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Abstract: The present research correlates with a fuzzy hybrid approach merged with a homotopy
perturbation transform method known as the fuzzy Shehu homotopy perturbation transform method
(SHPTM). With the aid of Caputo and Atangana–Baleanu under generalized Hukuhara differentiabil-
ity, we illustrate the reliability of this scheme by obtaining fuzzy fractional Cauchy reaction–diffusion
equations (CRDEs) with fuzzy initial conditions (ICs). Fractional CRDEs play a vital role in diffusion
and instabilities may develop spatial phenomena such as pattern formation. By considering the fuzzy
set theory, the proposed method enables the solution of the fuzzy linear CRDEs to be evaluated as
a series of expressions in which the components can be efficiently identified and generating a pair
of approximate solutions with the uncertainty parameter λ ∈ [0, 1]. To demonstrate the usefulness
and capabilities of the suggested methodology, several numerical examples are examined to validate
convergence outcomes for the supplied problem. The simulation results reveal that the fuzzy SHPTM
is a viable strategy for precisely and accurately analyzing the behavior of a proposed model.

Keywords: Shehu transform; Caputo fractional derivative; AB-fractional operator; homotopy pertur-
bation method; Cauchy reaction–diffusion equation

1. Introduction

Fractional calculus has been acknowledged as a highly valuable framework for ad-
dressing sustainability and complex phenomena over the past thirty years due to its advan-
tageous qualities such as its nonlocality, heritability, high reliability, and analyticity [1–7].
The modified fractional notion was developed in order to address the challenges involved
with processes including inhomogeneities. Various innovators established the underly-
ing framework, as well as their perspectives on expanding calculus, including Liouville,
Hadamard, Caputo, Grunwald, Letnikov, Abel, Riez, Caputo–Fabrizio, Atangana–Baleanu
(AB), who researched the use of the fractional derivative and fractional differential equa-
tions (FDEs). Numerous essential interactions in electromagnetics, acoustics, viscoelasticity,
electrochemistry, and material science are well explained by FDEs [8–20].
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Fuzzy set theory is also an effective technique for analyzing unpredictable scenarios.
These ambiguities can arise in each part of a fractional equation, such as the ICs and
boundary conditions. As a result, when calculating fractional equations in real-world
settings, it allows for the implementation of interval or fuzzy formulations. Fuzzy set
theory has been widely applied in several domains, i.e., fixed-point theory, topology,
fractional calculus, integral inequalities, image processing, bifurcation, control theory,
consumer electronics, artificial intelligence, and operations research.

Chang and Zadeh [21] were the first to suggest the fuzzy derivative notion, which was
quickly adopted by numerous other researchers [22–24]. Hukuhara’s publication [25] is
the main focus of the concept of set-valued DEs and fuzzy DEs. The Hukuhara derivative
served as the foundation for the investigation of set DEs and, thereafter, fuzzy fractional
DEs. Agarwal et al. in [26] reported the fuzzy Riemann–Liouville fractional differen-
tial equations leveraging the notion of Hukuhara differentiability, which was the basic
foundation for the theme of fuzzy fractional derivatives. To handle ambiguous fractional
differential equations, they adopted the Riemann–Liouville differentiability notion, relying
on Hukuhara differentiability. The stability analysis of the solution for Riemann–Liouville
fuzzy fractional DEs has been expounded in [27,28]. Allahviranloo et al. [29] addressed ex-
plicit solutions to unpredictable fractional DEs under Riemann–LiouvilleH-differentiability
incorporating Mittag–Leffler mechanisms in [30], and formed fuzzy fractional DEs under
Riemann–Liouville H-differentiability and accessed the solution of this model utilizing
fuzzy Laplace transforms. They demonstrated two novel existence theorems for fuzzy
fractional differential equations using Riemann–Liouville generalizedH-differentiability
as well as fuzzy Nagumo and Krasnoselskii–Krein criteria [31]. Bushneq et al. [32] explored
the findings of a fuzzy singular integral equation with an Abel type kernel using a novel
hybrid method. In [33], Zia et al. adopted a semi-analytical technique for finding the
solutions to fuzzy nonlinear integral equations. Salahshour et al. [34] expounded the
H-differentiability with Laplace transform to solve the FDEs. Ahmad et al. [35] studied the
third-order fuzzy dispersive PDEs in the Caputo, Caputo–Fabrizio, and Atangana–Baleanu
fractional operator frameworks. Shah et al. [36] presented the evolution of one-dimensional
fuzzy fractional PDEs.

On this note, we consider the one-dimensional, time-dependent fractional CRDE of
relevance as follows:

∂ϑΨ(`, t1)

∂t1
ϑ

= D ∂2Ψ(`, t1)

∂`2 + S(`, t1)Ψ(`, t1), ϑ ∈ (0, 1], (1)

with the ICs Ψ(`, 0) = g1(`), `, t1 ∈ R, where Ψ indicates the concentration, S signifies
the reaction parameter, while D > 0 is the diffusion coefficient. Here, ϑ is assumed to
be the order of the fractional derivative in the Caputo and Atangana–Baleanu fractional
derivatives in the Caputo sense.

Equation (1) has fruitful applications in population dynamics, Allee effect, symbiosis,
chemistry, ecology, biology, and physics [37–39]. In [40], Lesnic applied the Adomian
decomposition method to find the approximate solutions of CRDEs. Dehghan and Shak-
eri [41] contemplated the approximate solution of (1) by employing the variational iteration
method (VIM). Kumar et al. [42] proposed a modified analytical approach with the exis-
tence and uniqueness for fractional equations analogous to (1).

An estimated analytical approach has the advantages of being able to solve complex
problems without ascribing motives to numerical solutions to the precise solution to assess
its validity. It also has quick estimation accuracy. In [43], a Chinese mathematician, J. -H.
He, developed the homotopy perturbation method (HPM) on the premise of homotopy
in topology [44]. In HPM, the approximate result is represented as a series that rapidly
converges to the exact solution. The versatility of HPM allows it to yield approximate and
exact solutions to both linear and nonlinear problems without the necessity for discretiza-
tion and linearization, as with analytical methods [45]. Various studies have extensively
used the HPM to analyze linear and nonlinear PDEs [46–48].
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In this research, we employed a hybrid approach of the Shehu transform connected
with the homotopy perturbation method for finding the applicability of the fuzzy fractional
CRDEs of the type based on prior work. The main objective of this study was to expand
the implementation of the SHPTM to develop numerical solutions to fractional CRDEs via
fuzziness. The findings of the fractional-order with the uncertainty factor were examined
by advanced techniques and methods. The strength of SHPTM is that its value comes from
its ability to combine two powerful strategies for obtaining numerical findings for complex
equations. Some comparison plots illustrate the supremacy of the Hukuhara generalized
fractional derivative of CFD and ABC operators. It is worth noting that the proposed algo-
rithm is capable of reducing the amount of computing costs as compared to conventional
systems while maintaining good numerical accuracy maintained by the uncertain term
λ ∈ [0, 1]. Several physical phenomena can be addressed by the projected method.

2. Basic Notions of Fractional and Fuzzy Calculus

This section clearly exhibits some major features connected to the stream of fuzzy set
theory and FC, as well as certain key findings about the Shehu transform. For more details,
we refer the reader to [49].

Definition 1 ([50,51]). We say that Φ : R 7→ [0, 1] is a fuzzy set, then it is known to be fuzzy
number if it holds the subsequent assumptions:

1. Φ is normal (for some η0 ∈ R; Φ(`0) = 1);
2. Φ is upper semi-continuous;
3. Φ(`1ξ + (1− ξ)`2) ≥

(
Φ(`1) ∧Φ(`2)

)
∀ξ ∈ [0, 1], `1, `2 ∈ R,, i.e., Φ is convex;

4. cl
{
` ∈ R, Φ(`) > 0

}
is compact.

Definition 2 ([50]). We say that a fuzzy number Φ is λ-level set described as

[Φ]λ =
{

Ψ ∈ R : Φ(Ψ) ≥ 1
}

, (2)

where λ ∈ [0, 1] and Ψ ∈ R.

Definition 3 ([50]). The parameterized version of a fuzzy number is denoted by
[
Φ(λ), Φ̄(λ)

]
such that λ ∈ [0, 1] satisfies the subsequent assumptions:

1. Φ(λ) is non-decreasing, left continuous, bounded over (0, 1] and left continuous at 0;
2. Φ̄(λ) is non-increasing, right continuous, bounded over (0, 1] and right continuous at 0;
3. Φ(λ) ≤ Φ̄(λ).

Definition 4 ([49]). For λ ∈ [0, 1] and Υ to be a scalar, assume that there are two fuzzy numbers
α̃1 = (α1, ᾱ1), α̃2 = (α2, ᾱ2), then the addition, subtraction and scalar multiplication, respectively,
are stated as:

1. α̃1 ⊕ α̃2 =
(
α1(λ) + α2(λ), ᾱ1(λ) + ᾱ2(λ)

)
;

2. α̃1 	 α̃2 =
(
α1(λ)− α2(λ), ᾱ1(λ)− ᾱ2(λ)

)
;

3. Υ� α̃1 =
{
(Υα1, Υᾱ1) Υ ≥ 0, (Υᾱ1, Υα1) Υ < 0.

Definition 5 ([34]). Suppose a fuzzy mapping Θ : Ẽ × Ẽ 7→ R having two fuzzy numbers
α̃1 = (α1, ᾱ1), α̃2 = (α2, ᾱ2), then Θ-distance between α̃1 and α̃2 is represented as:

Θ(α̃1, α̃2) = sup
λ∈[0,1]

[
max

{
|α1(λ)− α2(λ)|, |ᾱ1(λ)− ᾱ2(λ)|

}]
. (3)

Definition 6 ([34]). Consider a fuzzy mapping Ξ : R 7→ Ẽ, if for any ε > 0 there exists δ > 0
and a fixed value of µ0 ∈ [a1, a2], we have:

Θ(Ξ(µ), Ξ(µ0)) < ε; whenever|µ− µ0| < δ, (4)
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then Ξ is known to be continuous.

Definition 7 ([52]). Let δ1, δ2 ∈ Ẽ, if δ3 ∈ Ẽ and δ1 = δ2 + δ3. TheH-difference δ3 of δ1 and δ2
is denoted as δ1 	H δ2. Observe that δ1 	H δ2 6= δ1 + (−1)δ2.

Definition 8 ([52]). Suppose that Ξ : (b1, b2) 7→ Ẽ and τ0 ∈ (b1, b2). Then, Ξ is said to be
strongly generalized differentiable at τ0 if Ξ′(τ0) ∈ Ẽ exists such that:

(i) Ξ′(τ0) = lim
h̄ 7→0

Ξ(τ0+h̄)	gHΞ(τ0)
h̄ = lim

h̄ 7→0

Ξ(τ0)	gHΞ(τ0−h̄)
h̄ ;

(ii) Ξ′(τ0) = lim
h̄ 7→0

Ξ(τ0)	gHΞ(τ0+h̄)
−h̄ = lim

h̄ 7→0

Ξ(τ0−h̄)	gHΞ(τ0)
−h̄ .

Throughout this investigation, we use the notation Ξ which is (1)-differentiable and (2)-
differentiable, respectively, if it is differentiable under the assumption (i) and (ii) as defined above.

Theorem 1 ([49]). Consider a fuzzy valued function Ξ : R 7→ Ẽ such that Ξ(τ0; λ) =
[
Ξ(τ0; λ),

Ξ̄(τ0; λ)
]

and λ ∈ [0, 1]. Then:
I. Ξ(τ0; λ) and Ξ̄(τ0; λ) are differentiable, if Ξ is a (1)-differentiable, and:[

Ξ′(τ0)
]λ

=
[
Ξ′(τ0; λ), Ξ̄′(τ0; λ)

]
. (5)

II. Ξ(τ0; λ) and Ξ̄(τ0; λ) are differentiable, if Ξ is a (2)-differentiable, and:[
Ξ′(τ0)

]λ
=
[
Ξ̄′(τ0; λ), Ξ′(τ0; λ)

]
. (6)

Definition 9 ([34]). Assume that a fuzzy mapping Ψ(r)
gH = Ψ(r) ∈ CF[0, s]

⋂
LF[0, s]. Then, the

fuzzy gH-fractional Caputo differentiability of fuzzy-valued mapping Ψ is represented as

(
c
gHDϑΨ

)
(t1) = J r−ϑ

a1
� (Ψ(r))(τ)

=
1

Γ(r− ϑ)
�

t1∫
a1

(t1 − `)r−ϑ−1 �Ψ(r)(`)d`, ϑ ∈ (r− 1, r], r ∈ N, t1 > a1. (7)

Therefore, the parameterized versions of Ψ =
[
Ψλ(t1), Ψ̄λ(t1)

]
, λ ∈ [0, 1] and t10 ∈ (0, s),

and CFD in a fuzzy sense is stated as[
Dϑ

(i)−gHΨ(t10)
]

λ
=
[
Dϑ

(i)−gHΨ(t10),Dϑ
(i)−gHΨ̄(t10)

]
, λ ∈ [0, 1], (8)

where r = [λ] :

[
Dϑ

(i)−gHΨ(t10)
]

=
1

Γ(r− ϑ)

[ t1∫
0

(t1 − x)r−ϑ−1 dr

dxr Ψ(i)−gH(x)dx
]

t1=t10

,

[
Dϑ

(i)−gHΨ̄(t10)
]

=
1

Γ(r− ϑ)

[ t1∫
0

(t1 − x)r−ϑ−1 dr

dxr Ψ̄(i)−gH(x)dx
]

t1=t10

. (9)

Definition 10. Assume that a fuzzy mapping Ψ̃(t1) ∈ H̃1(0, T) and ϑ ∈ [0, 1], then the fuzzy
gH-fractional Atangana–Baleanu differentiability of fuzzy-valued mapping is represented as

(
gHDϑΨ

)
(t1) =

B(ϑ)
1− ϑ

�
[ t1∫

0

Ψ′(x)� Eϑ

[−ϑ(t1 − x)ϑ

1− ϑ

]
dx
]

. (10)
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Thus, the parameterized formulation of Ψ =
[
Ψλ(t1), Ψ̄λ(t1)

]
, λ ∈ [0, 1] and t0 ∈ (0, s),

and the fuzzy Atangana–Baleanu derivative in Caputo sense is stated as[
ABCDϑ

(i)−gHΨ̃(t0; λ)
]
=
[

ABCDϑ
(i)−gHΨ(t0; λ), ABCDϑ

(i)−gHΨ̄(t0; λ)
]
, λ ∈ [0, 1], (11)

where:

ABCDϑ
(i)−gHΨ(t0; λ) =

B(ϑ)
1− ϑ

[ t1∫
0

Ψ′(i)−gH(x)Eϑ

[−ϑ(t1 − x)ϑ

1− ϑ

]
dx
]

t1=t0

,

ABCDϑ
(i)−gHΨ̄(t0; λ) =

B(ϑ)
1− ϑ

[ t1∫
0

Ψ̄′(i)−gH(x)Eϑ

[−ϑ(t1 − x)ϑ

1− ϑ

]
dx
]

t1=t0

, (12)

where B(ϑ) denotes the normalized function which is equal to 1 when ϑ is assumed to be 0 and
1. Furthermore, we suppose that type (i)− gH exists. Thus, here there is no need to consider
(ii)− gH differentiability.

Definition 11 ([53]). Consider a continuous real-valued mapping Ψ̃ and there is an improper fuzzy
Riemann-integrable mapping exp

(−ξ
ν

)
� Ψ̃(t1) on [0,+∞). Then, the integral

+∞∫
0

exp
(
− ξ

ν

)
� Ψ̃(t1)dt1 is known to be the fuzzy Shehu transform and it is stated over the

set of mappings:

S =
{

Ψ̃(ø) : ∃A, p1, p2 > 0, |Ψ̃(t1)| < A exp
( |t1|

ζ 

)
, i f t1 ∈ (−1) × [0,+∞)

}
, (13)

as

S
[
Ψ̃(t1)

]
= S(ξ, ν) =

+∞∫
0

exp
(−ξ

ν
t1

)
� Ψ̃(t1)dt1, ξ, ν > 0. (14)

Remark 1. In (14), Ψ̃ fulfills the assumption of the decreasing diameter Ψ and increasing diameter
Ψ̄ of a fuzzy mapping Ψ. If ν = 1, then fuzzy the Shehu transform is reduced to fuzzy Laplace
transform.

Using the fact of Salahshour et al. [30], we have:

+∞∫
0

exp
(−ξ

ν
t1

)
� Ψ̃(t1)dt1 =

( +∞∫
0

exp
(−ξ

ν
t1

)
Ψ(t1; λ)dt1,

+∞∫
0

exp
(−ξ

ν
t1

)
Ψ̄(t1; λ)dt1

)
. (15)

Furthermore, considering the classical Shehu transform [54], we obtain:

S
[
Ψ(t1; λ)

]
=

+∞∫
0

exp
(−ξ

ν
t1

)
Ψ(t1; λ)dt1 (16)

and:

S
[
Ψ̄(t1; λ)

]
=

+∞∫
0

exp
(−ξ

ν
t1

)
Ψ̄(t1; λ)dt1. (17)
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Then, the aforesaid expressions can be written as

S
[
Ψ̃(t1)

]
=

(
S
[
Ψ(t1; λ)

]
,S
[
Ψ̄(t1; λ)

])
=
(
S(ξ, ν), S̄(ξ, ν)

)
. (18)

Then, we will define the fuzzy Shehu transform of the Caputo generalized Hukuhara
derivative c

gHDϑ
t1

Ψ(t1), as can be seen in [53].

Definition 12 ([53]). Suppose there is an integrable fuzzy-valued mapping c
gHDϑ

t1
Ψ̃(t1), and

Ψ(t1) is the primitive of c
gHDϑ

t1
Ψ̃(t1) on [0,+∞), then the CFD of order ϑ is presented as

S
[ c

gHDϑ
t1

Ψ̃(t1)
]
=
( ξ

ν

)ϑ
� S

[
Ψ̃(t1)

]
	

r−1

∑
κ=0

( ξ

ν

)ϑ−κ−1
� Ψ̃(κ)(0), ϑ ∈ (r− 1, r]. (19)

Again, using the fact of Salahshour et al. [30], we have:

( ξ

ν

)ϑ
� S

[
Ψ̃(t1)

]
	

r−1

∑
κ=0

( ξ

ν

)ϑ−κ−1
� f̃ (κ)(0)

=

(( ξ

ν

)ϑ
S
[
Ψ(t1; λ)

]
−

r−1

∑
κ=0

( ξ

ν

)ϑ−κ−1
�Ψ(κ)(0; λ),

( ξ

ν

)ϑ
S
[
Ψ̄(t1; λ)

]
−

r−1

∑
κ=0

( ξ

ν

)ϑ−κ−1
Ψ̄(κ)(0; λ)

)
.

Bokhari et al. [55] defined the ABC fractional derivative operator in the Shehu sense.
Furthermore, we extend the idea of fuzzy ABC fractional derivative in a fuzzy Shehu
transform sense as follows:

Definition 13. Consider Ψ ∈ CF[0, s]
⋂
LF[0, s] such that Ψ̃(t1) =

[
Ψ(t1, λ), Ψ̄(t1, λ)

]
,

λ ∈ [0, 1]; then, the Shehu transform of the fuzzy ABC of order ϑ ∈ [0, 1] is described as fol-
lows:

S
[

gHDϑ
t1

Ψ̃(t1)
]
=

B(ϑ)
1− ϑ + ϑ

(
ν
ξ

)ϑ
�
(

Ṽ(ν, ξ)	 ν

ξ
Ψ̃(0)

)
. (20)

Furthermore, using the fact of Salahshour et al. [30], we have:

B(ϑ)
1− ϑ + ϑ

(
ν
ξ

)ϑ
�
(

Ṽ(ν, ξ)	 ξ

ν
Ψ̃(0)

)

=

(
B(ϑ)

1− ϑ + ϑ
(

ν
ξ

)ϑ

(
V(ν, ξ; λ)− ν

ξ
Ψ(0; λ)

)
,

B(ϑ)
1− ϑ + ϑ

(
ν
ξ

)ϑ

(
V̄(ν, ξ; λ)− ν

ξ
Ψ̄(0; λ)

))
. (21)

3. Description of the Fuzzy SHPTM

In this unit, we exhibit the fundamental technique of the fuzzy SHPTM to establish the
general solution for the one-dimensional fuzzy fractional Cauchy reaction–diffusion equation.

Here, we employ the following generic form of the time-fractional fuzzy PDE to
implement this technique:

∗
0Dδ

t1
Ψ̃(`, t1; λ)⊕L〈Ψ̃(`, t1; λ)〉 ⊕ N 〈Ψ̃(`, t1; λ)〉 = θ(`, t1; λ), t1 > 0, r− 1 < ϑ ≤ r, (22)
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subject to:

Ψ̃(κ)(`, 0; λ) = g̃κ(`; λ), κ = 0, 1, 2, ..., r− 1. (23)

The parameterized formulation of (22) is exhibited as
∗
0Dϑ

t1
Ψ(`, t1; λ) + L〈Ψ(`, t1; λ)〉+N〈Ψ(`, t1; λ)〉 = θ(`, t1; λ), r− 1 < ϑ ≤ r,

Ψ̄(`, 0) = ḡ(`; λ),
∗
0Dϑ

t1
Ψ(`, t1; λ) + L〈Ψ(`, t1; λ)〉+N〈Ψ(`, t1; λ)〉 = θ(`, t1; λ), r− 1 < ϑ ≤ r,

Ψ̄(`, 0) = ḡ(`; λ).

(24)

where ∗0Dϑ
t1

represents the CFD or AB fractional derivative in the Caputo sense and the
linear term is denoted by L〈.〉 and the nonlinear factor is denoted by N〈.〉. Taking into
consideration the fuzzy Shehu transform elaborated in Definition 12 and Definition 13,
respectively, we characterize the iterative process for the solution of (22). For this, we
proceed with the first case of (24) and transformed mappings for the fuzzy CFD operator,
then for fuzzy AB fractional derivative in the Caputo sense as

(ν

ξ

)ϑS
[
Ψ(`, t1; λ)

]
−

r−1

∑
κ=0

( ξ

ν

)ϑ−κ−1
Ψ(κ)(0) = S

[
L〈Ψ(`, t1; λ)〉+N〈Ψ(`, t1; λ)〉

]
+ S

[
θ(`, t1; λ)

]
.

Furthermore, the transformed function in the fuzzy ABC derivative sense:

B(ϑ)
1− ϑ + ϑ

(
ν
ξ

)ϑ
S
[
Ψ(`, t1; λ)

]
− B(ϑ)

1− ϑ + ϑ
(

ν
ξ

)ϑ

(ν

ξ

)
Ψ(`, 0)

= S
[
L〈Ψ(`, t1; λ)〉+N〈Ψ(`, t1; λ)〉

]
+ S

[
θ(`, t1; λ)

]
.

It follows that:

S
[
Ψ(`, t1; λ)

]
= G1(`, t1; λ) +

(ν

ξ

)ϑ
S
[
L〈Ψ(`, t1; λ)〉+N〈Ψ(`, t1; λ)〉

]
, (25)

and:

S
[
Ψ(`, t1; λ)

]
= G1(`, t1; λ) +

(ν

ξ

)
Ψ(`, 0) +

(1− ϑ + ϑ
(

ν
ξ

)ϑ

B(ϑ)

)
S
[
L〈Ψ(`, t1; λ)〉+N〈Ψ(`, t1; λ)〉

]
, (26)

where G1(`, t1; λ) =
(

ν
ξ

)
Ψ(`, 0) +

(
ν
ξ

)ϑS
[
θ(`, t1; λ)

]
and G2(`, t1; λ) =

(
ν
ξ

)
Ψ(`, 0)+( 1−ϑ+ϑ

(
ν
ξ

)ϑ

B(ϑ)

)
S
[
θ(`, t1; λ)

]
, respectively. By employing the perturbation method, we ac-

quire the solution of the first case of (24) as

Ψ(`, t1; λ) =
+∞

∑
κ=0

ηκΨκ(`, t1; λ), κ = 0, 1, 2, ... . (27)

The nonlinear term in (24) can be calculated from:

N〈Ψ(`, t1; λ)〉 =
+∞

∑
κ=0

ηκFκ(`, t1; λ) (28)
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and the components of: Fκ(`, t1; λ) are the He’s polynomials [56] as

Fκ(Ψ0, Ψ1, ..., Ψκ) =
1
κ!

∂κ

∂ςκ

[
N
( +∞

∑
κ=0

ςκΨκ

)]
ς=0

, κ = 0, 1, 2, ... . (29)

Substituting (27) and (28) into (25), we attain the iterative terms which yield the
solution for the fuzzy fractional CFD operator:

+∞

∑
κ=0

ηκΨκ(`, t1; λ) = G1(`, t1; λ) + η
(ν

ξ

)ϑ
[

S

{
L
〈 +∞

∑
κ=0

ηκΨκ(`, t1; λ)

〉
+

+∞

∑
κ=0

ηκFκ(`, t1; λ)

}]
, (30)

and again, plugging (27) and (29) into (26), we attain the iterative terms which yield the
solution for the fuzzy AB fractional derivative operator in the Caputo sense:

+∞

∑
κ=0

ηκΨκ(`, t1; λ) = G2(`, t1; λ) + η

(1− ϑ + ϑ
(

ν
ξ

)ϑ

B(ϑ)

)[
S

{
L
〈 +∞

∑
κ=0

ηκΨκ(`, t1; λ)

〉
+

+∞

∑
κ=0

ηκFκ(`, t1; λ)

}]
.

(31)

Then, by equating powers of η in (30), we compute the following CFD homotopies:

η0 : Ψ0(`, t1; λ) = G1(`, t1; λ) =
(ν

ξ

)
Ψ(`, 0) +

(ν

ξ

)ϑS
[
θ(`, t1; λ)

]
,

η1 : Ψ1(`, t1; λ) =
(ν

ξ

)ϑS
{
L〈Ψ0(`, t1; λ)〉+ F0(`, t1; λ)

}
,

η2 : Ψ2(`, t1; λ) =
(ν

ξ

)ϑS
{
L〈Ψ1(`, t1; λ)〉+ F1(`, t1; λ)

}
,

...

ηκ+1 : Ψκ+1(`, t1; λ) =
(ν

ξ

)ϑS
{
L〈Ψκ(`, t1; λ)〉+ Fκ(`, t1; λ)

}
. (32)

Moreover, by equating powers of η in (31), we compute the following ABC operator
homotopies:

η0 : Ψ0(`, t1; λ) = G2(`, t1; λ) =
(ν

ξ

)
Ψ(`, 0) +

(1− ϑ + ϑ
(

ν
ξ

)ϑ

B(ϑ)

)
S
[
θ(`, t1; λ)

]
,

η1 : Ψ1(`, t1; λ) =
(1− ϑ + ϑ

(
ν
ξ

)ϑ

B(ϑ)

)
S
{
L〈Ψ0(`, t1; λ)〉+ F0(`, t1; λ)

}
,

η2 : Ψ2(`, t1; λ) =
(1− ϑ + ϑ

(
ν
ξ

)ϑ

B(ϑ)

)
S
{
L〈Ψ1(`, t1; λ)〉+ F1(`, t1; λ)

}
,

...

ηκ+1 : Ψκ+1(`, t1; λ) =
(1− ϑ + ϑ

(
ν
ξ

)ϑ

B(ϑ)

)
S
{
L〈Ψκ(`, t1; λ)〉+ Fκ(`, t1; λ)

}
, (33)

After applying the inverse Shehu transform, the components of Ψκ(`, t1; λ) are easily
computed to the convergence series form, when η → 1; thus, we acquire the approximate
solution of (22):

Ψ(`, t1; λ) ≈ Ψκ(`, t1; λ) = S−1
{

Ψκ(`, t1; λ)
}

= Ψ0(`, t1; λ) + Ψ1(`, t1; λ) + ... .
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Repeating the same procedure for the upper case of (24). Therefore, we mention the
solution in a parameterized version as follows:{

Ψ(`, t1; λ) = Ψ0(`, t1; λ) + Ψ1(`, t1; λ) + ... ,
Ψ̄(`, t1; λ) = Ψ̄0(`, t1; λ) + Ψ̄1(`, t1; λ) + ... .

4. Convergence Analysis of Fuzzy SHPTM

Now, we describe the convergence analysis of the fuzzy SHPTM for the generalized
fuzzy operator equation by employing the approach proposed by [57]:

L
(
Ψ̃(`, t1; λ)

)
⊕R

(
Ψ̃(`, t1; λ)

)
⊕N

(
Ψ̃(`, t1; λ)

)
= g̃(`, t1; λ), λ ∈ [0, 1], (34)

where g̃(`, t1; λ) is defined inH. Suppose that there is an operatorT defined byTΨ̃(`, t1; λ) =
−RΨ̃(`, t1; λ)−N Ψ̃(`, t1; λ).

Now, we assume that the Hilbert space H = L2((γ∗1 , γ∗2)× [0,T]
)

is presented by the
following:

Ψ̃(`, t1; λ) : (γ∗1 , γ∗2)× [0,T] 7→ R

along with: ∫
(γ∗1 ,γ∗2 )×[0,T]

Ψ̃(`, t1; λ)d`dt1 < +∞,

where Ψ̃(`, t1; λ) = [Ψ(`, t1; λ), Ψ̄(`, t1; λ)].

Theorem 2. Let there be a mapping TΨ̃(`, t1; λ) = −RΨ̃(`, t1; λ) − N Ψ̃(λ) which is semi-
continuous and holds the following assumptions:

(i):
(
TΨ̃1(`, t1; λ) − TΨ̃2(`, t1; λ), Ψ̃1(`, t1; λ) − Ψ̃2(`, t1; λ)

)
≥ K‖Ψ̃1(`, t1; λ)−

Ψ̃2(`, t1; λ)‖2,K > 0, ∀Ψ̃1, Ψ̃2 ∈ H;
(ii): ∀M > 0, ∃ D(M) > 0 such that for ‖Ψ̃1‖ ≤ M, ‖Ψ̃2‖ ≤ M, Ψ̃1, Ψ̃2 ∈ H, we

find:

=⇒
(
TΨ̃1(`, t1; λ)− Ψ̃2(`, t1; λ), w̃(`, t1; λ)

)
≤ D(M)‖Ψ̃1(`, t1; λ)− Ψ̃1(`, t1; λ)‖2‖w̃1(`, t1; λ)‖2, ∀w̃ ∈ H.

For every g̃(`, t1; λ) ∈ H, the general nonlinear fuzzy Equation (34) has a unique solu-
tion Ψ̃(`, t1; λ) ∈ H. Furthermore, if the solution Ψ̃(`, t1; λ) can be assimilated as a series

Ψ̃(`, t1; λ) =
+∞
∑

κ=0
Ψ̃κ(`, t1; λ)Ξκ , then the fuzzy SHPTM corresponding to the functional equation

under investigation converges to Ψ̃(`, t1; λ) ∈ H, which is the unique solution to the functional
Equation (34).

For the sake of simplicity, the proof is followed by Osman et al. [58].

5. Functioning of the SHPTM and Mathematical Findings

Here, we elaborate the approximate-analytical solution of the fuzzy fractional Cauchy
reaction–diffusion models via the Shehu homotopy perturbation transform method in-
volving the CFD and ABC fractional derivative operators, respectively. Throughout this
investigation, the MATLAB 2021 software package was considered for the graphical repre-
sentation processes.

Problem 1. Assume the fuzzy time-fractional Cauchy-reaction diffusion model:

∂ϑ

∂t1
ϑ

Ψ̃(`, t1; λ) =
∂2

∂`2 Ψ̃(`, t1; λ)	 Ψ̃(`, t1; λ), 0 < ϑ ≤ 1, (35)
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subject to fuzzy ICs:

Ψ̃(`, 0) = Υ̃(λ)�
(

exp(−`)⊕ `
)
, (36)

where: Υ̃(λ) = [Υ(λ), Ῡ(λ)] = [λ− 1, 1− λ] for λ ∈ [0, 1] is a fuzzy number.

The parameterized formulation of (35) is presented as
∂ϑ

∂t1
ϑ Ψ(`, t1; λ) = ∂2

∂`2 Ψ(`, t1; λ)−Ψ(`, t1; λ),

Ψ(`, 0) = (λ− 1)
(

exp(−`) + `
)

∂ϑ

∂t1
ϑ Ψ̄(`, t1; λ) = ∂2

∂`2 Ψ̄(`, t1; λ)− Ψ̄(`, t1; λ),

Ψ̄(`, 0) = (1− λ)
(

exp(−`) + `
)
.

Case 1. Firstly, take into consideration the CFD coupled with the Shehu homotopy
perturbation transform method in the first case of (37).

Considering the process stated in Section 3, we have:

(ν

ξ

)ϑS
[
Ψ(`, t1; λ)

]
−

r−1

∑
κ=0

( ξ

ν

)ϑ−κ−1
Ψ(κ)(0) = S

[
∂2

∂`2 Ψ(`, t1; λ)−Ψ(`, t1; λ)

]
.

Considering the fuzzy IC, making use of the inverse Shehu transform implies that:

Ψ(`, t1; λ) =
ν

ξ
(λ− 1)(`+ exp(−`)) + S−1

[(ν

ξ

)ϑS
[

∂2

∂`2 Ψ(`, t1; λ)−Ψ(`, t1; λ)

]]
.

Now implementing the HPM, we have:

+∞

∑
κ=0

ηκΨκ(`, t1; λ) = (λ− 1)(`+ exp(−`))

+η

(
S−1

[(ν

ξ

)ϑS
[( +∞

∑
κ=0

ηκΨκ(`, t1; λ)

)
``

−
( +∞

∑
κ=0

ηκΨκ(`, t1; λ)

)]])
.

Equating the coefficients of the same powers of η, we have:

η0 : Ψ0(`, t1; λ) = (λ− 1)(`+ exp(−`)),

η1 : Ψ1(`, t1; λ) = S−1

[(ν

ξ

)ϑS
[(

Ψ0(`, t1; λ)
)
``
−Ψ0(`, t1; λ)

]
= −(λ− 1)`

t1
ϑ

Γ(ϑ + 1)
,

η2 : Ψ1(`, t1; λ) = S−1

[(ν

ξ

)ϑS
[(

Ψ1(`, t1; λ)
)
``
−Ψ1(`, t1; λ)

]
= (λ− 1)`

t1
2ϑ

Γ(2ϑ + 1)
,

η3 : Ψ2(`, t1; λ) = S−1

[(ν

ξ

)ϑS
[(

Ψ2(`, t1; λ)
)
``
−Ψ2(`, t1; λ)

]
= −(λ− 1)`

t1
3ϑ

Γ(3ϑ + 1)
,

... .

The series form solution is presented as follows:

Ψ̃(`, t1; λ) = Ψ̃0(`, t1; λ) + Ψ̃1(`, t1; λ) + Ψ̃2(`, t1; λ) + Ψ̃3(`, t1; λ) + ... ,

which implies that:

Ψ(`, t1; λ) = Ψ0(`, t1; λ) + Ψ1(`, t1; λ) + Ψ2(`, t1; λ) + Ψ3(`, t1; λ) + ... ,

Ψ̄(`, t1; λ) = Ψ̄0(`, t1; λ) + Ψ̄1(`, t1; λ) + Ψ̄2(`, t1; λ) + Ψ̄3(`, t1; λ) + ... .
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Finally, we have:

Ψ(`, t1; λ) = (λ− 1) exp(−`) + (λ− 1)`
[

1− t1
ϑ

Γ(ϑ + 1)
+

t1
2ϑ

Γ(2ϑ + 1)
− t1

3ϑ

Γ(3ϑ + 1)
+ ...

]
,

Ψ̄(`, t1; λ) = (1− λ) exp(−`) + (1− λ)`

[
1− t1

ϑ

Γ(ϑ + 1)
+

t1
2ϑ

Γ(2ϑ + 1)
− t1

3ϑ

Γ(3ϑ + 1)
+ ...

]
.

Case 2. Now, we employ the fuzzy ABC derivative operator in the first case of (37) as
follows.

Considering the process stated in Section 3, we have:

B(ϑ)
1− ϑ + ϑ

(
ν
ξ

)ϑ
S
[
Ψ(`, t1; λ)

]
− B(ϑ)

1− ϑ + ϑ
(

ν
ξ

)ϑ

(ν

ξ

)
Ψ(`, 0) = S

[
∂2

∂`2 Ψ(`, t1; λ)−Ψ(`, t1; λ)

]
.

Considering the fuzzy IC, making use of the inverse Shehu transform implies that:

Ψ(`, t1; λ) =
ν

ξ
(λ− 1)(`+ exp(−`)) + S−1

[
1− ϑ + ϑ

(
ν
ξ

)ϑ

B(ϑ) S
[

∂2

∂`2 Ψ(`, t1; λ)−Ψ(`, t1; λ)

]]
.

Now, by implementing the HPM, we have:

+∞

∑
κ=0

ηκΨκ(`, t1; λ) = (λ− 1)(`+ exp(−`))

+η

(
S−1

[
1− ϑ + ϑ

(
ν
ξ

)ϑ

B(ϑ) S
[( +∞

∑
κ=0

ηκΨκ(`, t1; λ)

)
``

−
( +∞

∑
κ=0

ηκΨκ(`, t1; λ)

)]])
.

By equating the coefficients of the same powers of η, we have:

η0 : Ψ0(`, t1; λ) = (λ− 1)(`+ exp(−`)),

η1 : Ψ1(`, t1; λ) = S−1

[
1− ϑ + ϑ

(
ν
ξ

)ϑ

B(ϑ) S
[(

Ψ0(`, t1; λ)
)
``
−Ψ0(`, t1; λ)

]
= − (λ− 1)`

B(ϑ)

[
ϑt1

ϑ

Γ(ϑ + 1)
+ (1− ϑ)

]
,

η2 : Ψ1(`, t1; λ) = S−1

[
1− ϑ + ϑ

(
ν
ξ

)ϑ

B(ϑ) S
[(

Ψ1(`, t1; λ)
)
``
−Ψ1(`, t1; λ)

]
=

(λ− 1)`
B2(ϑ)

[
ϑ2t1

2ϑ

Γ(2ϑ + 1)
+ 2ϑ(1− ϑ)

t1
ϑ

Γ(ϑ + 1)
+ (1− ϑ)2

]
,

η3 : Ψ2(`, t1; λ) = S−1

[
1− ϑ + ϑ

(
ν
ξ

)ϑ

B(ϑ) S
[(

Ψ2(`, t1; λ)
)
``
−Ψ2(`, t1; λ)

]
= − (λ− 1)`

B3(ϑ)

[
ϑ3t1

3ϑ

Γ(3ϑ + 1)
+ 3ϑ2(1− ϑ)

t1
2ϑ

Γ(2ϑ + 1)
+ 3ϑ(1− ϑ)2 t1

ϑ

Γ(ϑ + 1)
+ (1− ϑ)3

]
,

... .

The series form solution is presented as follows:

Ψ̃(`, t1; λ) = Ψ̃0(`, t1; λ) + Ψ̃1(`, t1; λ) + Ψ̃2(`, t1; λ) + Ψ̃3(`, t1; λ) + ... ,
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which implies that:

Ψ(`, t1; λ) = Ψ0(`, t1; λ) + Ψ1(`, t1; λ) + Ψ2(`, t1; λ) + Ψ3(`, t1; λ) + ... ,

Ψ̄(`, t1; λ) = Ψ̄0(`, t1; λ) + Ψ̄1(`, t1; λ) + Ψ̄2(`, t1; λ) + Ψ̄3(`, t1; λ) + ... .

Finally, we have:

Ψ(`, t1; λ) = (λ− 1) exp(−`) + (λ− 1)`



1− 1
B(ϑ)

[
ϑt1

ϑ

Γ(ϑ+1) + (1− ϑ)

]
+ 1

B2(ϑ)

[
ϑ2t1

2ϑ

Γ(2ϑ+1) + 2ϑ(1− ϑ) t1
ϑ

Γ(ϑ+1) + (1− ϑ)2
]

− 1
B3(ϑ)

[
ϑ3t1

3ϑ

Γ(3ϑ+1) + 3ϑ2(1− ϑ) t1
2ϑ

Γ(2ϑ+1) + 3ϑ(1− ϑ)2 t1
ϑ

Γ(ϑ+1) + (1− ϑ)3
]
+ ... ,

Ψ̄(`, t1; λ) = (1− λ) exp(−`) + (1− λ)`



1− 1
B(ϑ)

[
ϑt1

ϑ

Γ(ϑ+1) + (1− ϑ)

]
+ 1

B2(ϑ)

[
ϑ2t1

2ϑ

Γ(2ϑ+1) + 2ϑ(1− ϑ) t1
ϑ

Γ(ϑ+1) + (1− ϑ)2
]

− 1
B3(ϑ)

[
ϑ3t1

3ϑ

Γ(3ϑ+1) + 3ϑ2(1− ϑ) t1
2ϑ

Γ(2ϑ+1) + 3ϑ(1− ϑ)2 t1
ϑ

Γ(ϑ+1) + (1− ϑ)3
]
+ ... .

(37)

Figure 1a,b reveal how the effectiveness of multiple (lower and upper bound accuracy)
surface graphs for Problem 2 interacting with the fuzzy CFD and Shehu transform is
being exhibited in this investigation. The pattern specifies the fluctuation in the mapping
Ψ̃(`, t1; λ) on the space co-ordinate ` with the consideration of t1 and the uncertainty
parameter λ ∈ [0, 1]. The figure illustrates that, as time passes, the mapping Ψ̃(`, t1; λ) will
become more intricate.

Figure 2a highlights the impact of the suggested technique on the mapping Ψ̃(`, t1; λ)
for the fuzzy CFD to have an uncertainty parameter λ ∈ [0, 1]. With the slight increase
in Ψ̄(`, t1; λ), it then clearly demonstrates a large decrease in the mapping Ψ(`, t1; λ).
Figure 2b highlights the effect of the recommended approach on the mapping Ψ̃(`, t1; λ)
for the fuzzy CFD to have a fixed fractional order with the varying uncertainty parameter
λ ∈ [0, 1]. With a small increase in the uncertainty parameter, the mappings Ψ̄(`, t1; λ) and
Ψ(`, t1; λ) are stable.

Figure 3a highlights the impact of the suggested technique on the mapping Ψ̃(`, t1; λ)
for the fuzzy ABC to have an uncertainty parameter λ ∈ [0, 1]. With the slight increase
in Ψ̄(`, t1; λ), it then clearly demonstrates a large decrease in the mapping Ψ(`, t1; λ).
Figure 3b highlights the effect of the recommended approach on the mapping Ψ̃(`, t1; λ)
for the fuzzy ABC to have a fixed fractional order with the varying uncertainty parameter
λ ∈ [0, 1]. With a small increase in the uncertainty parameter, the mappings Ψ̄(`, t1; λ) and
Ψ(`, t1; λ) are stable.

Figure 4a,b illustrate the comparison between the lower and upper bound accuracies
for fuzzy CFD and fuzzy ABC fractional derivative operators for Problem 1 established by
the SHPTM for standard motion, i.e., at ϑ = 1.

The graphs in Figures 1–4 assist in recognizing how time and space variation sta-
tistically interact. In addition, the proposed method will facilitate scientists’ work on
pattern formation, diffusion, instability theory, and monitoring competence by employing
inferential statistical testing.
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(a)

(b)

Figure 1. Three-dimensional plot of Ψ̃(`, t1; λ) of Problem (1): (a) Ψ(`, t1; λ) and Ψ̄(`, t1; λ) when
ϑ = 1; and (b) Ψ(`, t1; λ) and Ψ̄(`, t1; λ) when the uncertainty parameter λ ∈ [0, 1] has different
fractional orders.
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Figure 2. Two-dimensional simulation of Ψ̃(`, t1; λ) of Problem (1): (a) Ψ(`, t1; λ) and Ψ̄(`, t1; λ)

when fuzzy CFD is considered to have an uncertainty parameter λ ∈ [0, 1] and t1 = 0.7; and (b)
Ψ(`, t1; λ) and Ψ̄(`, t1; λ) when fuzzy CFD is considered to have a fractional order ϑ = 0.7 and
t1 = 0.7.



Fractal Fract. 2021, 5, 151 15 of 40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

(b)

Figure 3. Two-dimensional simulation of Ψ̃(`, t1; λ) of Problem (1): (a) Ψ(`, t1; λ) and Ψ̄(`, t1; λ)

when fuzzy ABC is considered to have an uncertainty parameter λ ∈ [0, 1] and t1 = 0.7; and (b)
Ψ(`, t1; λ) and Ψ̄(`, t1; λ) when fuzzy ABC is considered to have a fractional order ϑ = 0.7 and
t1 = 0.7.
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Figure 4. Comparison plots of Ψ̃(`, t1; λ) of Problem (1) when fuzzy CFD and ABC are considered to
have a fractional order ϑ = 1 and uncertainty parameter λ ∈ [0, 1]: (a) three-dimensional plot; and
(b) two-dimensional plot of Ψ(`, t1; λ), Ψ̄(`, t1; λ) and t1 = 0.7.

Remark 2. When [λ− 1, 1− λ] = 1 and ϑ = 1, then solution (37) reduces to the integer-order
solution Ψ(`, t1) = exp(−`) + ` exp(t1).

Problem 2. Assume that the fuzzy time-fractional Cauchy-reaction diffusion model:

∂ϑ

∂t1
ϑ

Ψ̃(`, t1; λ) =
∂2

∂`2 Ψ̃(`, t1; λ)	 (1⊕ 4� `2)Ψ̃(`, t1; λ), 0 < ϑ ≤ 1, (38)

is subject to the fuzzy initial condition:

Ψ̃(`, 0) = Υ̃(λ)� exp(`2), (39)

where Υ̃(λ) = [Υ(λ), Ῡ(λ)] = [λ− 1, 1− λ] for λ ∈ [0, 1] is the fuzzy number.
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The parameterized formulation of (35) is presented as
∂ϑ

∂t1
ϑ Ψ(`, t1; λ) = ∂2

∂`2 Ψ(`, t1; λ)− (1 + 4`2)Ψ(`, t1; λ),

Ψ(`, 0) = (λ− 1) exp(`2)
∂ϑ

∂t1
ϑ Ψ̄(`, t1; λ) = ∂2

∂`2 Ψ̄(`, t1; λ)− (1 + 4`2)Ψ̄(`, t1; λ),

Ψ̄(`, 0) = (1− λ) exp(`2).

Case 1. Firstly, we take into consideration the fuzzy CFD coupled with the Shehu
homotopy perturbation transform method in the first case of (40).

Considering the process stated in Section 3, we have:

(ν

ξ

)ϑS
[
Ψ(`, t1; λ)

]
−

r−1

∑
κ=0

( ξ

ν

)ϑ−κ−1
Ψ(κ)(0) = S

[
∂2

∂`2 Ψ(`, t1; λ)− (1 + 4`2)Ψ(`, t1; λ)

]
.

Considering the fuzzy IC, making use of the inverse Shehu transform implies that:

Ψ(`, t1; λ) =
ν

ξ
(λ− 1) exp(`2) + S−1

[(ν

ξ

)ϑS
[

∂2

∂`2 Ψ(`, t1; λ)− (1 + 4`2)Ψ(`, t1; λ)

]]
.

Now, by implementing the HPM, we have:

+∞

∑
κ=0

ηκΨκ(`, t1; λ) = (λ− 1) exp(`2) + η

(
S−1

[(ν

ξ

)ϑS
[( +∞

∑
κ=0

ηκΨκ(`, t1; λ)

)
``

− (1 + 4`2)

( +∞

∑
κ=0

ηκΨκ(`, t1; λ)

)]])
.

Equating the coefficients of the same powers of η, we have:

η0 : Ψ0(`, t1; λ) = (λ− 1) exp(`2),

η1 : Ψ1(`, t1; λ) = S−1

[(ν

ξ

)ϑS
[(

Ψ0(`, t1; λ)
)
``
− (1 + 4`2)Ψ0(`, t1; λ)

]
= (λ− 1) exp(`2)

t1
ϑ

Γ(ϑ + 1)
,

η2 : Ψ1(`, t1; λ) = S−1

[(ν

ξ

)ϑS
[(

Ψ1(`, t1; λ)
)
``
− (1 + 4`2)Ψ1(`, t1; λ)

]
= (λ− 1) exp(`2)

t1
2ϑ

Γ(2ϑ + 1)
,

η3 : Ψ2(`, t1; λ) = S−1

[(ν

ξ

)ϑS
[(

Ψ2(`, t1; λ)
)
``
− (1 + 4`2)Ψ2(`, t1; λ)

]
= (λ− 1) exp(`2)

t1
3ϑ

Γ(3ϑ + 1)
,

... .

The series form solution is presented as follows:

Ψ̃(`, t1; λ) = Ψ̃0(`, t1; λ) + Ψ̃1(`, t1; λ) + Ψ̃2(`, t1; λ) + Ψ̃3(`, t1; λ) + ... ,

which implies that:

Ψ(`, t1; λ) = Ψ0(`, t1; λ) + Ψ1(`, t1; λ) + Ψ2(`, t1; λ) + Ψ3(`, t1; λ) + ... ,

Ψ̄(`, t1; λ) = Ψ̄0(`, t1; λ) + Ψ̄1(`, t1; λ) + Ψ̄2(`, t1; λ) + Ψ̄3(`, t1; λ) + ... .

Finally, we have:

Ψ(`, t1; λ) = (λ− 1) exp(`2)

[
1− t1

ϑ

Γ(ϑ + 1)
+

t1
2ϑ

Γ(2ϑ + 1)
− t1

3ϑ

Γ(3ϑ + 1)
+ ...

]
,

Ψ̄(`, t1; λ) = (1− λ) exp(`2)

[
1− t1

ϑ

Γ(ϑ + 1)
+

t1
2ϑ

Γ(2ϑ + 1)
− t1

3ϑ

Γ(3ϑ + 1)
+ ...

]
.
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Case 2. Now, we employ the fuzzy ABC derivative operator in the first case of (37) as
follows.

Considering the process stated in Section 3, we have:

B(ϑ)
1− ϑ + ϑ

(
ν
ξ

)ϑ
S
[
Ψ(`, t1; λ)

]
− B(ϑ)

1− ϑ + ϑ
(

ν
ξ

)ϑ

(ν

ξ

)
Ψ(`, 0) = S

[
∂2

∂`2 Ψ(`, t1; λ)− (1 + 4`2)Ψ(`, t1; λ)

]
.

Considering the fuzzy initial condition, making use of the inverse Shehu transform
implies that:

Ψ(`, t1; λ) =
ν

ξ
(λ− 1) exp(`2) + S−1

[
1− ϑ + ϑ

(
ν
ξ

)ϑ

B(ϑ) S
[

∂2

∂`2 Ψ(`, t1; λ)− (1 + 4`2)Ψ(`, t1; λ)

]]
.

Now, by implementing the HPM, we have:

+∞

∑
κ=0

ηκΨκ(`, t1; λ) = (λ− 1) exp(`2)

+η

(
S−1

[
1− ϑ + ϑ

(
ν
ξ

)ϑ

B(ϑ) S
[( +∞

∑
κ=0

ηκΨκ(`, t1; λ)

)
``

− (1 + 4`2)

( +∞

∑
κ=0

ηκΨκ(`, t1; λ)

)]])
.

Equating the coefficients of the same powers of η, we have:

η0 : Ψ0(`, t1; λ) = (λ− 1) exp(`2),

η1 : Ψ1(`, t1; λ) = S−1

[
1− ϑ + ϑ

(
ν
ξ

)ϑ

B(ϑ) S
[(

Ψ0(`, t1; λ)
)
``
− (1 + 4`2)Ψ0(`, t1; λ)

]
=

(λ− 1) exp(`2)

B(ϑ)

[
ϑt1

ϑ

Γ(ϑ + 1)
+ (1− ϑ)

]
,

η2 : Ψ1(`, t1; λ) = S−1

[
1− ϑ + ϑ

(
ν
ξ

)ϑ

B(ϑ) S
[(

Ψ1(`, t1; λ)
)
``
− (1 + 4`2)Ψ1(`, t1; λ)

]
=

(λ− 1) exp(`2)

B2(ϑ)

[
ϑ2t1

2ϑ

Γ(2ϑ + 1)
+ 2ϑ(1− ϑ)

t1
ϑ

Γ(ϑ + 1)
+ (1− ϑ)2

]
,

η3 : Ψ2(`, t1; λ) = S−1

[
1− ϑ + ϑ

(
ν
ξ

)ϑ

B(ϑ) S
[(

Ψ2(`, t1; λ)
)
``
− (1 + 4`2)Ψ2(`, t1; λ)

]
=

(λ− 1) exp(`2)

B3(ϑ)

[
ϑ3t1

3ϑ

Γ(3ϑ + 1)
+ 3ϑ2(1− ϑ)

t1
2ϑ

Γ(2ϑ + 1)
+ 3ϑ(1− ϑ)2 t1

ϑ

Γ(ϑ + 1)
+ (1− ϑ)3

]
,

... .

The series form solution is presented as follows:

Ψ̃(`, t1; λ) = Ψ̃0(`, t1; λ) + Ψ̃1(`, t1; λ) + Ψ̃2(`, t1; λ) + Ψ̃3(`, t1; λ) + ... ,

which implies that:

Ψ(`, t1; λ) = Ψ0(`, t1; λ) + Ψ1(`, t1; λ) + Ψ2(`, t1; λ) + Ψ3(`, t1; λ) + ... ,

Ψ̄(`, t1; λ) = Ψ̄0(`, t1; λ) + Ψ̄1(`, t1; λ) + Ψ̄2(`, t1; λ) + Ψ̄3(`, t1; λ) + ... .

Finally, we have:



Fractal Fract. 2021, 5, 151 19 of 40

Ψ(`, t1; λ) = (λ− 1) exp(`2)



1 + 1
B(ϑ)

[
ϑt1

ϑ

Γ(ϑ+1) + (1− ϑ)

]
+ 1

B2(ϑ)

[
ϑ2t1

2ϑ

Γ(2ϑ+1) + 2ϑ(1− ϑ) t1
ϑ

Γ(ϑ+1) + (1− ϑ)2
]

+ 1
B3(ϑ)

[
ϑ3t1

3ϑ

Γ(3ϑ+1) + 3ϑ2(1− ϑ) t1
2ϑ

Γ(2ϑ+1) + 3ϑ(1− ϑ)2 t1
ϑ

Γ(ϑ+1) + (1− ϑ)3
]
+ ... ,

Ψ̄(`, t1; λ) = (1− λ) exp(`2)



1 + 1
B(ϑ)

[
ϑt1

ϑ

Γ(ϑ+1) + (1− ϑ)

]
+ 1

B2(ϑ)

[
ϑ2t1

2ϑ

Γ(2ϑ+1) + 2ϑ(1− ϑ) t1
ϑ

Γ(ϑ+1) + (1− ϑ)2
]

+ 1
B3(ϑ)

[
ϑ3t1

3ϑ

Γ(3ϑ+1) + 3ϑ2(1− ϑ) t1
2ϑ

Γ(2ϑ+1) + 3ϑ(1− ϑ)2 t1
ϑ

Γ(ϑ+1) + (1− ϑ)3
]
+ ... .

(40)

Figure 5a,b reveal how the effectiveness of multiple (lower and upper bound accuracy)
surface graphs for Problem 2 interacting with the fuzzy CFD and Shehu transform is
being exhibited in this investigation. The pattern specifies the fluctuation in the mapping
Ψ̃(`, t1; λ) on the space co-ordinate ` with the consideration of t1 and the uncertainty
parameter λ ∈ [0, 1]. The figure illustrates that, as time passes, the mapping Ψ̃(`, t1; λ) will
become more intricate.

Figure 6a highlights the impact of the suggested technique on the mapping Ψ̃(`, t1; λ)
for the fuzzy CFD to have an uncertainty parameter λ ∈ [0, 1]. With the slight increase
in Ψ̄(`, t1; λ), it then clearly demonstrates a large decrease in the mapping Ψ(`, t1; λ).
Figure 6b highlights the effect of the recommended approach on the mapping Ψ̃(`, t1; λ)
for the fuzzy CFD to have a fixed fractional order with the varying uncertainty parameter
λ ∈ [0, 1]. AWith a small increase in the uncertainty parameter, the mappings Ψ̄(`, t1; λ)
and Ψ(`, t1; λ) are stable.

Figure 7a highlights the impact of the suggested technique on the mapping Ψ̃(`, t1; λ)
for the fuzzy ABC to have an uncertainty parameter λ ∈ [0, 1]. With the slight increase
in Ψ̄(`, t1; λ), it then clearly demonstrates a large decrease in the mapping Ψ(`, t1; λ).
Figure 7b highlights the effect of the recommended approach on the mapping Ψ̃(`, t1; λ)
for the fuzzy ABC to have a fixed fractional order with the varying uncertainty parameter
λ ∈ [0, 1]. With a small increase in the uncertainty parameter, the mappings Ψ̄(`, t1; λ) and
Ψ(`, t1; λ) are stable.

Figure 8a,b illustrate the comparison between the lower and upper bound accuracies
for fuzzy CFD and fuzzy ABC fractional derivative operators for Problem 2 established by
the SHPTM for standard motion, i.e., at ϑ = 1.

The graphs in Figures 5–8 assist in recognizing how time and space variation sta-
tistically interact. In addition, the proposed method will facilitate scientists’ work on
pattern formation, diffusion, instability theory, and monitoring competence by employing
inferential statistical testing.
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(a)

(b)

Figure 5. Three-dimensional plot of Ψ̃(`, t1; λ) of Problem (2): (a) Ψ(`, t1; λ) and Ψ̄(`, t1; λ) when
ϑ = 1; and (b) Ψ(`, t1; λ) and Ψ̄(`, t1; λ) when the uncertainty parameter λ ∈ [0, 1] has different
fractional orders.
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Figure 6. Two-dimensional simulation of Ψ̃(`, t1; λ) of Problem (2): (a) Ψ(`, t1; λ) and Ψ̄(`, t1; λ)

when fuzzy CFD is considered to have an uncertainty parameter λ ∈ [0, 1] and t1 = 0.7; and (b)
Ψ(`, t1; λ) and Ψ̄(`, t1; λ) when fuzzy CFD is considered to have a fractional order ϑ = 0.7 and
t1 = 0.7.
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Figure 7. Two-dimensional simulation of Ψ̃(`, t1; λ) of Problem (2): (a) Ψ(`, t1; λ) and Ψ̄(`, t1; λ)

when fuzzy ABC is considered to have an uncertainty parameter λ ∈ [0, 1] and t1 = 0.7; and (b)
Ψ(`, t1; λ) and Ψ̄(`, t1; λ) when fuzzy ABC is considered to have a fractional order ϑ = 0.7 and
t1 = 0.7.
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Figure 8. Comparison plots of Ψ̃(`, t1; λ) of Problem (2) when fuzzy CFD and ABC are considered to
have a fractional order ϑ = 1 and uncertainty parameter λ ∈ [0, 1] : (a) three-dimensional plot; (b)
two-dimensional plot of Ψ(`, t1; λ) and Ψ̄(`, t1; λ) when t1 = 0.7

Remark 3. When [λ− 1, 1− λ] = 1 and ϑ = 1, then solution (40) reduces to the integer-order
solution Ψ(`, t1) = exp(`2 + t1).

Problem 3. Assume the fuzzy time-fractional Cauchy-reaction diffusion model:

∂ϑ

∂t1
ϑ

Ψ̃(`, t1; λ) =
∂2

∂`2 Ψ̃(`, t1; λ)⊕ 2� t1 � Ψ̃(`, t1; λ), 0 < ϑ ≤ 1, (41)

subject to the fuzzy initial condition:

Ψ̃(`, 0) = Υ̃(λ)� exp(`), (42)

where Υ̃(λ) = [Υ(λ), Ῡ(λ)] = [λ− 1, 1− λ] for λ ∈ [0, 1] is the fuzzy number.
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The parameterized formulation of (44) is presented as
∂ϑ

∂t1
ϑ Ψ(`, t1; λ) = ∂2

∂`2 Ψ(`, t1; λ) + 2t1Ψ(`, t1; λ),

Ψ(`, 0) = (λ− 1) exp(`)
∂ϑ

∂t1
ϑ Ψ̄(`, t1; λ) = ∂2

∂`2 Ψ̄(`, t1; λ) + 2t1Ψ̄(`, t1; λ),

Ψ̄(`, 0) = (1− λ) exp(`).

Case 1. Firstly, we take into consideration the CFD coupled with the Shehu homotopy
perturbation transform method in the first case of (46).
Considering the process stated in Section, we have:

(ν

ξ

)ϑS
[
Ψ(`, t1; λ)

]
−

r−1

∑
κ=0

( ξ

ν

)ϑ−κ−1
Ψ(κ)(0) = S

[
∂2

∂`2 Ψ(`, t1; λ) + 2t1Ψ(`, t1; λ)

]
.

Considering the fuzzy initial condition, making use of the inverse Shehu transform
implies that:

Ψ(`, t1; λ) =
ν

ξ
(λ− 1) exp(`) + S−1

[(ν

ξ

)ϑS
[

∂2

∂`2 Ψ(`, t1; λ) + 2t1Ψ(`, t1; λ)

]]
.

Now, by implementing the HPM, we have:

+∞

∑
κ=0

ηκΨκ(`, t1; λ) = (λ− 1) exp(`) + η

(
S−1

[(ν

ξ

)ϑS
[( +∞

∑
κ=0

ηκΨκ(`, t1; λ)

)
``

+ 2t1

( +∞

∑
κ=0

ηκΨκ(`, t1; λ)

)]])
.

Equating the coefficients of the same powers of η, we have:

η0 : Ψ0(`, t1; λ) = (λ− 1) exp(`),

η1 : Ψ1(`, t1; λ) = S−1

[(ν

ξ

)ϑS
[(

Ψ0(`, t1; λ)
)
``
+ 2t1Ψ0(`, t1; λ)

]
= (λ− 1) exp(`)

[
t1

ϑ

Γ(ϑ + 1)
+

2t1
ϑ+1

Γ(ϑ + 2)

]
,

η2 : Ψ1(`, t1; λ) = S−1

[(ν

ξ

)ϑS
[(

Ψ1(`, t1; λ)
)
``
+ 2t1Ψ1(`, t1; λ)

]
= (λ− 1) exp(`)

[
t1

2ϑ

Γ(2ϑ + 1)
+ 2(ϑ + 2)

t1
2ϑ+1

Γ(2ϑ + 2)
+ 4(ϑ + 2)

t1
2ϑ+2

Γ(2ϑ + 3)

]
,

η3 : Ψ2(`, t1; λ) = S−1

[(ν

ξ

)ϑS
[(

Ψ2(`, t1; λ)
)
``
+ 2t1Ψ2(`, t1; λ)

]
= (λ− 1) exp(`)

[
t1

3ϑ

Γ(3ϑ + 1)
+ 6(ϑ + 1)

t1
3ϑ+1

Γ(3ϑ + 2)
+ 4(ϑ + 2)(ϑ + 3)

t1
3ϑ+2

Γ(3ϑ + 3)

+8(ϑ + 2)(2ϑ + 3)
t1

3ϑ+3

Γ(3ϑ + 4)

]
,

... .

The series form solution is presented as follows:

Ψ̃(`, t1; λ) = Ψ̃0(`, t1; λ) + Ψ̃1(`, t1; λ) + Ψ̃2(`, t1; λ) + Ψ̃3(`, t1; λ) + ... ,

which implies that:

Ψ(`, t1; λ) = Ψ0(`, t1; λ) + Ψ1(`, t1; λ) + Ψ2(`, t1; λ) + Ψ3(`, t1; λ) + ... ,

Ψ̄(`, t1; λ) = Ψ̄0(`, t1; λ) + Ψ̄1(`, t1; λ) + Ψ̄2(`, t1; λ) + Ψ̄3(`, t1; λ) + ... .
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Finally, we have:

Ψ(`, t1; λ) = (λ− 1) exp(`)



1 +
[

t1
ϑ

Γ(ϑ+1) + 2 t1
ϑ+1

Γ(ϑ+2)

]
+
[

t1
2ϑ

Γ(2ϑ+1) + 2(ϑ + 2) t1
2ϑ+1

Γ(2ϑ+2) + 4(ϑ + 2) t1
2ϑ+2

Γ(2ϑ+3)

]
+
[

t1
3ϑ

Γ(3ϑ+1) + 6(ϑ + 1) t1
3ϑ+1

Γ(3ϑ+2) + 4(ϑ + 2)(ϑ + 3) t1
3ϑ+2

Γ(3ϑ+3)

+8(ϑ + 2)(2ϑ + 3) t1
3ϑ+3

Γ(3ϑ+4)

]
+ ... ,

Ψ̄(`, t1; λ) = (1− λ) exp(`)



1 +
[

t1
ϑ

Γ(ϑ+1) + 2 t1
ϑ+1

Γ(ϑ+2)

]
+
[

t1
2ϑ

Γ(2ϑ+1) + 2(ϑ + 2) t1
2ϑ+1

Γ(2ϑ+2) + 4(ϑ + 2) t1
2ϑ+2

Γ(2ϑ+3)

]
+
[

t1
3ϑ

Γ(3ϑ+1) + 6(ϑ + 1) t1
3ϑ+1

Γ(3ϑ+2) + 4(ϑ + 2)(ϑ + 3) t1
3ϑ+2

Γ(3ϑ+3)

+8(ϑ + 2)(2ϑ + 3) t1
3ϑ+3

Γ(3ϑ+4)

]
+ ... .

Case 2. Now, we employ the ABC derivative operator in the first case of (37) as
follows.

Considering the process stated in Section 3, we have:

B(ϑ)
1− ϑ + ϑ

(
ν
ξ

)ϑ
S
[
Ψ(`, t1; λ)

]
− B(ϑ)

1− ϑ + ϑ
(

ν
ξ

)ϑ

(ν

ξ

)
Ψ(`, 0) = S

[
∂2

∂`2 Ψ(`, t1; λ) + 2t1Ψ(`, t1; λ)

]
.

Considering the fuzzy initial condition, making use of the inverse Shehu transform
implies that:

Ψ(`, t1; λ) =
ν

ξ
(λ− 1) exp(`) + S−1

[
1− ϑ + ϑ

(
ν
ξ

)ϑ

B(ϑ) S
[

∂2

∂`2 Ψ(`, t1; λ) + 2t1Ψ(`, t1; λ)

]]
.

Now, by implementing the HPM, we have:

+∞

∑
κ=0

ηκΨκ(`, t1; λ) = (λ− 1) exp(`) + η

(
S−1

[
1− ϑ + ϑ

(
ν
ξ

)ϑ

B(ϑ) S
[( +∞

∑
κ=0

ηκΨκ(`, t1; λ)

)
``

+ 2t1

( +∞

∑
κ=0

ηκΨκ(`, t1; λ)

)]])
.

Equating the coefficients of the same powers of η, we have:

η0 : Ψ0(`, t1; λ) = (λ− 1) exp(`),

η1 : Ψ1(`, t1; λ) = S−1

[
1− ϑ + ϑ

(
ν
ξ

)ϑ

B(ϑ) S
[(

Ψ0(`, t1; λ)
)
``
+ 2t1Ψ0(`, t1; λ)

]
=

(λ− 1) exp(`)
B(ϑ)

[
2ϑt1

ϑ+1

Γ(ϑ + 2)
+

ϑt1
ϑ

Γ(ϑ + 1)
+ 2t1(1− ϑ) + (1− ϑ)

]
,

η2 : Ψ1(`, t1; λ) = S−1

[
1− ϑ + ϑ

(
ν
ξ

)ϑ

B(ϑ) S
[(

Ψ1(`, t1; λ)
)
``
+ 2t1Ψ1(`, t1; λ)

]
=

(λ− 1) exp(`)
B2(ϑ)

[
4ϑ(ϑ + 2)

t1
2ϑ+2

Γ(2ϑ + 3)
+ 2ϑ(ϑ + 2)

t1
2ϑ+1

Γ(2ϑ + 1)
+ ϑ

t1
2ϑ

Γ(2ϑ + 1)
+ 8(1− ϑ)

t1
ϑ+2

Γ(ϑ + 3)

+4(1− ϑ)
t1

ϑ+1

Γ(ϑ + 2)
+ (1− ϑ)

t1
ϑ

Γ(ϑ + 1)

]
,

... .

The series form solution is presented as follows:

Ψ̃(`, t1; λ) = Ψ̃0(`, t1; λ) + Ψ̃1(`, t1; λ) + Ψ̃2(`, t1; λ) + Ψ̃3(`, t1; λ) + ... ,
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which implies that:

Ψ(`, t1; λ) = Ψ0(`, t1; λ) + Ψ1(`, t1; λ) + Ψ2(`, t1; λ) + Ψ3(`, t1; λ) + ... ,

Ψ̄(`, t1; λ) = Ψ̄0(`, t1; λ) + Ψ̄1(`, t1; λ) + Ψ̄2(`, t1; λ) + Ψ̄3(`, t1; λ) + ... .

Finally, we have:

Ψ(`, t1; λ) = (λ− 1) exp(`)



1 + 1
B(ϑ)

[
2ϑt1

ϑ+1

Γ(ϑ+2) +
ϑt1

ϑ

Γ(ϑ+1) + 2t1(1− ϑ) + (1− ϑ)

]
+ 1

B2(ϑ)

[
4ϑ(ϑ + 2) t1

2ϑ+2

Γ(2ϑ+3) + 2ϑ(ϑ + 2) t1
2ϑ+1

Γ(2ϑ+2) + ϑ t1
2ϑ

Γ(2ϑ+1) + 8(1− ϑ) t1
ϑ+2

Γ(ϑ+3)

+4(1− ϑ) t1
ϑ+1

Γ(ϑ+2) + (1− ϑ) t1
ϑ

Γ(ϑ+1)

]
+ ... ,

Ψ̄(`, t1; λ) = (1− λ) exp(`)



1 + 1
B(ϑ)

[
2ϑt1

ϑ+1

Γ(ϑ+2) +
ϑt1

ϑ

Γ(ϑ+1) + 2t1(1− ϑ) + (1− ϑ)

]
+ 1

B2(ϑ)

[
4ϑ(ϑ + 2) t1

2ϑ+2

Γ(2ϑ+3) + 2ϑ(ϑ + 2) t1
2ϑ+1

Γ(2ϑ+2) + ϑ t1
2ϑ

Γ(2ϑ+1) + 8(1− ϑ) t1
ϑ+2

Γ(ϑ+3)

+4(1− ϑ) t1
ϑ+1

Γ(ϑ+2) + (1− ϑ) t1
ϑ

Γ(ϑ+1)

]
+ ... .

(43)

Figure 9a,b reveal how the effectiveness of multiple (lower and upper bound accuracy)
surface graphs for Problem 2 interacting with the fuzzy CFD and Shehu transform is
being exhibited in this investigation. The pattern specifies the fluctuation in the mapping
Ψ̃(`, t1; λ) on the space co-ordinate ` with the consideration of t1 and the uncertainty
parameter λ ∈ [0, 1]. The figure illustrates that, as time passes, the mapping Ψ̃(`, t1; λ) will
become more intricate.

Figure 10a highlights the impact of the suggested technique on the mapping Ψ̃(`, t1; λ)
for the fuzzy CFD to have an uncertainty parameter λ ∈ [0, 1]. With the slight increase
in Ψ̄(`, t1; λ), it then clearly demonstrates a large decrease in the mapping Ψ(`, t1; λ).
Figure 10b highlights the effect of the recommended approach on the mapping Ψ̃(`, t1; λ)
for the fuzzy CFD to have a fixed fractional order with the varying uncertainty parameter
λ ∈ [0, 1]. With a small increase in the uncertainty parameter, the mappings Ψ̄(`, t1; λ) and
Ψ(`, t1; λ) are stable.

Figure 11a highlights the impact of the suggested technique on the mapping Ψ̃(`, t1; λ)
for the fuzzy ABC to have an uncertainty parameter λ ∈ [0, 1]. With the slight increase
in Ψ̄(`, t1; λ), it then clearly demonstrates a large decrease in the mapping Ψ(`, t1; λ).
Figure 11b highlights the effect of the recommended approach on the mapping Ψ̃(`, t1; λ)
for the fuzzy ABC to have a fixed fractional order with the varying uncertainty parameter
λ ∈ [0, 1]. With a small increase in the uncertainty parameter, the mappings Ψ̄(`, t1; λ) and
Ψ(`, t1; λ) are stable.

Figure 12a,b illustrate the comparison between the lower and upper bound accuracies
for fuzzy CFD and fuzzy ABC fractional derivative operators for Problem 3 established by
the SHPTM for standard motion, i.e., at ϑ = 1.

The graphs in Figures 9–12 assist in recognizing how time and space variation sta-
tistically interact. In addition, the proposed method will facilitate scientists’ work on
pattern formation, diffusion, instability theory, and monitoring competence by employing
inferential statistical testing.
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(a)

(b)

Figure 9. (a) Three-dimensional plot of Ψ̃(`, t1; λ) of Problem (3): (a) Ψ(`, t1; λ) and Ψ̄(`, t1; λ) when
ϑ = 1; and (b) Ψ(`, t1; λ) and Ψ̄(`, t1; λ) when the uncertainty parameter λ ∈ [0, 1] has different
fractional orders.
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Figure 10. Two-dimensional simulation of Ψ̃(`, t1; λ) of Problem (3): (a) Ψ(`, t1; λ) and Ψ̄(`, t1; λ)

when fuzzy CFD is considered to have an uncertainty parameter λ ∈ [0, 1] and t1 = 0.7; and (b)
Ψ(`, t1; λ) and Ψ̄(`, t1; λ) when fuzzy CFD is considered to have a fractional order ϑ = 0.7 and
t1 = 0.7.
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Figure 11. Two-dimensional simulation of Ψ̃(`, t1; λ) of Problem (3): (a) Ψ(`, t1; λ) and Ψ̄(`, t1; λ)

when fuzzy ABC is considered to have an uncertainty parameter λ ∈ [0, 1] and t1 = 0.7; and (b)
Ψ(`, t1; λ) and Ψ̄(`, t1; λ) when fuzzy ABC is considered to have a fractional order ϑ = 0.7 and
t1 = 0.7.
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Figure 12. Comparison plots of Ψ̃(`, t1; λ) of Problem (3) when fuzzy CFD and ABC are considered
to have a fractional order ϑ = 1 and uncertainty parameter λ ∈ [0, 1] : (a) three-dimensional plot;
and (b) two-dimensional plot of Ψ(`, t1; λ) and Ψ̄(`, t1; λ) when t1 = 0.7.

Remark 4. When [λ− 1, 1− λ] = 1 and ϑ = 1, then solution (43) reduces to the integer-order
solution Ψ(`, t1) = exp(`+ t1 + t2

1).

Problem 4. Assume that the fuzzy time-fractional Cauchy-reaction diffusion model:

∂ϑ

∂t1
ϑ

Ψ̃(`, t1; λ) =
∂2

∂`2 Ψ̃(`, t1; λ)	 (4� `2 	 2� t1 ⊕ 2)Ψ̃(`, t1; λ), 0 < ϑ ≤ 1, (44)

is subject to the fuzzy initial condition:

Ψ̃(`, 0) = Υ̃(λ)� exp(`2), (45)

where Υ̃(λ) = [Υ(λ), Ῡ(λ)] = [λ− 1, 1− λ] for λ ∈ [0, 1] is a fuzzy number.
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The parameterized formulation of (44) is presented as
∂ϑ

∂t1
ϑ Ψ(`, t1; λ) = ∂2

∂`2 Ψ(`, t1; λ)− (4`2 − 2t1 + 2)Ψ(`, t1; λ),

Ψ(`, 0) = (λ− 1) exp(`2)
∂ϑ

∂t1
ϑ Ψ̄(`, t1; λ) = ∂2

∂`2 Ψ̄(`, t1; λ)− (4`2 − 2t1 + 2)Ψ̄(`, t1; λ),

Ψ̄(`, 0) = (1− λ) exp(`2).

Case 1. Firstly, take into consideration the CFD coupled with the Shehu homotopy
perturbation transform method in the first case of (46).
Considering the process stated in Section, we have:

(ν

ξ

)ϑS
[
Ψ(`, t1; λ)

]
−

r−1

∑
κ=0

( ξ

ν

)ϑ−κ−1
Ψ(κ)(0) = S

[
∂2

∂`2 Ψ(`, t1; λ)− (4`2 − 2t1 + 2)Ψ(`, t1; λ)

]
.

Considering the fuzzy initial condition, making use of the inverse Shehu transform
implies that:

Ψ(`, t1; λ) =
ν

ξ
(λ− 1) exp(`2) + S−1

[(ν

ξ

)ϑS
[

∂2

∂`2 Ψ(`, t1; λ)− (4`2 − 2t1 + 2)Ψ(`, t1; λ)

]]
.

Now, by implementing the HPM, we have:

+∞

∑
κ=0

ηκΨκ(`, t1; λ) = (λ− 1) exp(`2) + η

(
S−1

[(ν

ξ

)ϑS
[( +∞

∑
κ=0

ηκΨκ(`, t1; λ)

)
``

− (4`2 − 2t1 + 2)
( +∞

∑
κ=0

ηκΨκ(`, t1; λ)

)]])
.

By equating the coefficients of same powers of η, we have:

η0 : Ψ0(`, t1; λ) = (λ− 1) exp(`2),

η1 : Ψ1(`, t1; λ) = S−1

[(ν

ξ

)ϑS
[(

Ψ0(`, t1; λ)
)
``
− (4`2 − 2t1 + 2)Ψ0(`, t1; λ)

]
= 2(λ− 1) exp(`2)

t1
ϑ+1

Γ(ϑ + 2)
,

η2 : Ψ1(`, t1; λ) = S−1

[(ν

ξ

)ϑS
[(

Ψ1(`, t1; λ)
)
``
− (4`2 − 2t1 + 2)Ψ1(`, t1; λ)

]
= 4(λ− 1)(ϑ + 2) exp(`2)

t1
2ϑ+2

Γ(2ϑ + 3)
,

η3 : Ψ2(`, t1; λ) = S−1

[(ν

ξ

)ϑS
[(

Ψ2(`, t1; λ)
)
``
− (4`2 − 2t1 + 2)Ψ2(`, t1; λ)

]
= 8(λ− 1)(ϑ + 2)(2ϑ + 3) exp(`2)

t1
3ϑ+3

Γ(3ϑ + 4)
,

... .

The series form solution is presented as follows:

Ψ̃(`, t1; λ) = Ψ̃0(`, t1; λ) + Ψ̃1(`, t1; λ) + Ψ̃2(`, t1; λ) + Ψ̃3(`, t1; λ) + ... ,

which implies that:

Ψ(`, t1; λ) = Ψ0(`, t1; λ) + Ψ1(`, t1; λ) + Ψ2(`, t1; λ) + Ψ3(`, t1; λ) + ... ,

Ψ̄(`, t1; λ) = Ψ̄0(`, t1; λ) + Ψ̄1(`, t1; λ) + Ψ̄2(`, t1; λ) + Ψ̄3(`, t1; λ) + ... .

Finally, we have:
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Ψ(`, t1; λ) = (λ− 1) exp(`2)

[
1 + 2

t1
ϑ+1

Γ(ϑ + 2)
+ 4(ϑ + 2)

t1
2ϑ+2

Γ(2ϑ + 3)
+ 8(ϑ + 2)(2ϑ + 3)

t1
3ϑ+3

Γ(3ϑ + 4)
+ ...

]
,

Ψ̄(`, t1; λ) = (1− λ) exp(`2)

[
1 + 2

t1
ϑ+1

Γ(ϑ + 2)
+ 4(ϑ + 2)

t1
2ϑ+2

Γ(2ϑ + 3)
+ 8(ϑ + 2)(2ϑ + 3)

t1
3ϑ+3

Γ(3ϑ + 4)
+ ...

]
.

Case 2. Now, we employ the ABC derivative operator in the first case of (37) as
follows.

Considering the process stated in Section, we have:

B(ϑ)
1− ϑ + ϑ

(
ν
ξ

)ϑ
S
[
Ψ(`, t1; λ)

]
− B(ϑ)

1− ϑ + ϑ
(

ν
ξ

)ϑ

(ν

ξ

)
Ψ(`, 0) = S

[
∂2

∂`2 Ψ(`, t1; λ)− (4`2 − 2t1 + 2)Ψ(`, t1; λ)

]

Considering the fuzzy initial condition, making use of the inverse Shehu transform
implies that:

Ψ(`, t1; λ) =
ν

ξ
(λ− 1) exp(`2) + S−1

[
1− ϑ + ϑ

(
ν
ξ

)ϑ

B(ϑ) S
[

∂2

∂`2 Ψ(`, t1; λ)− (4`2 − 2t1 + 2)Ψ(`, t1; λ)

]]
.

Now, by implementing the HPM, we have:

+∞

∑
κ=0

ηκΨκ(`, t1; λ) = (λ− 1) exp(`2)

+η

(
S−1

[
1− ϑ + ϑ

(
ν
ξ

)ϑ

B(ϑ) S
[( +∞

∑
κ=0

ηκΨκ(`, t1; λ)

)
``

− (4`2 − 2t1 + 2)
( +∞

∑
κ=0

ηκΨκ(`, t1; λ)

)]])
.

By equating the coefficients of same powers of η, we have:

η0 : Ψ0(`, t1; λ) = (λ− 1) exp(`2),

η1 : Ψ1(`, t1; λ) = S−1

[
1− ϑ + ϑ

(
ν
ξ

)ϑ

B(ϑ) S
[(

Ψ0(`, t1; λ)
)
``
− (4`2 − 2t1 + 2)Ψ0(`, t1; λ)

]
=

(λ− 1) exp(`2)

B(ϑ)

[
ϑt1

ϑ+1

Γ(ϑ + 2)
+ (1− ϑ)t1

]
,

η2 : Ψ1(`, t1; λ) = S−1

[
1− ϑ + ϑ

(
ν
ξ

)ϑ

B(ϑ) S
[(

Ψ1(`, t1; λ)
)
``
− (4`2 − 2t1 + 2)Ψ1(`, t1; λ)

]
=

(λ− 1) exp(`2)

B2(ϑ)

[
2ϑ(ϑ + 2)

t1
2ϑ+2

Γ(2ϑ + 3)
+ 2(1− ϑ)t1

2
]

,

η3 : Ψ1(`, t1; λ) = S−1

[
1− ϑ + ϑ

(
ν
ξ

)ϑ

B(ϑ) S
[(

Ψ2(`, t1; λ)
)
``
− (4`2 − 2t1 + 2)Ψ2(`, t1; λ)

]
=

(λ− 1) exp(`2)

B3(ϑ)

[
4ϑ(ϑ + 2)(2ϑ + 3)

t1
3ϑ+3

Γ(3ϑ + 4)
+ 4(1− ϑ)t1

3
]

,

... .

The series form solution is presented as follows:

Ψ̃(`, t1; λ) = Ψ̃0(`, t1; λ) + Ψ̃1(`, t1; λ) + Ψ̃2(`, t1; λ) + Ψ̃3(`, t1; λ) + ... ,
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which implies that:

Ψ(`, t1; λ) = Ψ0(`, t1; λ) + Ψ1(`, t1; λ) + Ψ2(`, t1; λ) + Ψ3(`, t1; λ) + ... ,

Ψ̄(`, t1; λ) = Ψ̄0(`, t1; λ) + Ψ̄1(`, t1; λ) + Ψ̄2(`, t1; λ) + Ψ̄3(`, t1; λ) + ... .

Finally, we have:

Ψ(`, t1; λ) = (λ− 1) exp(`2)



1 + 1
B(ϑ)

[
ϑt1

ϑ+1

Γ(ϑ+2) + (1− ϑ)t1

]
+ 1

B2(ϑ)

[
2ϑ(ϑ + 2) t1

2ϑ+2

Γ(2ϑ+3) + 2(1− ϑ)t1
2
]

+ 1
B3(ϑ)

[
4ϑ(ϑ + 2)(2ϑ + 3) t1

3ϑ+3

Γ(3ϑ+4) + 4(1− ϑ)t1
3
]
+ ... ,

Ψ̄(`, t1; λ) = (1− λ) exp(`2)



1 + 1
B(ϑ)

[
ϑt1

ϑ+1

Γ(ϑ+2) + (1− ϑ)t1

]
+ 1

B2(ϑ)

[
2ϑ(ϑ + 2) t1

2ϑ+2

Γ(2ϑ+3) + 2(1− ϑ)t1
2
]

+ 1
B3(ϑ)

[
4ϑ(ϑ + 2)(2ϑ + 3) t1

3ϑ+3

Γ(3ϑ+4) + 4(1− ϑ)t1
3
]
+ ... .

(46)

Figure 13a,b reveal how the effectiveness of multiple (lower and upper bound accu-
racy) surface graphs for Problem 2 interacting with the fuzzy CFD and Shehu transform is
being exhibited in this investigation. The pattern specifies the fluctuation in the mapping
Ψ̃(`, t1; λ) on the space co-ordinate ` with the consideration of t1 and the uncertainty pa-
rameter λ ∈ [0, 1]. The figure illustrates that, as time passes, the mapping Ψ̃(`, t1; λ) will
become more intricate.

Figure 14a highlights the impact of the suggested technique on the mapping Ψ̃(`, t1; λ)
for the fuzzy CFD to have an uncertainty parameter λ ∈ [0, 1]. With the slight increase
in Ψ̄(`, t1; λ), it then clearly demonstrates a large decrease in the mapping Ψ(`, t1; λ).
Figure 14b highlights the effect of the recommended approach on the mapping Ψ̃(`, t1; λ)
for the fuzzy CFD to have a fixed fractional order with the varying uncertainty parameter
λ ∈ [0, 1]. With a small increase in the uncertainty parameter, the mappings Ψ̄(`, t1; λ) and
Ψ(`, t1; λ) are stable.

Figure 15a highlights the impact of the suggested technique on the mapping Ψ̃(`, t1; λ)
for the fuzzy ABC to have an uncertainty parameter λ ∈ [0, 1]. With the slight increase
in Ψ̄(`, t1; λ), it then clearly demonstrates a large decrease in the mapping Ψ(`, t1; λ).
Figure 15b highlights the effect of the recommended approach on the mapping Ψ̃(`, t1; λ)
for the fuzzy ABC to have a fixed fractional order with the varying uncertainty parameter
λ ∈ [0, 1]. With a small increase in the uncertainty parameter, the mappings Ψ̄(`, t1; λ) and
Ψ(`, t1; λ) are stable.

Figure 16a,b illustrate the comparison between the lower and upper bound accuracies
for fuzzy CFD and fuzzy ABC fractional derivative operators for Problem 4 established by
the SHPTM for standard motion, i.e., at ϑ = 1.

The graphs in Figures 13–16 assist in recognizing how time and space variation sta-
tistically interact. In addition, the proposed method will facilitate scientists’ work on
pattern formation, diffusion, instability theory, and monitoring competence by employing
inferential statistical testing.
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(a)

(b)

Figure 13. Three-dimensional plot of Ψ̃(`, t1; λ) of Problem (4): (a) Ψ(`, t1; λ) and Ψ̄(`, t1; λ) when
ϑ = 1; (b) Ψ(`, t1; λ) and Ψ̄(`, t1; λ) when the uncertainty parameter λ ∈ [0, 1] has different fractional or-
ders.
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Figure 14. Two-dimensional simulation of Ψ̃(`, t1; λ) of Problem (4): (a) Ψ(`, t1; λ) and Ψ̄(`, t1; λ)

when fuzzy CFD is considered to have an uncertainty parameter λ ∈ [0, 1] and t1 = 0.7; and (b)
Ψ(`, t1; λ) and Ψ̄(`, t1; λ) when fuzzy CFD is considered to have a fractional order ϑ = 0.7 and
t1 = 0.7.
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Figure 15. Two-dimensional simulation of Ψ̃(`, t1; λ) of Problem (4): (a) Ψ(`, t1; λ) and Ψ̄(`, t1; λ)

when fuzzy ABC is considered to have an uncertainty parameter λ ∈ [0, 1] and t1 = 0.7; and (b)
Ψ(`, t1; λ) and Ψ̄(`, t1; λ) when fuzzy ABC is considered to have a fractional order ϑ = 0.7 and
t1 = 0.7.



Fractal Fract. 2021, 5, 151 37 of 40

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(b)

Figure 16. Comparison plots of Ψ̃(`, t1; λ) of Problem (4) when fuzzy CFD and ABC are considered
to have a fractional order ϑ = 1 and uncertainty parameter λ ∈ [0, 1] : (a) three-dimensional plot; (b)
two-dimensional plot of Ψ(`, t1; λ) and Ψ̄(`, t1; λ) when and t1 = 0.7.

Remark 5. When [λ− 1, 1− λ] = 1 and ϑ = 1, then solution (46) reduces to the integer-order
solution Ψ(`, t1) = exp(`2 + t2

1).

6. Conclusions

The principal aim of this investigation was to provide an approximate-analytical
solution to the fuzzy fractional Cauchy reaction–diffusion equation by taking into con-
sideration the generalized Hukuhara derivative of Caputo and AB fractional derivatives.
A stability analysis of the proposed study was presented. The findings will be pertinent
in the evaluation of nonlinear complex processes that arise in both scientific disciplines.
By employing the fuzzy set theory, this analysis shows that the SHPTM is simple, powerful,
adequate, and applicable to a wide range of nonlinear equations. It is remarkable that
SHPTM yields solutions in pairs, which often becomes an advantage in selecting the best
feasible solution for the governing model. Furthermore, it is clear from graphical views
that the approximate findings of ABC operators are in close contact with the CFD operators.
When it concerns reducing the size of the computational cost, the SHPTM technique is
effective. Because the SHPTM investigates fractional equations without using Adomian’s
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polynomials, it delivers a wide analytical outcome capacity. This is one of the advantages
of the SHPTM method over the decomposition method. Finally, the SHPTM is well suited
to all analytical methods and has a wide range of applicability in science and technology.
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