obtained by minimizing the negative log of
the above joint probability:

(α̂, ĉ, ε̂) = arg min
α,c,ε

{
− log L̃(α, c, ε)

}
= arg min

α,c,ε

{
−

N0t

∑
n=1

log qα,c,ε(y = Ȳn)

}
.

(25)

After some rearrangement, we finally arrive to the following proposition for pseudo-
likelihood estimation. The proof of Proposition 1 is given in Appendix A.
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Proposition 1. Given a full observation Ū∆0x,∆0t (namely {Ūn}N0t
n=0) for the stochastic fractional-

time diffusion problem (2), the pseudo-likelihood estimates for fractional order α, diffusion coefficient
c, and noise magnitude ε are

(α̂, ĉ, ε̂) = arg min
α,c,ε

{
− log L̃(α, c, ε)

}
= arg min

α,c,ε
{G1(α, c, ε) + G2(ε) + C},

(26)

where 
G1(α, c, ε) := −2N0t ∑N0x−1

i=1 log(Lii) +
1
2 ∑N0t

n=1
‖B0Ȳn‖2

2
ε2 N0x∆0t ,

G2(ε) := N0t(N0x−1)
2 log(ε2N0x∆0t),

C := N0t(N0x−1)
2 log(2π).

, (27)

and Ȳn is defined in (21). The lower triangular matrix L is the Cholesky decomposition of matrix
B0 := I− c(∆0t)αA0, i.e., B0 = LLT, and Lii is the i-th diagonal of L.

3.2.3. Pseudo-Likelihood Estimation for Partial Observation

The pseudo-likelihood estimation for the case of partial observation is given in the
following Proposition 2. The proof of Proposition 2 is the same as that of Proposition 1
except that we replace the spatio-temporal steps ∆0x, ∆0t with rx∆0x, rt∆0t.

Proposition 2. Given a partial observation Ūrx∆0x,rt∆0t with rx > 1 and rt > 1 for the stochastic
fractional-time diffusion problem (2), the pseudo-likelihood estimates for fractional order α, diffusion
coefficient c, and noise magnitude ε are

(α̂, ĉ, ε̂) = arg min
α,c,ε

{
− log L̃r(α, c, ε)

}
= arg min

α,c,ε
{Gr,1(α, c, ε) + Gr,2(ε) + Cr},

(28)

where 
Gr,1(α, c, ε) := −2 N0t

rt
∑

N0x
rx −1

i=1 log(Lr,ii) +
1
2 ∑

N0t
rt

n=1
‖BrȲn

r ‖2
2

ε2 N0x
rx rt∆0t

,

Gr,2(ε) :=
N0t
rt

(
N0x
rx −1)
2 log(ε2 N0x

rx
rt∆0t),

C :=
N0t
rt

(
N0x
rx −1)
2 log(2π).

, (29)

and Ȳn
r is defined as

Ȳn
r = Ūn

r − B−1
r

(
Ūn−1

r + Fn
r rt∆0t + c(rt∆0t)α

n−1

∑
j=0

bn−j,1−αArŪj
r

)
. (30)

The notations Ūn
r and F̄n

r are defined as

Ūn
r := [ū(rx∆0x, nrt∆0t), ū(2rx∆0x, nrt∆0t), · · · , ū((Nrx − 1)rx∆0x, nrt∆0t)]T,

F̄n
r := [ f (rx∆0x, nrt∆0t), f (2rx∆0x, nrt∆0t), · · · , f ((Nrx − 1)rx∆0x, nrt∆0t)]T, (31)

with Nrx := N0x/rx. The matrices Ar and Br are defined as

Ar :=
1

(rx∆0x)2


−2 1
1 −2 1

. . . . . . . . .
1 −2 1

1 −2

 ∈ R(Nrx−1)×(Nrx−1), (32)
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and Br := I− c(rt∆0)
αAr, respectively. The lower triangular matrix Lr is the Cholesky decompo-

sition of matrix Br and Lr,ii is the i-th diagonal of Lr.

4. Numerical Results

In this section, we consider the problem (2) with the source term

f (x, t) = 2tx2(1− x)2 − 2t1+α

Γ(2 + α)
(2− 12x + 12x2), (33)

and zero initial condition η(x) ≡ 0. The analytical solution to the deterministic problem
(ε = 0) is ud(x, t) = t2x2(1− x)2, which is the exact mean of the stochastic solutions. We
assume the spatial and temporal steps for full observation are ∆0x = ∆0t = 2−9, and
fabricate the full observation Ū∆0x,∆0t using the true parameter α∗ = 0.5, c∗ = 1, ε∗ = 0.1 as
well as a fixed sample point ω0 in (18). We plot in Figure 1 the full observation Ū∆0x,∆0t
for deterministic case (ε = 0) and noisy case (ε = 0.1). The other parameters α∗ and c∗ are
fixed. We see that the driving noise is already strong enough to produce negative values for
the numerical solution, while the exact mean function ud is always non-negative. Note that
a specific sample of noise ε Z(ω0) is drawn and displayed in Figure 2. In Appendix B, we
demonstrate the mean and standard deviation of 1000 numerical solutions to the forward
problem (2) as well as the effect of noise magnitude ε on numerical solutions.

Using the full observation, we next discuss the performance of pseudo-likelihood
approach for cases of one-parameter, two-parameter, and three-parameter estimations.

Figure 1. Full observations with ∆0x = ∆0t = 2−9 for noise magnitude ε = 0 (left panel) and
ε = 0.1 (right panel). The fractional order and diffusion coefficient are fixed to α∗ = 0.5 and c∗ = 1.0,
respectively.
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Figure 2. The realization of the noise term Z(ω0) in (18) that yields the full observation in the right
panel of Figure 1. The noise magnitude is set to ε∗ = 0.1.

4.1. One-Parameter Estimation

We first consider the full observation Ū2−9, 2−9 shown in the right panel of Figure 1,
which corresponds to the noise sample point ω0. We plot the exact negative log-likelihood
function −log L̃(α, c, ε) by varying one of the three parameters (α, c, ε) but fixing the other
two to their true values. In the left panel of Figure 3, we plot a red dotted line corresponding
to − log L̃(α, c∗, ε∗) for α = 0.1, 0.2, · · · , 0.9 and ∆0x = ∆0t = 2−9. We see that the optimal
α that minimizes the negative log-likelihood is 0.5, and it agrees with the true α∗ = 0.5.
Now, we consider the partial observation by increasing the spatial step ∆0x to 4∆0x, 16∆0x,
and 64∆0x, and we plot the corresponding exact negative log-likelihoods with blue, green,
and cyan dotted lines. The optimal α does not alter with increasing ∆x. This indicates that
the spatial step does not affect too much the estimation of α when other two parameters
are fixed to their true values. This is not the case for estimating c, however. In the right
panel of Figure 3, the optimal c also matches the true value c∗ = 1 for the full observation
case, whereas the optimal c’s for partial observation cases begin to shift to the right of the
true value. Furthermore, the larger the spatial step is, the more the optimal c shifts to the
right. This implies that the estimation of c is more sensitive to increasing spatial step than
the estimation of α.

We have considered the effect of spatial step on the optimal α and c for fixed temporal
step. We next consider the opposite, namely, the effect of temporal step for fixed spatial
step. From Figure 4, we see that estimations of α and c are both sensitive to the varying
temporal steps. This suggests that when recording the concentration data using sensors
we can place a small number of sensors in space but we must ensure that the data can be
recorded with high sampling frequency in time.

We last consider the sensitivity of estimated α and c to the magnitude of noise ε. We
see from Figure 5 that for a full observation the noise magnitude has no impact on the
optimal α and c. In contrast, Figure 6 illustrates that for the partial observation with rx = 16
and rt = 32 the optimal α and c can differ from their true values; moreover, the larger the
noise is, the more likely the shift occurs.
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Figure 3. One-parameter estimation: Negative log-likelihood curves for varying α ∈ [0.1, 0.9] and
fixed c∗ = 1.0 (left) and for varying c ∈ [0.1, 2] and fixed α∗ = 0.5 (right). The effect of spatial step on
the optimal parameters is demonstrated. The noise magnitude is fixed to ε∗ = 0.1. Full observation
and partial observation curves are displayed in different colors. As these curves have y values with
several orders of magnitude, for convenience of comparison, the y values are normalized by dividing
the y values of each curve by their maximum absolute values. The temporal step is fixed to that of full
observation, i.e., ∆0t = 2−9; the spatial steps vary, and ∆x = 2−9 corresponds to the full observation
case, while the other three spatial steps correspond to the partial observation cases with rx = 4, 16,
and 64. The vertical dotted lines intersect x-axis at the optimal α or c that minimizes the normalized
negative log-likelihood. The optimal parameters are regarded as the estimated parameters. Note that
a vertical line having a specific color corresponds to the likelihood curve having the same color, and
vertical lines can overlap each other when the optimal parameters are the same.

Figure 4. One-parameter estimation: Negative log-likelihood curves for varying α and fixed c∗ = 1.0
(left) and for varying c and fixed α∗ = 0.5 (right). The effect of temporal step on the optimal
parameters is demonstrated. The noise magnitude is fixed to ε∗ = 0.1. Full observation and partial
observation curves are displayed in different colors. The spatial step is fixed to that of full observation,
i.e., ∆0x = 2−9; the temporal steps vary, and ∆t = 2−9 corresponds to the full observation case, while
the other three spatial steps correspond to partial observation cases with rt = 2, 8, and 16.
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Figure 5. One-parameter estimation for a full observation: Negative log-likelihood curves for
varying α and fixed c∗ = 1.0 (left) and for varying c and fixed α∗ = 0.5 (right). The effect of noise
magnitude on the optimal parameters is demonstrated. Curves for different noise magnitudes are
displayed in different colors. The spatio-temporal steps are fixed to those of a full observation, i.e.,
∆0t = ∆0x = 2−9.

Figure 6. One-parameter estimation for a partial observation: Negative log-likelihood curves for
varying α and fixed c∗ = 1.0 (left) and for varying c and fixed α∗ = 0.5 (right). The effect of noise
magnitude on the optimal parameters is demonstrated. Curves for different noise magnitudes
are displayed in different colors. The spatio-temporal steps are fixed to those of a specific partial
observation with rx = 16 and rt = 32.

4.2. Two-Parameter Estimation

We now estimate jointly parameters α and c from the full observation shown in
the right panel of Figure 1. In first case, we fix the temporal step to ∆0t = 2−9 and
change the spatial step. Figure 7 plots how the optimal (α, c) (the red disk in the figure)
alters its position in the contour plot when the spatial step varies. We see that for a full
observation, the optimal parameters can always match the true parameters, whereas for
partial observations, the diffusion coefficient c is more difficult to be estimated than the
fractional order α. In second case, we fix the spatial step to ∆0x = 2−9 but change the
temporal step. From Figure 8 we see that increasing the temporal step makes both the
optimal α and c deviate from their true values, which implies, just as in the one-parameter
estimation case, that a small temporal step is preferred to a small spatial step when high
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accuracy of partial observation is expected. In third case, we fix spatio-temporal steps
while varying the noise magnitude ε. In Figure 9, we fix the spatio-temporal steps to be
rx = rt = 1 (a full observation), and we see that the magnitude of noise does not affect
the optimal parameters; this is the same as in the case of one-parameter estimation. In
Figure 10, we consider a partial observation by setting the sampling ratios to rx = 16
and rt = 8, and we observe that the larger the noise magnitude is, the more the optimal
parameters deviate from the true parameters.

Figure 7. Two-parameter estimation: Contour plots of normalized negative log-likelihood for pairs
of (α, c) ∈ [0.3, 0.9]× [0.5, 1.5]. The effect of spatio step on the estimated parameters is demonstrated.
The noise magnitude is taken to its true value ε∗ = 0.1. The true values for α and c are α∗ = 0.5
and c∗ = 1.0. The full observation case rx = 1 is compared with other three partial observation
cases with rx = 4, 16, and 64. For all plots, the other controlling parameter for partial observation
is fixed to rt = 1. The red disk represents the optimal parameter pair that minimizes the negative
log-likelihood.

Figure 8. Two-parameter estimation: Contour plots of normalized negative log-likelihood for pairs of
(α, c) ∈ [0.3, 0.9]× [0.5, 1.5]. The effect of temporal step on the estimated parameters is demonstrated.
The noise magnitude is taken to its true value ε∗ = 0.1. The true values for α and c are α∗ = 0.5 and
c∗ = 1.0. The full observation case rt = 1 is compared with other three partial observation cases
with rt = 2, 8, and 32. For all plots, the other controlling parameter for partial observation is fixed to
rx = 1. The red disk represents the optimal parameter pair that minimize the negative log-likelihood.
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Figure 9. Two-parameter estimation for a full observation: Contour plots of normalized negative
log-likelihood for pairs of (α, c) ∈ [0.3, 0.9]× [0.5, 1.5]. The effect of noise magnitude on the estimated
parameters is demonstrated. The true values for α and c are α∗ = 0.5 and c∗ = 1.0. The plots
for different noise magnitudes are compared. For all plots, the controlling parameters for partial
observation are fixed to rx = rt = 1 (namely, a full observation). The red disk represents the optimal
parameter pair that minimizes the negative log-likelihood.

Figure 10. Two-parameter estimation for a partial observation: Contour plots of normalized negative
log-likelihood for pairs of (α, c) ∈ [0.3, 0.9]× [0.5, 1.5]. The effect of noise magnitude on the estimated
parameters is demonstrated. The true values for α and c are α∗ = 0.5 and c∗ = 1.0. The plots
for different noise magnitudes are compared. For all plots, the controlling parameters for partial
observation are fixed to rx = 16 and rt = 8. The red disk represents the optimal parameter pair that
minimizes the negative log-likelihood.

So far, we have estimated parameters using a trial-and-error approach. Specifically,
we computed the exact negative log-likelihood for all parameters on a uniform grid in
the parameter space and then selected the optimal parameter among the parameters on
this grid. Sometimes, however, the true parameter, say, α∗ = 0.345, is located on a rather
dense grid, and employing the trial-and-error approach could be time-consuming. We
next utilize certain optimization algorithm to find the optimal parameters. In this paper,
we employ a type of quasi-Newton method, called L-BFGS-B algorithm [26] to minimize
the negative log-likelihood − log L̃(α, c, ε). To implement the algorithm, we adopt the
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optimization algorithm package provided in SciPy (see scipy.optimization.minimize()),
and set the optional parameters in the algorithm routine to their default values.

As different full observations will yield different estimates of parameters, we consider
20 different full observations obtained by solving the forward problems under different
sample-points of noise: ωk for k = 0, 1, · · · , 19. In Table 1, we show the mean values
of 20 pairs of parameters (α̂(ωk), ĉ(ωk)) where we put the noise sample point ωk in the
parentheses behind each parameter to emphasize the dependency of parameter on sample
point. Table 2 displays the standard deviation of these 20 pairs of parameters.

Table 1. Two-parameter estimation: Mean of the estimated (α, c) from 20 different full observations.
The effect of sparsity of observation (i.e., sampling rations rx and rt) on the mean of the estimated
parameters is demonstrated. The true parameters are α∗ = 0.5 and c∗ = 1. The noise magnitude
is fixed to ε∗ = 0.1. A quasi-Newton optimization algorithm, L-BFGS-B algorithm, is employed to
minimize the negative log-likelihood.

Mean α̂ rx = 128 64 32 16 8 4 2 1
rt = 32 0.673 0.634 0.649 0.664 0.673 0.682 0.682 0.683
rt = 16 0.621 0.603 0.612 0.628 0.637 0.645 0.648 0.651
rt = 8 0.581 0.573 0.589 0.603 0.611 0.617 0.620 0.621
rt = 4 0.555 0.557 0.569 0.579 0.582 0.586 0.588 0.590
rt = 2 0.528 0.26 0.536 0.544 0.546 0.548 0.550 0.551
rt = 1 0.491 0.485 0.492 0.497 0.498 0.499 0.500 0.500

Mean ĉ rx = 128 64 32 16 8 4 2 1
rt = 32 1.455 1.259 1.277 1.307 1.314 1.324 1.264 1.100
rt = 16 1.428 1.297 1.317 1.365 1.386 1.400 1.351 1.183
rt = 8 1.409 1.316 1.379 1.438 1.466 1.478 1.423 1.238
rt = 4 1.400 1.371 1.424 1.473 1.485 1.487 1.432 1.248
rt = 2 1.361 1.326 1.375 1.410 1.411 1.408 1.355 1.177
rt = 1 1.233 1.186 1.211 1.223 1.219 1.205 1.155 1.000

Table 2. Two-parameter estimation: Standard deviation (std) of the estimated (α, c) from 20 different
full observations. The effect of sparsity of observation on the std of the estimated parameters is
demonstrated. The noise magnitude is fixed to ε∗ = 0.1.

Std α̂ rx = 128 64 32 16 8 4 2 1
rt = 32 0.094 0.062 0.044 0.032 0.023 0.019 0.014 0.009
rt = 16 0.071 0.045 0.035 0.025 0.016 0.012 0.009 0.007
rt = 8 0.056 0.033 0.024 0.017 0.013 0.010 0.007 0.005
rt = 4 0.035 0.023 0.016 0.011 0.007 0.006 0.004 0.003
rt = 2 0.027 0.017 0.011 0.008 0.007 0.005 0.003 0.002
rt = 1 0.021 0.010 0.007 0.006 0.005 0.004 0.003 0.002
Std ĉ rx = 128 64 32 16 8 4 2 1

rt = 32 0.392 0.225 0.167 0.121 0.088 0.072 0.049 0.278
rt = 16 0.350 0.211 0.173 0.123 0.077 0.062 0.045 0.028
rt = 8 0.327 0.182 0.140 0.102 0.081 0.066 0.046 0.027
rt = 4 0.254 0.151 0.112 0.080 0.060 0.050 0.032 0.020
rt = 2 0.215 0.122 0.084 0.065 0.055 0.038 0.027 0.015
rt = 1 0.161 0.075 0.054 0.046 0.041 0.028 0.019 0.011

From Table 1, we see that keeping rt small yields more accurate estimates than keeping
rx small, which accords with our comment for Figure 8. Moreover, a full observation with
rx = rt = 1, again, achieves the highest accuracy for parameter estimation, which validates
our approach. From Table 2 we can see that the standard deviation of diffusion coefficient
is obviously larger than that of fractional order, and this implies that the former is more
difficult to be estimated than the latter. This implication matches our observation for the
one-parameter estimation case. Additionally, we see from Table 2 that the more accurate
the mean of estimates is, the smaller the standard deviation of estimates is. This gives a
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suggestion that when we do not know the true parameters we can judge if the estimated
parameters are reliable by checking the magnitude of standard deviation.

4.3. Three-Parameter Estimation

Table 3 gives the estimated parameters from the full observation shown in the right
panel of Figure 1. The initial guess for the three parameters in the L-BFGS-B algorithm is
(α0, c0, ε0) = (0.8, 0.5, 0.5) while the true parameters are (α∗, c∗, ε∗) = (0.5, 1.0, 0.1). Like the
one-parameter and two-parameter estimation cases, the full observation case (rx = rt = 1)
again achieves highest estimation accuracy. Jointly estimating three parameters from a
partial observation, however, could not be reliable, even though rt and rx are both small.
For example, for rt = 1 and rx = 2, the estimated diffusion coefficient is 1.523, while
the true parameter is only 1.0. This indicates that for this case, we need to approach a
full observation by keeping the spatio-temporal steps as small as possible so as to attain
high estimation accuracy. Among the three parameters that are estimated, the diffusion
coefficient is again most difficult to be estimated. This agrees with our observation for the
one-parameter and two-parameter estimation cases.

Table 3. Three-parameter estimation: Estimated (α, c, ε) from the full observation shown in the right
panel of Figure 1. The effect of sparsity of observation on estimated parameters is demonstrated.
The true parameters are α∗ = 0.5, c∗ = 1, and ε∗ = 0.1. A quasi-Newton optimization algorithm,
L-BFGS-B algorithm is employed to minimize the negative log-likelihood.

α̂ rx = 128 64 32 16 8 4 2 1
rt = 32 0.495 0.596 0.661 0.668 0.665 0.694 0.683 0.691
rt = 16 0.518 0.583 0.609 0.607 0.614 0.650 0.651 0.662
rt = 8 0.518 0.558 0.576 0.586 0.597 0.624 0.627 0.632
rt = 4 0.505 0.515 0.548 0.565 0.569 0.586 0.587 0.590
rt = 2 0.498 0.497 0.512 0.533 0.536 0.547 0.549 0.553
rt = 1 0.456 0.456 0.473 0.487 0.491 0.496 0.500 0.500

ĉ rx = 128 64 32 16 8 4 2 1
rt = 32 1.382 1.152 1.137 1.170 1.162 1.174 1.155 1.101
rt = 16 1.281 1.192 1.190 1.252 1.246 1.260 1.217 1.096
rt = 8 1.246 1.211 1.272 1.378 1.391 1.376 1.448 1.079
rt = 4 1.720 1.686 1.845 2.000 1.980 1.950 1.496 1.360
rt = 2 1.5000 1.554 1.726 1.880 1.862 1.857 1.441 1.337
rt = 1 1.369 1.463 1.622 1.744 1.730 1.709 1.523 1.038

ε̂ rx = 128 64 32 16 8 4 2 1
rt = 32 0.162 0.109 0.091 0.091 0.093 0.085 0.091 0.098
rt = 16 0.130 0.102 0.094 0.078 0.096 0.087 0.088 0.089
rt = 8 0.109 0.099 0.098 0.101 0.100 0.090 0.099 0.084
rt = 4 0.146 0.146 0.141 0.142 0.140 0.131 0.105 0.108
rt = 2 0.122 0.132 0.139 0.139 0.138 0.132 0.107 0.112
rt = 1 0.126 0.140 0.146 0.148 0.147 0.143 0.131 0.104

We next consider the effect of true fractional order on the parameter estimation. We
have fixed the true fractional order to α∗ = 0.5 so far, but now we will see if we can
still recover parameters when α∗ is changed. We freeze the spatial-temporal steps to
∆0x = ∆0t = 2−9, fix the sample point to ω0 as before, but generate the full observations
Ū0.1

∆0x,∆0t and Ū0.9
∆0x,∆0t using α∗ = 0.1 and α∗ = 0.9, respectively, where the superscript of Ū

represents the dependency on the true fractional order. We have seen from Table 3 that the
estimated parameters for Ū0.5

∆0x,∆0t are (α̂, ĉ, ε̂) = (0.500, 1.038, 0.104). We observe that the
estimated parameters for other two full observations are sufficiently accurate as well, i.e.,
(α̂, ĉ, ε̂) = (0.100, 1.035, 0.104) for Ū0.1

∆0x,∆0t and (α̂, ĉ, ε̂) = (0.900, 1.002, 0.100) for Ū0.9
∆0x,∆0t.

We need to point out that for smaller α∗, say, 0.1 here, the negative log-likelihood appears
to be flatter in the neighborhood of global minimizer α∗ = 0.1, compared with a large
α∗, say 0.5. For example, for Ū0.1

∆0x,∆0t, the negative log-likelihood for the parameter triple
(0.0999, 1.528, 0.1526) is approximately −3,335,910, while the negative-likelihood for true
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parameters (0.1, 1.0, 0.1) is approximately −3,335,916. In the neighborhood of true parame-
ters, the negative log-likelihood can only change |3,335,916−3,335,910|

3,335,916 ≈ 0.0002%. This minor
variation could challenge the optimization algorithms. For the L-BFGS-B algorithm, if we
set the iteration termination tolerances ftol and gtol to larger values, say, the default values
ftol = 1e-9 and gtol = 1e-5, we arrive to the aforementioned parameters (0.0999, 1.528, 0.1526).
By resetting ftol = 1e-12 and gtol = 1e-9, we obtain much better estimates (0.100, 1.035, 0.104).
Note that for parameter estimation in other two full observations, we still use the default
tolerances for sake of computational cost.

On the other hand, the negative log-likelihood can also become flatter near the global
minimizer when the final observation time decreases. The final observation time we
previously consider is T = 1, but now we reset it to T = 1/4 and T = 1/16, with
spatio-temporal steps and noise sample point fixed as before. The true fractional order
is taken to 0.5. We first consider the case of default ftol and gtol. For T = 1/4, the
estimated parameters are (0.5008, 1.0932, 0.1088), whose accuracy is acceptable, whereas
for T = 1/16, the estimated parameters are (0.4978, 1.3775, 0.1387), which is not that
accurate. Now we switch to ftol = 1e-12 and gtol = 1e-9, and see that the estimated
parameters for T = 1/4 do not change, but those for T = 1/16 become much better ones
(0.4962, 1.0268, 0.1045). Therefore, for a small final observation time, it is safe to keep using
small iteration termination tolerances.

Here are some comments on time complexity in implementing the pseudo-likelihood
approach proposed in the paper. The time complexity is

M

[
O

((
N0x

rx

)2(N0t

rt

)2
)
+ O

((
N0x

rx

)3
)]

, (34)

where M is the number of evaluations of negative log-likelihood function in the L-BFGS-B
algorithm. The number M is affected by the number of parameters to be estimated (or
the dimensionality of parameter space) and the iteration termination tolerances afore-
mentioned. For example, for a full observation with default tolerances, a two-parameter
estimation requires M = 45, while a three-parameter estimation with the default tolerances
requires M = 140. The term (N0t/rt)2 comes from the time discretization of fractional time
derivative ∂1−α

t AŪ(t), and (N0x/rx)2 arises from the multiplication of difference matrix A
and observation vector Ūn. The last term (N0x/rx)3 appears due to the inversion of and
Cholesky decomposition of B. In our computational experiment, it took 7523 seconds to es-
timate (α, c, ε) for the full observation case (ω0), in which M = 140, N0x = N0t = 512, and
rx = rt = 1. The code was run at a laptop workstation with Intel(R) Core(TM) i7-10850H
CPU @ 2.70GHz and 64 GB memory.

We provide at Github (The code examples can be downloaded at https://github.com/
Derek2021Pang/pseudo_likelihood_SFPDE) two Python code examples. The first example
is a forword solver, which can generate full observation for given spatio-temporal steps and
white noise sample, and the second example is a pseudo-likelihood parameter estimator,
which can estimate the parameters from the full observation by employing the L-BFGS-B
algorithm.

5. Concluding Remarks

In the paper, we propose a pseudo-likelihood approach to estimating the parameters
of a one-dimensional stochastic time-fractional diffusion problem (2). We consider full
observation and partial observation cases when different amounts of information are
available. For the full observation case, our approach can accurately estimate equation
(or model) parameters for one-parameter, two-parameter, and three-parameter estimation
problems. For the partial observation case, the accuracy of estimated parameters are
affected by the sparsity of the observation data, which is controlled by the spatio-temporal
sampling steps ∆x and ∆t (or rx and rt). Our computational experiments produce the
following observations:

https://github.com/Derek2021Pang/pseudo_likelihood_SFPDE
https://github.com/Derek2021Pang/pseudo_likelihood_SFPDE
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i The larger the spatio-temporal sampling steps are, the lower the accuracy of estimated
parameters is, which is intuitive.

ii Keeping temporal sampling step small is more important than keeping spatial step
small in terms of increasing the parameter estimation accuracy for partial observation.

iii Among the three parameters being estimated, namely, fractional order, diffusion coef-
ficient, and noise magnitude, the diffusion coefficient is most difficult to be estimated,
since it is most sensitive to varying spatio-temporal steps in partial observation.

iv The high accuracy of mean of estimated parameters is usually related to the low
standard deviation of estimated parameters, when we fortunately have multiple ob-
servations, corresponding to different realizations of driving noise, to obtain multiple
groups of estimated parameters.

v Estimating more parameters jointly leads to larger variability of estimated parame-
ters when spatio-temporal steps increase. Making spatio-temporal steps as small as
possible is suggested for a joint estimation of a large number of parameters.

We need to point out, however, that a limitation of the current approach is that the
observed data must be distributed at a uniform grid in the space and time. Otherwise, we
cannot compute the negative-likelihood function using the finite difference schemes in the
forward solver. The approach cannot handle the case where scattered observation data
is present.

In reality, when confronted by discrete observation data, we need to pay attention to
three points: First, we do not know in advance whether or not the observation is a full
observation. The judgment largely depends on what equation model we consider, what
discretization scheme we adopt, and what spatial-temporal steps we take. As we have
pointed out, when one already chooses the right model and right discretization, one could
make a good parameter estimation if the observation data is dense in time but sparse in
space. Second, we may take into account model selection problem when we do not have
preference for a specific model but have several candidate models. To select a good model,
we can consider a scoring strategy. We score each candidate model with the minimum of
the corresponding negative log-likelihood and choose the model having the lowest score.
Third, different discretization schemes will lead to different pseudo-likelihood function
L̃(·). Thus, it could be sensible for a given model to select a discretization scheme that
yields a pseudo-likelihood estimation more robust to spatial-temporal sampling steps.

Unlike the maximum likelihood estimators presented in [8,11], we do not make any
theoretical analyses on asymptotic properties of our pseudo-likelihood estimators. This
is one of our future works. It is straightforward to extend the current pseudo-likelihood
approach to two- and three-dimensional problems. However, extending the approach to
other types of equations, such as space-time fractional stochastic PDEs (1) and even the
stochastic versions of variable-order fractional PDEs [27,28], is not that trivial. Reliable
discretization schemes for target equations are needed to be developed for those equations,
and proper parametrization is required for the variable fractional orders. Furthermore,
we will consider in the future the parameter estimation for fractional diffusion equations
perturbed by fractional Brownian motion and Lévy motion.
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Appendix A. Proof of Proposition 1

Proof. We first simplify the expression of density (23) by proving ΦΦT = N0xI. In fact,
we only need to prove ∑N0x

j=1 φ2
j (xk) ≡ N0x for k = 1, 2, · · · , N0x − 1. Recalling that φj(x) =

√
2 sin(jπx), we have

2
N0x

∑
j=1

sin2 jπx =
N0x

∑
j=1

(1− cos 2jπx)

= N0x − Re

{
N0x

∑
j=1

e2jπxi

}
(with i =

√
−1)

= N0x − Re
{

e2πxi(1− e2πxN0x i)

1− e2πxi

}
= N0x − Re

{
e2πxieπxN0x i(e−πxN0x i − eπxN0x i)

eπxi(e−πxi − eπxi)

}
= N0x − Re

{
eπx(N0x+1)i sin(πxN0x)

sin(πx)

}
= N0x −

cos(πx(N0x + 1)) sin(πxN0x)

sin(πx)
.

(A1)

Noting that xk =
k

N0x
, we have in the numerator of the last equation that sin(πxk N0x) =

sin(kπ) ≡ 0. Thus, ∑N0x
j=1 φ2

j (xk) ≡ N0x and ΦΦT = N0xI.
Inserting the simplified version of (23) into the negative log-likelihood in (25) yields

− log L̃(α, c, ε)

=
N0t

∑
n=1

{
N0x − 1

2
log(2π) +

1
2

log |ε2∆0tN0xB−1
0 B−T

0 |+
1
2
(Ȳn)TBT

0 B0Ȳn

ε2∆0tN0x

}

=
N0t(N0x − 1)

2
log(2π) +

N0t

2

(
log((ε2∆0tN0x)

N0x−1) + log |B−1
0 B−T

0 |
)

+
1
2

N0t

∑
n=1

(B0Ȳn)T(B0Ȳn)

ε2∆0tN0x
. (A2)

Denoting by L the Cholesky decomposition of B0 gives

log |B−1
0 B−T

0 | = log |(LLT)−1(LLT)−T| = log |L−1|4

= log |L|−4 = −4 log |L| = −4 log
N0x−1

∏
i=1

Lii = −4
N0x−1

∑
i=1

log Lii. (A3)

We bypass computing the determinant of a matrix since for a large matrix (i.e., a large
N0x) the direct computation of its determinant can be problematic due to round-off errors.
Substituting the above equation into (A2) we arrive to
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− log L̃(α, c, ε) =
N0t(N0x − 1)

2
log(2π) +

N0t(N0x − 1)
2

log(ε2∆0tN0x)

− 2N0t

N0x−1

∑
i=1

log(Lii) +
1
2

N0t

∑
n=1

‖B0Ȳn‖2
2

ε2∆0tN0x
,

(A4)

which is exactly (29). Following the maximum likelihood estimation theorem [29], the
optimal parameters should minimize the negative log-likelihood − log L̃(α, c, ε).

Appendix B. Numerical Solution to Forward Problem

We solve the forward problem (2) using 1000 realizations of white noise, namely,
Z(ωk), k = 0, 1, · · · , 999. We take the equation parameters α∗ = 0.5, c∗ = 1.0, ε∗ = 0.1, the
spatial step ∆0x = 2−9, and the temporal step ∆0t = 2−9. We compare in Figure A1 the
exact and computed mean functions of the 1000 numerical solutions driven by 1000 groups
of the aforementioned white noise. We show the exact and computed means at t = 1 as
well as one standard deviation band in the left panel of Figure A2. In the right panel of
the figure, we also display the numerical solution at t = 1 for two specific realizations of
white noise ω0 and ω1. We can see that the regularity of numerical solution is low. To
demonstrate the effect of noise magnitude on numerical solutions, we plot the numerical
solutions for four increasing noise magnitudes in Figure A3.

Figure A1. Solution to forward problem: Exact mean (left) and computed mean (right) of 1000 solu-
tions under 1000 realizations of white noise.
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Figure A2. Solution to forward problem: Exact and computed means of solutions at t = 1 and one
standard deviation band (left), and solutions at t = 1 under two realizations of white noise (right).

Figure A3. Solution to forward problem: Effect of noise magnitude ε on numerical solution for fixed
realization of white noise ω0.
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