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Abstract: Integral transformations are essential for solving complex problems in business, engineer-
ing, natural sciences, computers, optical science, and modern mathematics. In this paper, we apply a
general integral transform, called the Jafari transform, for solving a system of ordinary differential
equations. After applying the Jafari transform, ordinary differential equations are converted to a
simple system of algebraic equations that can be solved easily. Then, by using the inverse operator of
the Jafari transform, we can solve the main system of ordinary differential equations. Jafari transform
belongs to the class of Laplace transform and is considered a generalization to integral transforms
such as Laplace, Elzaki, Sumudu, G\_transforms, Aboodh, Pourreza, etc. Jafari transform does not
need a large computational work as the previous integral transforms. For the Jafari transform, we
have studied some valuable properties and theories that have not been studied before. Such as the
linearity property, scaling property, first and second shift properties, the transformation of periodic
functions, Heaviside function, and the transformation of Dirac’s delta function, and so on. There is a
mathematical model that describes the cell population dynamics in the colonic crypt and colorectal
cancer. We have applied the Jafari transform for solving this model.

Keywords: Laplace transform; Jafari transform; inverse Jafari transform; ordinary differential equa-
tions

1. Introduction

Integral transformations have been successfully applied for solving many problems
in engineering science, applied mathematics, and mathematical physics for almost two
centuries. The history of integral transformations goes back to the monumental work of
Joseph Fourier (1768–1830) in 1822 and to the renowned work of P. S. Laplace (1749–1827)
on probability theory in the 1780s. Integral transforms introduce powerful methods for
solving integral equations and differential equations. The Laplace transform is the most
commonly used integral transform in the mathematical literature. Fourier introduced the
theory of Fourier series, heat conduction, and Fourier integrals with many applications.
The role of the integral transforms is to map a function from its original space into a new
space by integration. The properties of the original function in the new space might be
more easily manipulated than in the original space.

Integral transforms, as known, solve the differential equations by converting these
equations to algebraic equations. As a result, these algebraic equations can be solved easily.
Of course, the solution of these algebraic equations is considered a transform of the solution
of the original differential equations. To complete the solution, this transform must be
inverted [1–6]. In the class of Laplace transform, the senior researchers introduced many
integral transforms during the last two decades, such as Natural, Sumudu, Aboodh, Elzaki,
Pourreza, G\_transform, Mohand, Kamal, and Sawi transform [7–19].
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Integral transforms can be used to solve several types of ordinary differential equations
(ODEs), integral equations, partial differential equations (PDEs), and fractional-order
differential equations (FDEs) [20–28]. These transforms also can be coupled with the
Adomian decomposition and the homotopy perturbation methods to solve complicated
types of ODEs, PDEs, and FDEs [29–34]. Aggarwal et al. [35–37] solved several problems
using the Laplace transformation. In [38], the authors presented the application of Laplace
transformation in cryptography. Fatoorehchi et al. proposed a nonlinear differential
equations solution based on a novel extension of the Laplace transformation [39]. Higazy
et al. [40] solved the HIV-1 infections model by the Shehu transform. The authors of [41]
used the Sawi decomposition method for solving the Volterra integral equation. A modified
differential transform method has been applied for solving the vibration equations of
MDOF systems [42]. Higazy et al. [19] used the Sawi transformation to find the exact
solution of ODEs.

This paper aims to find the solution of the system of ordinary differential equations
(SODEs) using a new integral transformation [1], we have called it Jafari transformation.
SODEs can be used to describe many real-world problems such as the problem of the three-
layer beam, electrical circuits, chain of chemical reactions, control of a flying apparatus
in cosmic space, mixing growth of species, and mechanical vibration. This motivated
us to study and prove some valuable properties and theories of Jafari transformation
that have not been checked and confirmed before, such as linearity property, scaling
property, first and second shift properties, the transformation of periodic functions, the
transformation of Heaviside function, the transformation of Dirac’s delta function, and so
on in Sections 2–9. In Section 10, we have discussed the solution of SODEs using the Jafari
integral transformation. Section 11 has solved a mathematical model describing the cell
population dynamics in the colonic crypt and colorectal cancer using the Jafari integral
transformation. Finally, in Section 12, the conclusions of this paper are introduced. Now,
let us start with the definition of the Jafari transform.

2. Definition of Jafari Transform

The Jafari transform of the function v(t), t ≥ 0, h(σ) 6= 0 and g(σ) being positive real
functions, is given by [1]

J {v(t)} = h(σ)
∫ ∞

0
v(t)e−g(σ)tdt = R(h(σ), g(σ)), (1)

where the integral exists for some g(σ). It must be noted that the Jafari transform (1) for
those v(t), which are not continuously differentiable, contains terms with negative or
fractional powers of g(σ).

Suppose that for all t ≥ 0, the function v(t) is piecewise continuous and satisfies∣∣v(t)∣∣≤ Meµt, thenR(h(σ), g(σ)) exists for all g(σ) > µ.
Since

||R(h(σ), g(σ))|| = |h(σ)
∫ ∞

0 v(t)e−g(σ)tdt| ≤ h(σ)
∫ ∞

0 |v(t)|e
−g(σ)tdt

≤ h(σ)
∫ ∞

0 Meµte−g(σ)tdt ≤ h(σ)M
µ−g(σ) ,

the statement is valid.

3. Some Essential Characteristics of Jafari Transform

In this section, we introduce some useful characteristics of the Jafari transform.

3.1. Linearity of Jafari Transform

Theorem 1. If J {v1(t)} = R1(h(σ), g(σ)) and J {v2(t)} = R2(h(σ), g(σ)), then
J {αv1(t) + βv2(t)} = αR1(h(σ), g(σ)) + βR2(h(σ), g(σ)), where α, β are arbitrary con-
stants.
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Proof of Theorem 1. From the definition of Jafari transform, we have

J {αv1(t) + βv2(t)} = h(σ)
∫ ∞

0 [αv1(t) + βv2(t)]e−g(σ)tdt
⇒ J {αv1(t) + βv2(t)} = α[h(σ)

∫ ∞
0 v1(t)e−g(σ)tdt] + β[h(σ)

∫ ∞
0 v2(t)e−g(σ)tdt]

⇒ J {αv1(t) + βv2(t)} = αJ {v1(t)}+ βJ {v2(t)}
⇒ J {αv1(t) + βv2(t)} = R1(h(σ), g(σ)) +R2(h(σ), g(σ)). �

3.2. Scaling Property of Jafari Transform

Theorem 2. If J {v(t)} = R(h(σ), g(σ)), then J {v(λt)} = 1
λR(h(σ),

g(σ)
λ ) with λ 6= 0.

Proof of Theorem 2. From the definition of Jafari transform, we have

J {v(λt)} = h(σ)
∫ ∞

0
v(λt)e−g(σ)tdt.

Let λt = x ⇒ λdt = dx, then

J {v(λt)} = 1
λ [h(σ)

∫ ∞
0 v(x)e−g(σ)( x

λ )dx]

⇒ J {v(λt)} = 1
λ [h(σ)

∫ ∞
0 v(x)e−(

g(σ)
λ )xdx] = 1

λR(h(σ),
g(σ)

λ ). �

3.3. First Shift Property of Jafari Transform

Theorem 3. If J {v(t)} = R(h(σ), g(σ)), then J {eλtv(t)} = R(h(σ), g(σ)− λ).

Proof of Theorem 3. From the definition of Jafari transform, we have

J {eλtv(t)} = h(σ)
∫ ∞

0 eλtv(t)e−g(σ)tdt= h(σ)
∫ ∞

0 v(t)e−(g(σ)−λ)tdt
⇒ J

{
eλtv(t)

}
= R(h(σ), g(σ)− λ). �

3.4. Second Shift Property of Jafari Transform

Theorem 4. If J {v(t)} = R(h(σ), g(σ)), then

J {v(t− λ)H(t− λ)} = e−λg(σ)R(h(σ), g(σ)).

Proof of Theorem 4. From the definition of Jafari transform, we have

J {v(t− λ)H(t− λ)} = h(σ)
∫ ∞

0
v(t− λ)H(t− λ)e−g(σ)tdt = h(σ)

∫ ∞

λ
v(t− λ)e−g(σ)tdt,

let t− λ = x ⇒ dt = dx, then

J {v(t− λ)H(t− λ)} = h(σ)
∫ ∞

0 v(x)e−g(σ)(x+λ)dx
⇒ J {v(t− λ)H(t− λ)} = e−λg(σ)[h(σ)

∫ ∞
0 v(x)e−g(σ)xdx]

⇒ J {v(t− λ)H(t− λ)} = e−λg(σ)R(h(σ), g(σ)). �

4. Jafari Transform of Periodic Functions

A periodic function is sectionally continuous and for some λ > 0, satisfies

v(t) = v(t + λ) = v(t + 2λ) = v(t + 3λ) = · · ·= v(t + nλ).
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We can write the Jafari transform of v(t) as the series of integrals

J {v(t)} = h(σ)
∫ ∞

0 v(t)e−g(σ)tdt = h(σ)
∫ λ

0 v(t)e−g(σ)tdt + h(σ)
∫ 2λ

λ v(t)e−g(σ)tdt
+h(σ)

∫ 3λ
2λ v(t)e−g(σ)tdt + · · ·

For the second integral, put t = x + λ; for the third integral, put t = x + 2λ; for the
fourth, put t = x + 3λ; etc.; then the limits on each integral are 0 and λ. Hence,

J {v(t)} = h(σ)
∫ ∞

0 v(t)e−g(σ)tdt = h(σ)[
∫ λ

0 v(t)e−g(σ)tdt +
∫ λ

0 v(x + λ)e−g(σ)(x+λ)dx
+
∫ λ

0 v(x + 2λ)e−g(σ)(x+2λ)dx +
∫ λ

0 v(x + 3λ)e−g(σ)(x+3λ)dx + · · · ]
⇒ J {v(t)} = h(σ)

∫ λ
0 v(t)e−g(σ)tdt + e−g(σ)λ[h(σ)

∫ λ
0 v(x + λ)e−g(σ)xdx]

+e−2g(σ)λ[h(σ)
∫ λ

0 v(x + 2λ)e−g(σ)xdx] + · · ·

The dummy variable of integration x can be set equal to t, and with the use of

v(t) = v(t + λ) = v(t + 2λ) = v(t + 3λ) = · · ·= v(t + nλ).
⇒ J {v(t)} = h(σ)

∫ λ
0 v(t)e−g(σ)tdt + e−g(σ)λ[h(σ)

∫ λ
0 v(t + λ)e−g(σ)tdt]

+e−2g(σ)λ[h(σ)
∫ λ

0 v(t + 2λ)e−g(σ)tdt] + · · ·
⇒ J {v(t)} = h(σ)

∫ λ
0 v(t)e−g(σ)tdt + e−g(σ)λ[h(σ)

∫ λ
0 v(t)e−g(σ)tdt]

+e−2g(σ)λ[h(σ)
∫ λ

0 v(t)e−g(σ)tdt] + · · ·
⇒ J {v(t)} = [1 + e−g(σ)λ + e−2g(σ)λ + e−3g(σ)λ + · · · ][h(σ)

∫ λ
0 v(t)e−g(σ)tdt].

Since
1

1−e−g(σ)λ = 1 + e−g(σ)λ + e−2g(σ)λ + e−3g(σ)λ + · · ·
⇒ J {v(t)} = 1

1−e−g(σ)λ [h(σ)
∫ λ

0 v(t)e−g(σ)tdt].

5. Jafari Transform of Heaviside Function

J {H(t− λ)} = h(σ)
∫ ∞

0
H(t− λ)e−g(σ)tdt= h(σ)

∫ ∞

λ
e−g(σ)tdt =

h(σ)
g(σ)

e−g(σ)λ.

6. Jafari Transform of Dirac’s Delta Function

Schwartz space S is the function space of all functions whose derivatives are rapidly
decreasing.

The Dirac’s delta function δ is defined as follows [43]
(δ(t− λ), v(t)) =

∫ ∞
−∞ δ(t− λ)v(t)dt = v(λ), for any v in the Schwartz space. Then,

the Jafari transform for δ(t− λ)v(t) is

J {δ(t− λ)v(t)} = h(σ)
∫ ∞

0 δ(t− λ)v(t)e−g(σ)tdt = h(σ)
∫ ∞

0 δ(t− λ)v(λ)e−g(σ)λdt
= h(σ)v(λ)e−g(σ)λ∫ ∞

0 δ(t− λ)dt = h(σ)v(λ)e−g(σ)λ∫ ∞
−∞ δ(t− λ)dt = h(σ)v(λ)e−g(σ)λ,∫ ∞

−∞ δ(t− λ)dt = 1.

If v(t) = 1, then J {δ(t− λ)v(t)} = J {δ(t− λ)} = h(σ)e−g(σ)λ.

7. Jafari Transform of Derivatives of the Function

Theorem 5. Suppose v(t) is differentiable, h(σ) and g(σ) are positive real functions, then

J {v(n)(t)} = [g(σ)]nJ {v(t)} − h(σ)
n−1

∑
i=0

[g(σ)]n−i−1v(i)(0); n ≥ 1.
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Proof of Theorem 5. From the definition of Jafari transform, we firstly have

J {v′ (t)} = h(σ)
∫ ∞

0 v′ (t)e−g(σ)tdt
⇒ J {v′ (t)} = h(σ)[v(t)e−g(σ)t]

∞
0
+ g(σ)h(σ)

∫ ∞
0 v(t)e−g(σ)tdt

⇒ J {v′ (t)} = h(σ)[ lim
t→∞

v(t)e−g(σ)t]− h(σ)v(0)+g(σ)h(σ)
∫ ∞

0 v(t)e−g(σ)tdt

⇒ J {v′ (t)} = g(σ)J {v(t)} − h(σ)v(0), where lim
t→∞

v(t)e−g(σ)t = 0.

Secondly, since

J {v′ (t)} = g(σ)J {v(t)} − h(σ)v(0)
⇒ J {v′′ (t)} = g(σ)J {v′ (t)} − h(σ)v′ (0)
⇒ J {v′′ (t)} = g(σ){g(σ)J {v(t)} − h(σ)v(0)} − h(σ)v′ (0)
⇒ J {v′′ (t)} = [g(σ)]2J {v(t)} − h(σ)[g(σ)v(0) + v′ (0)]
⇒ J {v′′′ (t)} = [g(σ)]2J {v′ (t)} − h(σ)[g(σ)v′ (0) + v′′ (0)]
⇒ J {v′′′ (t)} = [g(σ)]3J {v(t)} − h(σ)[[g(σ)]2v(0) + g(σ)v′ (0) + v′′ (0)].

By induction, we can deduce that

J {v(n)(t)} = [g(σ)]nJ {v(t)} − h(σ)
n−1

∑
i=0

[g(σ)]n−i−1v(i)(0); n ≥ 1. �

Jafari transforms for some important basic functions, which are utilized for finding
the solution of important problems in engineering and sciences, are given in Table 1.

Table 1. Jafari and inverse Jafari transforms of some basic functions.

v(t) = J −1[R(h(σ), g(σ))] J {v(t)} = R(h(σ), g(σ))

1 h(σ)/g(σ)

eλt h(σ)
g(σ)−λ

, g(σ) > λ

tk, k > 0 Γ[k+1]h(σ)
[g(σ)]k+1

sin kt kh(σ)
[g(σ)]2+k2

cos kt g(σ)h(σ)
[g(σ)]2+k2

sinhkt kh(σ)
[g(σ)]2−k2

cosh kt g(σ)h(σ)
[g(σ)]2−k2

eλt sin kt kh(σ)
[g(σ)−λ]2+k2

eλt cos kt [g(σ)−λ]h(σ)
[g(σ)−λ]2+k2

eλtsinhkt kh(σ)
[g(σ)−λ]2−k2

eλt cosh kt [g(σ)−λ]h(σ)
[g(σ)−λ]2−k2

δ(t− λ) h(σ)e−λg(σ)

H(t− λ) h(σ)
g(σ) e−g(σ)λ
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Table 1. Cont.

v(t− λ)H(t− λ) e−λg(σ)J {v(t)}

v(t) = v(t + nλ), n = 1, 2, 3, . . . h(σ)
1−e−g(σ)λ

∫ λ
0 v(t)e−g(σ)tdt

v(n)(t), n ≥ 1
[g(σ)]nJ {v(t)} −

h(σ)∑n−1
i=0 [g(σ)]n−i−1v(i)(0).

8. The Advantages of Jafari Transform

In this section, we show some advantages of the Jafari transform, as follows:

• All classes of integral transforms are covered by the Jafari transform. Hence, all the
transforms in the class of Laplace transform, introduced during the last few decades,
are a special case of the Jafari transform.

• Jafari transform can be applied for solving the ODEs with constant and variable
coefficients. Further, it can be applied easily for solving the fractional-order differential
equations and fractional-order integral equations.

• From the definition of the Jafari transform, several new integral transforms can be
defined by choosing new forms for h(σ) and g(σ).

For the integral transforms, it should be noted that there are no advantages between
these transforms unless for special problems. Let us show that in the following example.

Example 1. Consider the following equation

αt2v′′ (t) + βtv′ (t) + γv(t) = δtm, m ∈ N, v(0) = v′ (0) = 0, (2)

where α, β, γ,and δ are constants.

Applying the Jafari transform on both sides of the above equation gives

α(h(σ)/g′ (σ)) d
dσ [(1/g′ (σ))( d

dσ (
1

h(σ)J {v′′ (t)}))]
−β(h(σ)/g′ (σ)) d

dσ [
1

h(σ)J {v′ (t)}] + γJ {v(t)} = δJ {tm},
α(h(σ)/g′ (σ)) d

dσ [(1/g′ (σ))( d
dσ (

1
h(σ) g2(σ)R(σ)))]

−β(h(σ)/g′ (σ)) d
dσ [

1
h(σ) g(σ)R(σ)] + γR(σ) = Γ[m + 1]δ h(σ)

[g(σ)]m+1 ,

(3)

whereR(σ) = R(h(σ), g(σ)) and

J {tmv(n)(t)} = (−1)m(h(σ)/g′ (σ))
d

dσ

(1/g′ (σ))(
d

dσ
· · · (1/g′ (σ))(

d
dσ︸ ︷︷ ︸

m times

(
1

h(σ)
J {v(n)(t)})) . . .)


with h(σ), g(σ) and v(t) are differentiable (g′ (σ) 6= 0), see [1].

Now, we find the transform of equation (3) for some integral transforms:

• Sawi transform (h(σ) = 1
σ2 , g(σ) = 1

σ ) gives

ασ2R′′ (σ) + σ(2α + β)R′ (σ) +R(σ)(β + γ)− δ Γ[m + 1]σm−1 = 0.

• Elzaki transform (h(σ) = σ, g(σ) = 1
σ ) gives

ασ2R′′ (σ) + σ(β− 4α)R′ (σ) +R(σ)(6α− 2β + γ)− δ Γ[m + 1]σm+1 = 0.

• Sumudu transform (h(σ) = 1
σ , g(σ) = 1

σ ) gives

ασ2R′′ (σ) + βσR′ (σ) + γR(σ)− δ Γ[m + 1]σm = 0.
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• Laplace transform (h(σ) = 1, g(σ) = σ) gives

ασ2R′′ (σ) + σ(4α− β)R′ (σ) +R(σ)(2α− β + γ)− δ Γ[m + 1]
σm+1 = 0.

• Pourreza transform (h(σ) = σ, g(σ) = σ2) gives

ασ2R′′ (σ) + σ(5α− 2β)R′ (σ) +R(σ)(3α− 2β + 4γ)− 4
δ Γ[m + 1]

σ2m+1 = 0.

It is clear that if the coefficients ofR′ (σ) andR(σ) are equal to zero in Elzaki, Pourreza
and Laplace transforms, then we obtain a simple second-order differential equation that
can be solved easily. For example, let α = 1, β = 4, γ = 2, and δ = 12, then the best choice
is to apply the Laplace transform. We obtainR′′ (σ) = 24

σ5 , the solution of this equation is
v(t) = t2 (exact solution).

Hence, the Jafari transform is a helping tool for choosing the best integral transform
for solving a certain ordinary differential equation. In Sections 10 and 11, we applied the
Jafari transform for solving a SODEs with constant coefficients as a start to the topic, and a
generalization to the integral transforms used for solving a SODEs [19,40,41]. Similarly, the
Jafari transform advantages, presented in this section, can be exploited in solving several
different SODEs.

9. Inverse Jafari Transform

The function v(t) is called the inverse Jafari transform of the functionR(h(σ), g(σ))
if it verifies J {v(t)} = R(h(σ), g(σ)). Hence, we can write v(t) = J −1[R(h(σ), g(σ))].
Inverse Jafari transforms for some important basic functions are given in Table 1. The
Linearity of the inverse Jafari transform can be shown as follows.

If J −1[R1(h(σ), g(σ))] = v1(t) and J −1[R2(h(σ), g(σ))] = v2(t), then

J −1[αR1(h(σ), g(σ)) + βR2(h(σ), g(σ))]
= αJ −1[R1(h(σ), g(σ))] + βJ −1[R2(h(σ), g(σ))]
⇒ J −1[αR1(h(σ), g(σ)) + βR2(h(σ), g(σ))] = αv1(t) + βv2(t).

All the previous properties and theorems of Jafari transform and inverse Jafari trans-
form are helping tools for solving a system of ordinary differential equations (SODEs).
Further, we use the Cramer rule for solving the algebraic system of equations produced by
applying the Jafari transform on the SODEs. Then, we apply the inverse Jafari transform to
find the final solution of the SODEs.

10. Jafari Transform for First Order SODEs

Consider the following SODEs

ψ1
′ (t) = r11ψ1(t) + r12ψ2(t) + · · ·+ r1kψk(t) + s1(t)

ψ2 ′ (t) = r21ψ1(t) + r22ψ2(t) + · · ·+ r2kψk(t) + s2(t)
...

ψk
′ (t) = rk1ψ1(t) + rk2ψ2(t) + · · ·+ rkkψk(t) + sk(t)

, (4)

with initial conditions

ψ1(0) = c1, ψ2(0) = c2, . . . , ψk(0) = ck. (5)

By the matrix notation, the system (4) with (5) can be expressed as follows

ψ′ (t) = Rψ(t) + S(t) with ψ(0) = C, (6)
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where

ψ′(t) =


ψ′1(t)
ψ′2(t)

...
ψ′k(t)

, R =


r11 r12 . . . r1k
r21 r22 . . . r2k
...

...
...

...
rk1 rk2 . . . rkk

, ψ(t) =


ψ1(t)
ψ2(t)

...
ψk(t)

, S(t) =


s1(t)
s2(t)

...
sk(t)

, ψ(0) =


ψ1(0)
ψ2(0)

...
ψk(0)

,

C =


c1
c2
...

ck

.

Now, by applying the Jafari transform on (4) and taking into consideration the initial
conditions (5), we obtain

(g(σ)− r11)J {ψ1(t)} − r12J {ψ2(t)} − · · · − r1kJ {ψk(t)} = J {s1(t)}+ c1h(σ)
−r21J {ψ1(t)}+ (g(σ)− r22)J {ψ2(t)} − · · · − r2kJ {ψk(t)} = J {s2(t)}+ c2h(σ)

...
−rk1J {ψ1(t)} − rk2J {ψ2(t)} − · · ·+ (g(σ)− rkk)J {ψk(t)} = J {sk(t)}+ ckh(σ)

, (7)

where

J {ψ′1(t)} = g(σ)J {ψ1(t)} − h(σ)ψ1(0) = g(σ)J {ψ1(t)} − h(σ)c1,
J {ψ′2(t)} = g(σ)J {ψ2(t)} − h(σ)ψ2(0) = g(σ)J {ψ2(t)} − h(σ)c2,
J {ψ′3(t)} = g(σ)J {ψ3(t)} − h(σ)ψ3(0) = g(σ)J {ψ3(t)} − h(σ)c3.

Let

∆ =

∣∣∣∣∣∣∣∣∣
(g(σ)− r11) −r12 · · · −r1k
−r21 (g(σ)− r22) · · · −r2k

...
...

...
...

−rk1 −rk2 · · · (g(σ)− rkk)

∣∣∣∣∣∣∣∣∣ 6= 0,

∆1 =

∣∣∣∣∣∣∣∣∣
J {s1(t)}+ c1h(σ) −r12 · · · −r1k
J {s2(t)}+ c2h(σ) (g(σ)− r22) · · · −r2k

...
...

...
...

J {sk(t)}+ ckh(σ) −rk2 · · · (g(σ)− rkk)

∣∣∣∣∣∣∣∣∣,

∆2 =

∣∣∣∣∣∣∣∣∣
(g(σ)− r11) J {s1(t)}+ c1h(σ) · · · −r1k
−r21 J {s2(t)}+ c2h(σ) · · · −r2k

...
...

...
...

−rk1 J {sk(t)}+ ckh(σ) · · · (g(σ)− rkk)

∣∣∣∣∣∣∣∣∣,

∆k =

∣∣∣∣∣∣∣∣∣
(g(σ)− r11) −r12 · · · J {s1(t)}+ c1h(σ)
−r21 (g(σ)− r22) · · · J {s2(t)}+ c2h(σ)

...
...

...
...

−rk1 −rk2 · · · J {sk(t)}+ ckh(σ)

∣∣∣∣∣∣∣∣∣.
By applying the Cramer rule, the solution of the system (7) is given by

J {ψ1(t)} =
∆1

∆
,J {ψ2(t)} =

∆2

∆
, . . . ,J {ψk(t)} =

∆k
∆

.

Hence,

ψ1(t) = J −1{∆1

∆
}, ψ2(t) = J −1{∆2

∆
}, . . . , ψk(t) = J −1{∆k

∆
}.
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Note that the system introduced in this section is general. This means that the solution
depends on the values of rij, cα, and sα(t); α, i, j ∈ {1, 2, . . . , k}. If these values are known,
then we can find ∆ and ∆i, i ∈ {1, 2, . . . , k}. Hence, we can find ψ1(t) = J −1{∆1

∆ }, ψ2(t) =
J −1{∆2

∆ }, . . . , ψk(t) = J −1{∆k
∆ } and complete the solution.

11. Application

Integral transformations play a predominant role in medical science, mathematics,
chemical engineering, physics, radar, signal processing, fluid mechanics, and theory of
elasticity. The mathematical model describing the cell population dynamics in the colonic
crypt and colorectal cancer [44] can be represented by the following SODEs:

ψ
′
1(t) = (λ3 − λ1 − λ2)ψ1(t),

ψ
′
2(t) = (λ6 − λ4 − λ5)ψ2(t) + λ2ψ1(t),

ψ
′
3(t) = λ4ψ2(t)− µψ3(t).

 (8)

with
ψ1(0) = c1, ψ2(0) = c2, ψ3(0) = c3. (9)

Table 2 shows the natural explanation of the parameters of the model (8).

Table 2. The natural explanation of the parameters.

Parameter Meaning

ψ1(t) number of stem cells

ψ2(t) number of semi-differentiated cells

ψ3(t) number of differentiated cells

λ1 the cell death rates in stem cells

λ2 the number of stem cells that become semi-differentiated

λ3 the cell renewal rates of stem cells

λ4 the cell death rates in semi-differentiated cells

λ5
the number of the semi-differentiated cells that become

differentiated cells

λ6 the cell renewal rates of semi-differentiated cells

µ the rate of differentiated cells that are removed from the crypt

In this section, we solve this model by the Jafari transformation.
Put ω = λ3 − λ1 − λ2,l = λ6 − λ4 − λ5, then the model (8) with (9) can be written as

follows
ψ
′
1(t) = ωψ1(t),

ψ
′
2(t) = lψ2(t) + λ2ψ1(t),

ψ
′
3(t) = λ4ψ2(t)− µψ3(t),

 (10)

with
ψ1(0) = c1, ψ2(0) = c2, ψ3(0) = c3. (11)

By the matrix notation, the system (8) with (9) can be expressed as follows

ψ′ (t) = Rψ(t) + S(t), ψ(0) = C, (12)

where
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ψ′ (t) =

 ψ
′
1(t)

ψ
′
2(t)

ψ
′
3(t)

, R =

 ω 0 0
λ2 l 0
0 λ4 −µ

, ψ(t) =

 ψ1(t)
ψ2(t)
ψ3(t)

, S(t) =

 0
0
0

, ψ(0) =

 ψ1(0)
ψ2(0)
ψ3(0)

, C =

 c1
c2
c3

.

Now, by applying the Jafari transform on (10) and taking into consideration the initial
conditions (11), we obtain

(g(σ)−ω)J {ψ1(t)} = c1h(σ),
−λ2J {ψ1(t)}+ (g(σ)− l)J {ψ2(t)} = c2h(σ),
−λ4J {ψ2(t)}+ (g(σ) + µ)J {ψ3(t)} = c3h(σ),

 (13)

Let

∆ =

∣∣∣∣∣∣
g(σ)−ω 0 0
−λ2 g(σ)− l 0

0 −λ4 g(σ) + µ

∣∣∣∣∣∣ = (g(σ)−ω)(g(σ)− l)(g(σ) + µ),

∆1 =

∣∣∣∣∣∣
c1h(σ) 0 0
c2h(σ) g(σ)− l 0
c3h(σ) −λ4 g(σ) + µ

∣∣∣∣∣∣= c1h(σ)(g(σ)− l)(g(σ) + µ),

∆2 =

∣∣∣∣∣∣
g(σ)−ω c1h(σ) 0
−λ2 c2h(σ) 0

0 c3h(σ) g(σ) + µ

∣∣∣∣∣∣ = (g(σ) + µ)[c2h(σ)(g(σ)−ω) + λ2c1h(σ)],

∆3 =

∣∣∣∣∣∣
g(σ)−ω 0 c1h(σ)
−λ2 g(σ)− l c2h(σ)

0 −λ4 c3h(σ)

∣∣∣∣∣∣ = (g(σ)−ω)[c3h(σ)(g(σ)− l) + λ4c2h(σ)] + c1λ2λ4h(σ).

By applying the Cramer rule, the solution of the system (13) is given by

J {ψ1(t)} = ∆1
∆ = c1h(σ)(g(σ)−l)(g(σ)+µ)

(g(σ)−ω)(g(σ)−l)(g(σ)+µ)
= c1

h(σ)
g(σ)−ω

,

J {ψ2(t)} = ∆2
∆ = (g(σ)+µ)[c2h(σ)(g(σ)−ω)+λ2c1h(σ)]

(g(σ)−ω)(g(σ)−l)(g(σ)+µ)
= c2h(σ)

(g(σ)−l) +
λ2c1h(σ)

(g(σ)−ω)(g(σ)−l)

= c2
h(σ)

g(σ)−l −
λ2c1

(l−ω)
h(σ)

g(σ)−ω
+ λ2c1

(l−ω)
h(σ)

g(σ)−l ,

J{ψ3(t)} = ∆3
∆ = (g(σ)−ω)[c3h(σ)(g(σ)−`)+λ4c2h(σ)]+c1λ2λ4h(σ)

(g(σ)−ω)(g(σ)−`)(g(σ)+µ)

= c3h(σ)
(g(σ)+µ)

+ λ4c2h(σ)
(g(σ)−`)(g(σ)+µ)

+ c1λ2λ4h(σ)
(g(σ)−ω)(g(σ)−`)(g(σ)+µ)

= c3
h(σ)

g(σ)+µ
+ λ4c2

(`+µ)
h(σ)

g(σ)−` −
λ4c2
(`+µ)

h(σ)
g(σ)+µ

+
(

λ2λ4c1
µ(`+ω+µ)+`ω

)((
µ+`
ω−`

)
h(σ)

g(σ)−ω
−
(

ω+µ
`+ω

)
h(σ)

g(σ)−` +
h(σ)

g(σ)+µ

)
,

hence,

ψ1(t) = J −1
{

c1
h(σ)

g(σ)−ω

}
= c1eωt, ω = λ3 − λ1 − λ2,

ψ2(t) = J −1
{

c2
h(σ)

g(σ)−l −
λ2c1

(l−ω)
h(σ)

g(σ)−ω
+ λ2c1

(l−ω)
h(σ)

g(σ)−l

}
,

ψ2(t) =
(

c2 +
λ2c1

(l−ω)

)
elt − λ2c1

(l−ω)
eωt, ω = λ3 − λ1 − λ2, l = λ6 − λ4 − λ5,

ψ3(t) = J −1{c3
h(σ)

g(σ)+µ
+ λ4c2

(l+µ)
h(σ)

g(σ)−l −
λ4c2
(l+µ)

h(σ)
g(σ)+µ

+
(

λ2λ4c1
µ(l+ω+µ)+lω

)((
µ+l
ω−l

)
h(σ)

g(σ)−ω
−
(

ω+µ
l+ω

)
h(σ)

g(σ)−l + h(σ)
g(σ)+µ

)
},

ψ3(t) =
(

c3 − λ4c2
(l+µ)

+
(

λ2λ4c1
µ(l+ω+µ)+lω

))
e−µt

+
(

λ4c2
(l+µ)

−
(

λ2λ4c1
µ(l+ω+µ)+lω

)(
ω+µ
l+ω

))
elt +

(
λ2λ4c1

µ(l+ω+µ)+lω

)(
µ+l
ω−l

)
eωt,

ω = λ3 − λ1 − λ2, l = λ6 − λ4 − λ5.
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12. Conclusions

In this paper, we have applied a general integral transform called Jafari transform for
solving SODEs. The Jafari transform in solving SODEs does not need a large computational
work as the previous integral transforms. We have studied and proved some valuable
properties and theories of this transform that have not been studied before. There is
a mathematical model that describes the cell population dynamics in the colonic crypt
and colorectal cancer. We have applied the Jafari transform for solving this model and
illustrating the efficiency of the Jafari transform. In future work, we will handle a system
with variable coefficients.
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