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Abstract: In this work, we show that the static magnetization curve of high-concentrated ferrofluids
can be accurately approximated by the Mittag–Leffler function of the inverse external magnetic
field. The dependence of the Mittag–Leffler function’s fractional index on physical characteristics
of samples is analysed and its growth with the growing degree of system’s dilution is revealed.
These results provide a certain background for revealing mechanisms of hindered fluctuations in
concentrated solutions of strongly interacting of the magnetic nanoparticles as well as a simple tool
for an explicit specification of macroscopic force fields in ferrofluid-based technical systems.
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1. Introduction

The magnetization of ferrofluids under realistic conditions of a highly concentrated
suspension of magnetic particles covered by envelopes preventing the aggregation, and tak-
ing into account the possible polydispersity of these particles, is a complicated problem of
condensed matter physics still far from its final resolution [1–6].

While the qualitative picture of superparamagnetic phenomena in ideal diluted media of
magnetic dipoles is well-established [7], the effects of multiparticle interactions, aggregation
of nanoparticles and their hindered rotation, a wide spectrum of possible relaxation times
under such conditions do not allow practically applicable straightforward calculations.

Among the most accepted approaches, one can note the second-order modified mean-
field (MMF2) theory proposed in the work [8], which treats the macroscopic magnetization
M of ferrofluid as a function of the applied magnetic field intensity H in the form

M(H) = ρ

〈
µ(x)L

(
µ0µ(x)Heff

kBT

)〉
, (1)

where angle brackets denote averaging over the ensemble of microscopic magnetic mo-
ments µ(x) and the particle size distribution, µ0 and kB are is the vacuum permeability and
Boltzmann’s constant, respectively, ρ is the density and

Heff = H +
1
3

ML(H) +
1

144
ML(H)

dML(H)

dH
(2)

is the effective magnetic field in a medium with

ML(H) = ρ

〈
µ(x)L

(
µ0µ(x)H

kBT

)〉
, (3)

where L(z) = coth(z)− z−1 is the Langevin function.
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Although this method and its further improvements, which take into account higher-
order in the dipolar coupling constant for polydisperse concentrated ferrofluids [9], reason-
ably reproduce the magnetization curve, and especially the initial susceptibility

χ = χL

(
1 +

1
3

χL +
1

144
χ2

L

)
(4)

with

χL =

(
∂ML

∂H

)
H=0

=
µ0ρ
〈
µ2(x)

〉
3kBT

(5)

that makes it useful for magnetic granulometry of ferrofluids, it requires assumptions
on the statistic properties of magnetic nanoparticles and rather complicated numerical
computation of integrals when calculating integrals with the respective probability den-
sity functions.

On the other hand, a variety of practical problems require the knowledge of an accurate
shape of the magnetization curve not around the zero field (4) but in the range of strong
external magnetic field, where this line is highly curved, and further toward the saturation
but not reaching the latter.

Most traditional technical applications of the magnetic fluid-based systems such
as sensors, sealers, acoustic systems [10,11] as well as modern applications in microflu-
idics [12], controlled magnetophoresis [13], self-assembly [14], and separation [15] use the
range of magnetic fields in which the working fluid is placed is in the middle region of
the magnetization curve far from both the interval of initial magnetization and saturation.
Therefore, predicting the shape of the magnetization curve in the region of its significant
curvature is also an important technical task.

This situation induces the emergence of several alternative approaches aimed at an
efficient fitting of ferrofluid’s magnetisation stated as an explicit function of the exter-
nal magnetic field by an appropriate set of approximating functions [16–19] adjusted to
experimental conditions.

In this work, we explore the Mittag–Leffler function as a promising universal approxi-
mant chosen for two reasons: (i) this function has high flexibility for fitting data with quite
various behaviour [20] and (ii) the Mittag–Leffler function is involved in the description of
fluctuational and relaxational processes in ferrofluids [21,22] that may affect the stationary
magnetization in an external field.

2. Experimental Data and Their Processing
2.1. Measurements of Ferrofluid’s Magnetization

As an example of the practical analysis of ferrofluid’s magnetisation, we consider the
set of samples specified previously in the work [23], which are obtained by the sequential
dilutions of the initial magnetic liquid denoted as MF-1, see the parameters in Table 1. This
procedure assures the same structure of magnetic nanoparticles in all samples, which differ
by their concentration only.

To determine the magnetisation of samples, the ballistic method was used. Its essence
is that the measuring cell containing magnetic fluid is placed between the poles of the elec-
tromagnet connected to a micromagnetometer (the relative uncertainty of measurements is
estimated as 2.5%). The change of the magnetic flux after the cell’s rotation was registered
allows calculating the magnetization, see [24] for technical details.

The maximal intensity of the magnetic field allowed by the setup is equal to 800 kA/m
in the region of measurements. During the experiment, the tending of ferrofluid’s magne-
tization to the saturated state in the strong magnetic field was controlled by plotting the
magnetization as a function of the inverse magnetic field as follows from the definition
Ms = M(H) for H → ∞ that implies H−1 → 0 as well as by monitoring the change of
magnetization at subsequent steps of the magnetic field elevation. It is noted that the
relative change of the registered M(H) for H close to 800 kA/m tends to limits of experi-
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mental uncertainty that means that the obtained experiments data satisfy the conditions of
“ferrofluid’s magnetization in a strong external magnetic field”.

Table 1. Physical properties of the studied ferrofluids: the density ρ, the relative volume concen-
tration of nanoparticles φ and the relative volume concentration of its magnetic fraction φm as well
as the parameter of their magnetization curve determined by the Mittag–Leffler function-based
approximation: the saturation magnetization Ms, the inverse fractional magnetic demagnetizing
susceptibility a, and the fractional index α. The last row lists relative average absolute deviations
between experimental and fitted data.

MF-1 MF-2 MF-3 MF-4

ρ, kg ·m−3 1245 1058 952 870
φ, % 11.02 6.62 4.11 2.18
φm, % 9.08 4.34 2.70 1.93
Ms, kA ·m−1 47.6 21.7 13.5 8.69
a,
(
kA ·m−1)α 4.56 4.92 4.77 5.33

α 0.53 0.65 0.69 0.71
AAD, % 2.1 1.2 2.0 2.5

2.2. The Mittag–Leffler Function as an Approximant for the Static Magnetization Curve

Being based on the asymptotic expansion of the Langevin function, the conventional
way to consider the magnetization curve, when it tends to the state of saturation in a strong
external magnetic field, is considering the function M(H−1), which has the asymptotic
form

M ∼= Ms

(
1− kBT

µ0µ̃H

)
, (6)

where µ̃ is some effective magnetic moment obtained via the procedure of an appropriate
statistical averaging. In particular, for diluted systems it is argued [17] that it is related to the
harmonic mean of elementary magnetic moments; MMF2 theory gives more complicated
expression, which depends on the chosen statistical distribution, but does not change the
principal functional form. As a consequence, the saturated magnetization is operationally
defined as the limit Ms = M(H−1) when H−1 = 0 with the usage of the least mean square
fitting experimental data.

Note however, that certain precautions related to the direct usage of Equation (6) were
noted even in early works on the superparamagnetism in ferrofluids [25,26] argued to the
free energy difference between initial and final states and different magnetization routes
for very small and relatively larger magnetic particles. The latter was also noted recently in
ref. [17].

In fact, experimental data showed in Figure 1A follow a curved path resembling some
stretched exponential rather than a straight line as a function of the inverse magnetic field.
This argues in favour of searching a more relevant approximation than Equation (6).

The promising candidate is the form

M(H−1) = MsEα(aH−α) (7)

expressed via the Mittag–Leffler function defined as [27,28]

Eα(−zα) :=
∞

∑
n=0

(−1)n zαn

Γ(αn + 1)
, (8)

where Γ(·) is the Gamma function, α > 0 and can be fractional, and a is a parameter whose
physical meaning will be discussed below.
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The function (8) tends asymptotically [28] at z→ 0 to

Eα(−zα) ∼ exp
(
− zα

Γ(1 + α)

)
∼ 1− zα

Γ(1 + α)
, (9)

i.e., to the shape visible in Figure 1A.
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Figure 1. (A) The magnetization of the ferrofluid MF-2 as a function of the inverse external mag-
netic field, experimental values M(H−1) (circles) and their approximation by the Mittag–Leffler
function M f it (curve); (B) the relative deviation between the data and their approximation εM =

100%
(

M−M f it

)
M−1 plotted as a function of the external magnetic field applied to the sample.

At the same time, E1(z) = exp(z), and the limiting case for z << 1

E1(−z) = 1− z

reduces this representation to Equation (6) in the classic superparamagnetic case. In this
case a = kBT/µ0µ̃; in the general case it is an indefinite parameter to be determined by the
fitting procedure.

In application to magnetization curve data for all dilutions, the fitting procedure and
the subsequent computation of the Mittag–Leffler function with the parameters determined
by this fitting were carried out using the packages [29,30] for MATLAB. Figure 2 clearly
shows that the solid curves representing the functional form (7) accurately reproduce the
experimental data not only in the asymptotic region of strong magnetic fields but practically
over the whole range. The double logarithmic scale is used to better distinguish between
curves, which otherwise go too close to each other in the region of small H−1.

The values provided in Table 1 indicate that the relative average absolute deviations
defined as

AAD =
100%

N

N

∑
i=1

∣∣∣∣∣M(Hi)−M f it(Hi)

M(Hi)

∣∣∣∣∣
do not exceed a few percents. Figure 1B illustrates the distribution of these deviations
in more details for MF-2 (for the rest of ferrofluids the picture is principally the same).
One can see that they are distributed symmetrically over zero, i.e., this is connected with
the experimental uncertainty. They are sufficiently small over the great majority of the
external margetic filed range; the larger deviations are revealed in the close vicinity of the
demagnetized state (H = 0) only.
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Figure 2. The magnetization curves in double logarithmic scale for all ferrofluids listed in Table 1:
experimental data (markers) and their the Mittag–Leffler function-based approximations (curves).

3. Discussion

Thus, the Mittag–Leffler function-based expression (7) reproduces the magnetization
curve with practically acceptable accuracy. Moreover, plotting the values of parameters
listed in Table 1, one can see a certain regularity in their dependence on the magnetic phase
concentration as shown in Figure 3 when a fluid’s state is far from a very diluted system,
which should exhibit the classic superparamegnetic behaviour, and the Langevin function
does not reduces to the Mittag–Leffler representation.

On the contrary, the dependences for concentrated systems can be connected to
physical mechanisms. Looking at Table 1 and Figure 3B it is seen that the α-index of the
diminishes with the growing concentration of magnetic nanoparticles in a regular way that
means that anomalous long-range effects accompany the more concentrated systems.

?m; %
0 5 10

M
s
;
k
A

=
m

0

10

20

30

40

50
(A)

?m; %
0 5 10

,

0.5

0.55

0.6

0.65

0.7

0.75
(B)

?m; %
2 4 6 8

a
;
(k

A
=
m

),

4.4

4.6

4.8

5

5.2

5.4
(C)

Figure 3. Parameters (circles) of Equation (7) as functions of the magnetic phase concentration.
The fitting equations shown as solid straight lines are Ms = 5.3977φm − 1.4426 (A), α = −0.0246φm +

0.7575 (B), and a = −0.4875 ln(φm) + 5.6377 (C).

Note that the function (7) is a solution to the fractional differential equation

CDα
H−1 M(H−1) = −aM(H−1) (10)



Fractal Fract. 2021, 5, 147 6 of 9

with the initial condition Ms = M(0+), where CDα
H−1 the fractional derivative of order α in

the Caputo sense,

CDα
H−1 M(H−1) = − 1

Γ(1− α)

∫ H−1

0

(
H−1)2 dM

dH

(H−1 − h)α dh. (11)

The integer-order derivative within the integrand in Equation (11) is especially written
explicitly as dM/dH ≡ χ to highlight its meaning as the usual differential magnetic
susceptibility. Therefore, it follows from Equations (10) and (11) that the parameter a can
be considered to be a kind of the inverse fractional magnetic susceptibility, which is taken
into account when the system is demagnetized to some state from the completely ordered
one (H → ∞, M = Ms). The higher concentrations lead to smaller values of α that implies
wider integration kernels in Equation (11), i.e., more expressed effects of retarded magnetic
restructuring due to many-particle interactions.

In the concentrated systems, the growth of the applied magnetic field can induce chain
formation resulting in the magnetisation response of the mixture of elementary magnetic
dipoles of single (even interacting particles) and multicore aggregates [31].

Another feature related to the experimental procedure of measurements of concen-
trated ferrofluids magnetization in a strong magnetic field was revealed in the works [32,33],
where it has been noted that a relatively long measurement procedure may lead to the
system’s slow restructuring, which changes its macroscopic magnetic properties. Such a
process is characterized by the relaxation times significantly exceeding those for Neel and
Brown mechanisms. Moreover, the stretched exponential time dependence argues in favour
of anomalous kinetics that unavoidably requires the usage of the Mittag–Leffler function.

Thus, we can hypothesize that the revealed fitting dependence on the external mag-
netic field may emerge as a fractional-order response to the switching-on external magnetic
field accompanied by a hindered alignment of elementary magnetic dipoles in concentrated
ferrofluids, their anomalous kinetic-based fluctuations and, additionally, a specific field
shielding. As a kind of analogy, one can mention that Equation (1) contains He f f as its
argument, which, in turn, also contains the Langevin function. Thus, combining both (1)
and (2) under the strong-field approximation (6), we obtain the nested structure similar to
the first terms of the continued fraction representation of the electric ladder circuit that is a
known example [34] of the system leading to the fractional-order dynamics with solutions
expressed via the Mittag–Leffler function.

As a kind of argument supporting this hypothesis, we can consider dependencies
shown in Figure 3. One can note that the dilution of the system, i.e., diminished concentra-
tion of the magnetic phase φm, leads to the growing α-index. This realizes a transition from
Equations (8) and (9) to the classic hyperbolic law (6) in the asymptotic limit. However, there
is also a caveat: this Mittag–Leffler function-based consideration seems not be applicable
to the completely demagnetized state when it results in diverging χ0 = (dM/dH)H = 0.
This is also supported by Figure 1B where the deviations from the approximant grow
approaching this state and Figure 3A where the linear approximation of the saturation
magnetization does not go through the point M(0) = 0. However, this conclusion does
not affect the accuracy of approximation and regularities at moderate and high values of
the applied external magnetic fields. On the contrary, large concentrations φm result in
effects of the hindered rotation of magnetic nanoparticles preventing their alignment in
the magnetic field, viscoelastic retardation of the alignment, agglomeration, etc, see the
discussion above. All these factors lead to the emergence of memory effects that is reflected
by the diminishing of the fractional index α in the respective Mittag–Leffler function-based
representation. At the same time, the linear dependence of the magnitude of the saturated
magnetization shown in Figure 3A is the completely classic effect reflected even in the
expression (1): larger concentrations of the magnetic phase directly proportionally result
in the larger saturation magnetizations. The last of three dependencies, see Figure 3C is a
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phenomenological one but its logarithmic character is qualitatively expectable because the
amplitude parameter a is a multiplier but not an additive term.

Finally, we should stress that the reasons described above have physically qualitative
character, while the dependences shown in Figure 3 can find a direct practical application:
when several experimental data points follow linear regularity for different concentrations
of the magnetic phase, one can use the obtained regression lines to predict the magnetic
response (the magnetization curve) of ferrofluids at intermediate concentrations without
carrying out additional time-consuming measurements.

4. Conclusions

In this work, we demonstrated that the Mittag–Leffler function can be used as an
efficient approximant for the representation of the ferrofluid magnetization curve at mod-
erate and strong external magnetic field as an explicit function of the latter. This approach
has an advantage as using only a small number of parameters to be fitted. Among them,
the saturated magnetization is determined as better corresponding to the way of change of
experimental data within the experimentally accessible range of applied magnetic fields.
In addition, it is shown, see Figure 3 that there exits a regularity in the change of these pa-
rameters in response to the change of the concentration of the magnetic nanoparticles while
the latter is not very small. As a result, one can predict the change magnetic properties of a
ferrofluid due to its dilution, i.e., a small number of reference dilutions used to determine
the coefficients of linear fits of these parameters. In turn, they provide an opportunity to
plan dilutions leading to desired magnetic properties. Thus, it can be easily used in applied
problems, which demand the phenomenological high-accurate analytic representation of
ferrofluid’s magnetization when the controlling configuration of the external magnetic field
is stated by the system’s construction. Among such applications, one can mention different
microfluidic devices operating with microparticles and biological cells, e.g., [12,35], de-
vices based on the magneto-Archimedes effect, e.g., [15,16,23], ferrofluid-based measuring
devices [19,36], etc.

In addition, the static field-dependent magnetic susceptibility ξ(H) = dM(H)/dH
(except the close vicinity of the state H = 0) also has a simple analytical representation in
this case since the derivative of the Mittag–Leffler function (8) is known [28]

d
dz

Eα(−zα) = −z−(1−α)Eα,α(−zα)

and can be accurately computed numerically with the existing software [30].
Finally, the revealed mathematical dependence poses some outlooks for future more

detailed investigations of possible physical mechanisms, which may lead to such a rep-
resentation of static magnetization in the form close to typical for anomalous kinetics
processes. In particular, does it mean the existence of fractional-order fluctuations in the
case of high concentrations of magnetic nanoparticles that possibly results in trapping their
rotation, etc.?
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