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Abstract: In this paper, we investigate the existence results for nonlinear fractional g-difference
equations with two different fractional orders supplemented with the Dirichlet boundary condi-
tions. Our main existence results are obtained by applying the contraction mapping principle and
Krasnoselskii’s fixed point theorem. An illustrative example is also discussed.

Keywords: fractional differential equations; hybrid differential equations; Krasnoselskii’s fixed point
theorems

1. Introduction

Fractional differential equations have been researched by a number of academics in
recent years, with topics spanning from the theoretical concerns of existence and unique-
ness to numerical techniques for finding solutions. Fractional differential equations have
attracted a lot of attention as a result of its use in a variety of scientific and engineering
applications arising from the study of precise descriptions of nonlinear processes. It has
been discovered that fractional calculus-based models may accurately represent a variety
of complex phenomena such as control, viscoelasticity, electrochemistry and porous media.
The nonlinear oscillation of earthquakes can also be modeled with fractional derivatives
and can eliminate the differences arising from the assumption of continuum traffic flow
(see [1-10] and the related references cited therein).

Several scholars have looked at hybrid fractional differential equations. This class
of equation involves the fractional order derivative of an unknown function hybrid with
nonlinearity depending on it. The authors of [11] established the existence theorem for
fractional hybrid differential equations and some fundamental differential inequalities.
Dhage et al. [12-15] discussed the existence, uniqueness results and some fundamental
differential inequalities for hybrid differential equations, initiating the study of the theory
of such systems and proving, by utilizing the study of inequalities, the existence of extremal
solutions and comparison results.
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A series of publications provide some recent results on hybrid differential equations
(see [11-18]).

The quantum calculus or g-difference calculus was initially developed by Jackson [19].
The quantum calculus has shown to have many applications in a number of fields, including
quantum mechanics, hypergeometric series, particle physics and complex analysis [20,21].

Furthermore, Al-Salam [22] and Agarwal [23] contributed to the development of
fractional g-difference calculus. Since fractional g-difference equations have become a
hot subject, more academics are focusing on the field of quantum problems. Fractional
difference equations have a wide range of applications in fields including economics,
chemistry, physics and engineering. These g-fractional operators are expected to be impor-
tant for the development of g-function theory, which is vital in combinatory analysis (see
example [22,24-28]).

The Langevin equation is a helpful tool for analysing and evaluating physical phe-
nomena that change over time. The ordinary Langevin equation, on the other hand, does
not correctly represent complex media. Several generalisations of the Langevin equation
with two distinct fractional orders have been developed to solve this issue, resulting in a
more flexible model for fractal processes than the classic one specified by a single index.
For more recent results on the Langevin equation, see [29-34] and the references therein.

Due to the tremendous scope and applications, several research studies have been
devoted to the study of the existence of fractional differential equations, studied by many
authors [35-43]. A g-variant of the nonlinear hybrid fractional Langevin equations with
two distinct fractional orders complemented with Dirichlet boundary conditions has not
been studied previously. This paper was motivated by some recent works [11,33,36,42].
Stimulated by the above discussion, we consider a g-variant of the nonlinear fractional
difference integral equations of the following form:

i (qul@(gzeﬁ L ADE(0) = pifalo,x(0) + p2lifslox(0), ()

0<0<10<gx1
x(0) =0,x(1) =1, )

where CD',;“ and “Dg? are the Caputo type fractional g-derivative; 0 < ay, a4 < 1; Ig()
denotes the Riemann-Liouville (R-L) integral with 0 < ¢ < 1; f1, f» and f3 are continuous
functions; and A, p; and p; are positive constants.

Equation (1) reduces to a second order g-difference equation for the values a1 =1
and ap = 1 and places f1 (0, x(0)) = 1, which is the Langevin equation with two varying
fractional orders in the limit 4 — 17. The value is A = 0. Equation (1) is called a second
order hybrid equation in the limit § — 1. The integral type nonlinearity given in terms of
g-difference of the Riemann-Liouville type of order ¢ € (0,1) provides a flexible choice in
terms of ¢.

In the sequel, we assume that the following conditions hold:

(A1) f1:10,1] x R — R/{0} and f, f3 : [0,1] x R — R are continuous functions such that

file,x) — file,y)| < Lilx —yl,

L;>0,i=1,2,3and x,y € Rforall ¢ € [0,1];

(A2)|fi(e,x)] < pile) forall (¢,x) € [0,1] xR, p; € C([0,1], RT) and ||pi|| = sup,cpo
mi(e)],i=1,2,3.

The remainder of the paper is structured as follows: In Section 2, we review some
basic concepts and results in fractional calculus and g-calculus. In Section 3, we establish a
new conclusion for nonlinear g-fractional difference equations with Dirichlet boundary
conditions. First, we used the contraction mapping principle to verify the existence and
uniqueness of the problem (1). Following that, we applied Krasnoselskii’s fixed point
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theorem to prove another new existence result for the problem (1). Finally, in Section 4, we
looked at an example.

2. Preliminaries

We recall some important concepts and essential findings on quantum fractional
calculus.

Definition 1 ([26]). Let v > 0,0 < g < 1, and the function g € [0,1]. The R-L type fractional
g-integral is (I)g) () = g(0), and the following is the case:

—gs)v—1)
(I38)(e) = /OQ (er(z)g(s)dqs, v>0, 0€[0,1],
where

1—g)v-1
Fq(v):(u—q;)vl’ 0<g<1

and Tq(v + 1) = [v]4L4(v). The following is the case:

v_1 3
M=t (-0 =1 (19" =1 g,

n € N. Furthermore, if x € R, then the following is the case.

a) _ 1700 (1_qi+1>
1-q = Hi:om-

For 0 < q < 1, then the function g is defined by the following.

Dyg(e) = W, 0 #0, Dyg(0) = lim 8(54”;7;8@),5 L0,

Definition 2 ([27]). The R-L type fractional g-derivative of order v > 0 is defined by (Dg) (o) =
¢(0) and the following:

(Dyg)(0) = (D1 g)(0), v >0,

where v denotes the integer part and [v] > v.

Definition 3 ([27]). The Caputo type fractional g-derivative of order v > 0 is defined by the
following:

(‘Djg)(e) = (1" Dy’) (), v >0,
where v denotes the integer part and [v] > v.

Definition 4. If x,y > 0, then the following is the case.

1
By(x,y) = /0 o V(1 — gtV ¢t
This is called a g-beta function, and we obtain the following.

I',(x)T
Byl ) = Y.

Lemma 1 ([27]). Let v,y > 0 and the function g € [0,1]. Then, we have the following
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D (I{1¥e)(e) = (I;"8)(e);
@@ (Dylyg)(e) = g(o)-

Lemma 2 ([27]). Let v > 0. Then, the following is the case.

k
(15°Djs) @) = 8(0) = 2y 45 (D3 0.

Lemma 3 ([38]). Let v > 0and n € N. Then, the following is the case.

(1'D!g) (@) = DI I¥g(o) — =11 €™ (proyo)
9 q'q =0 T, (v—ntk) 1 :

Lemma 4 ([28]). Forv € R, p € (—1,00), then we obtain the following.

Iy(p+1)
v —a)® q (v+p)
Iq((x a) ) T,(vtp 1)(x a) , O0<a<x<b.

Ifa =0, p =0, we obtain the following.

(11)(x) = rqoxl+1)x(”)'

3. Main Results

The following lemma is required to define the solution for the problems (1) and (2).

Lemma 5. Let h € C([0,1],R), the function x is a unique solution for the fractional g-difference
boundary value problem (BVP).

Dy (D s )+ MDY = he), 0<e <1 0<q<]
x(0) = 0,x(1) =1, ®)

The above is given by the following:

—qgu (a2—1) u(y — (@1—1)
x(o) =~ Ml x(e) [ 2T ( = h(g)dqg—xw))dqu

Tg(a2) ATg(a)
w [P A—qu) 2V e (u—gg) Y
- fi(e,x(0))e /0 T T, /()Wh((;)dqg dqu
Mi(e x())e* | filo x(0))e"
* T,(1+a) 7 ’ @)

where f1(0,x(0)) = fi and fi(1,x(1)) = fi.

Proof. A general solution x of the Equation (3) is given by the following.

— gy)(x2-1)
x(0) =—Afi(e, x(e)) /OQ %x(u)dqu
— (a2—1) u (y — (a1-1) N
N (s e s e
—c1f1(e, x(0))- )

By applying the boundary conditions for Equation (1), we obtain the following.
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1 =0,

e V(1 —qu)) o (u— gg) @Y Tg(1+a)
o = —/\Q + Fq(l + 062)/0 W A Wh(g)dqg dqu — T (6)

By substituting Equation (6) in (5), we obtain the solution given by Equation (4). This
completes the proof. [

Let us assume that C = C([0, 1], R) is a Banach space enriched with the usual norm
defined by ||x|| = sup{|x(0)|, 0 € [0,1]}. As a result of Lemma 5, we define F : C — C as
follows.

20 o — (ap—1)
(Fole) = MEEHONE  DOZOI po.x(e) [ O

u (y — (a1-1)
X (m/o %fz(gfxm))dqg

u (y — gc)mt+é—1)
- pz/o ()\1":,(€ozl—|—+§)f3(€rx(€))dq€ - x(u)) dyu

— gu)(a2—1)
- Alextee [ B

u (y — (1x1 1
< (] (FZ(Q))fz(g, (6))dys

_ 111+{f 1)
+P/ u ‘79

Consider the fact that the problems (1) and (2) have solutions only if x = Fx has
fixed point, where F is defined in Equation (7). The following existence result is based on
Banach’s contraction principle.

= f3 (g,x(g))qu> dqu. 7)

Theorem 1. Assume (A1) holds, then the BVPs (1) and (2) have a unique solution ® < 1, where
the following is the case.

@:( Al 2|p1|La (|Al+1)[p2|L3 >f1 ®)
Tplaz +1)  Tylag+az+1)  Tylag+az+3+1) )77

Proof. Let us set sup,c(o |fi(0,0)| = M;, i=1,2,3 where M; are finite numbers. Let us
choose the following:

Al 2/p1 | Ma (AL + 1) |2l Ms ))
> — 1 , 9
“1—0( +(rq@czﬂ) Lmtm+D) Lmtmicrn) 1) ©

where ¢ is such that ® < ¢ < 1. Now, we prove that 7B, C B,, where the following
results.

B, ={xeC:|lx|]| <r}.
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For x € B, we obtain the following.

I(Fx)ll =

Afilex(@))e* | file,x(e))e" ¢ (0 — qu)(@D)
Fq(l—i—ocz) + fl +)Lf1(€’/x(Q))/O W

u (y — gc)(@1—1)
X<P1/0 %fz(g,ﬂg))dqg

u (y — gc)(+i-1)

— gu)(e2—1)
“hilextene || S

u (y — gc)m—1)
<(m ] %ﬁ(gx(g))%g

u— ocl ¢-1)
e L

e S
(Iml/ g e )

+leal [ WI&(Q,X(G))IM— ()] )y

Hilorenllet || 1o

<(inl [ I g

u— 1+6-1)
el [ I e (e
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AMlA 1—flu )e2-1)
ST,(ta )+1+|A|f/ %)

_ (Dél
(Il [ I e 6)) — o 01+ e, 0o

—g¢)m C 1)
Hal [ U e x(e) - (e 0

+1£3(6,0))dqg — |x(u)|)dqu
A — gu)(e2—1)
+fl /01 %

Iy(az)
u (y — (’Xl*l)
(11l [ S 1l x(0) — (e 01|+ ol 0) s

u_ oq@l
TP R D (13(6x(6)) = fale, )| + £, 0) e ) dys

STy +¢)
ALA (1—gqu)(e2—V
< 41+ |A ~ 1 4
< Tq(l+uc2)+ + | |f1r/0 T, () gl

. 11— gD u (y— geye-D)
+Ailp(Lar+ M2) | 1) /O St 1 ke

rq(“Z) rq(‘xl)
1 1 —_ qu 0‘2 u (u . qg)(ﬂ‘1+§_1)
A (Lsr + Mj) / / dcd
HAAlpal o+ M) | Gy T gy e
(1—qu)®2=Y) ru (4 —gg)@ -1
Lor + M / / d,cd
+filpil(Lor + My) L(w2)  Jo  Tyag)  “asdat
’ (1—qu) Vo (u—gg)+eD)
Lyr + M / / d.cd
+f1lp2|(Lsr + M3) A Ty () 0 Tolar +8) qGdqu
Al 2|p1|Ly (|Al+1)|p2|Ls )
<
(Tq(ocz—i-l) To(a +ap+1) ' Tolag +ag+¢&+1) hr+
(- e, (A Dt )
Tg(ap+1)  Tylag+ar+1)  Tylag +ar+¢+1)

<Or+r(l—o)=(0O@+1—0)r
[1(Fx)[| <.
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Then, for x,y € C and for any ¢ € [0, 1], we obtain the following:

1(Fx)(0) = (Fy) (@)l = sup [(Fx)(e) — (Fy)(0)|

e<[01]

<h[ “}Z();l(p I e e — (levie i

ol [ I e x(0) — (a0

s [ ) — ol i |

(1o " L e x0) — ()

el [ qil(:f 21l x(6)) - (1)) e )y

< fipltalir -y [ U [ IO

Fflpaltal eyl [ 1”‘2;?“) [

Falfille—yll [ ‘?”dqu

+f1|p1|L2Hx—y||/ 1_‘7” ;2 1>/0 lw }Z?ii;ll)dququ

+hlpaltslie -l [ 1‘”‘ e

§f1|P1|L2Hx—y|IW+|A|f1|Pz|L3||x—ylqu(al+a12+§+1)
1

+ filpr|Lallx =yl

” 1
L _
Al 2|p1|L2 (|Al+1)|p2|L3 )]
< _
= qu(azﬂ)+rq((x1+a2+1)+rq((x1+a2+g+1) Alllx =yl
< Ollx -yl

+ Al fillx =yl

1
Fq(az—Fl) Fq(Dcl —|—D€2+1)

which depends only on the parameters involved in the problem. As ® < 1, then F is
a contraction. As a result, the contraction mapping principle results in the theorem’s
conclusion. This completes the proof. [

The second existence result is based on Krasnoselskii’s fixed point theorem.

Lemma 6. Let Y be a closed, convex, bounded and a nonempty subset of a Banach space X. Let
Q1, Q2 be the operators such that we have the following:

Q1x + Qoy € Y whenever x,y € Y;

(ii)  Qq is compact and continuous;
(iii) Qo is a contraction mapping.

Then, there exists z € Y such that z = Q1z + Qsz.
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Theorem 2. Assume that (A1)—(Az) hold. If the following is the case:

filp1lLo filp2lLs
Tylar +ax+1)  Tylar+ar+3+1) =7

(10)

then BVP (1) and (2) has at least one solution on [0, 1].

Proof. Let us define the following:

A 2|p1|p2 (A + 1) palps ))
> (1 11
T‘( +(Fq(u¢2+1)+Fq(¢x1+a2+1)+Tq(oc1+oc2+§+1) h (1)

and consider B, = {x € C : ||x|| < r}. We define Q; and Q; on B, as follows.

. _ (ap—1) ‘U _ (a1—1)
@(0) = ~Afilexte) [ = x (i [ G o le x(ee

u — (e +¢-1)
/0 %fs(wm))dqg —~ x(u))dqu

_ (ap—1)
(Q2x)(0) = —fi(0,x(0))e" /01 (1 —qu)=-V

Iy(az)
“ (u—qg)Y u (4 —gg)@teD
- , d —_ , dgg |d
x (Pl/o Ty o) q€+P2/O Ty g 2&x(e)dss dqu
L Milex(@)e* | filex(@)e"
For x,y € B,, we obtain the following.
, . ) . N
101x + Qayl| < 1+ [ALf AL pilpefs (M +DAlplE

Tplag+1)  Tylaz+1)  Tylaeg+ax+1)  Tglag+ar+¢+1) =

Thus, Q1x + Qv € B,. Continuity of f, and f; implies that Q; is continuous. Further-
more, (1 is uniformly bounded on B, as follows.

Alfar IAfilpilpo Al Alp2lps
(a2 4+1)  Tylag +az+1) Tylag+ax+¢+1)

<
[RIESS

Now, we prove the compactness of the operator Q;. In view of (A7), we define the
following.

sup  |fi(e,x)| = fi-

(0,x)€[0,1]xB;
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Consequently, the following is obtained.

— gu)(e2—1)
l(@u)e)—(@un)(enll < (WA [ @8

- [ (u—gg)tmY
X (Ple/O qug

_ u (u —qg)(“lﬂLg*l)
+ |P2|f3/0 W’iqfﬂ dqu

- (Am I (o1 —qu)®=V

Iy (a2)
[ (u—gg)tnY
2

X (ple/O )\Fq(ﬂé]) QG

_ [u (u — qg)(“1+6_1) ) )

~ 2 d
+|pz|f3/0 ATy (01 1 8) G+ )dgu
Q(“1+“2) Q§0¢1+0¢2)
+ay+1) Tpw +ap+1)

<f1f2P1< e

o Q(“1+ﬂéz+§) Q(“1+0¢2+§)
+|)\|f1f3|P2|< ( 2 1 )

To(ar +ar+¢+1)  Tylag+ap+E+1)
(a2) (a2)
z &) 9
+]A -
| |f1r<rq(lx2+1) rq(a2+1)>

Observe that the above inequality is independent of x and tends to zero as g2 — ¢;.
Thus, Q; is relatively compact on B,, and the Arzeld-Ascoli Theorem implies that Q; is
compact on B;. Now, we shall show that Q; is a contraction.

From (A;) and for x,y € B,, we have the following.

. —qu (IXZ 1) _
0~ @unl < i [ B (o [ I ) - e vle i

u— “1 ¢-1) .
i [ f3<g,<>>dqg)dqu+FWf1+1

(a1 + &) q(l—l-l’éz)
1_ u)e=1) pu(y — go)la=1)
< flpnltalle =l | A0 [ ity
(1—qu)(@-1) —gc)m+g-1) Al F
+f1|Pz|L3||x—J/H/ s e ey s

; f 1 CMA
: <f1|P1|Lz ( )+fl|p2|L3rq(“1+le+§+1))|xy||+ Ty(1+a2)

1
- - +1,
l"q xp+ap+1

By Equation (10), Q; is a contraction mapping. Hence, we deduce by the conclusion
of Lemma 6 that problems (1) and (2) have at least one solution on [0, 1]. O
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4. Example

Example 1. Consider a Dirichlet boundary BVP for quantum fractional nonlinear differential
equations given by the following:

‘D

D

() F(é)c 1 _1"(2)
<Dq fl(@»f(e)))Jr o Dix(e) = =5 f(e x(0))

9 12
+Fq(4)()15f3(e,x(e)),0 Ses1L0<q<1

124 T4(3)
x(0) =0,x(1) = 1. (12)
3 7
where &y = 3,00 = 3,f1(0,x(0)) = *(1+x), 9 = 3,A = %/m = # p2 =

(
0y (g ) = 2 lex(@) = Kr + tan x4 sing) and fale, () = }e?+

cos 0 + tan~! x). With the given data, we obtain Ly = 3, L3 = L as |f2(0,x(0)) — f2(0,y(0))| <
Hx =yl Ifs(e, x(0)) — f3(0,y(0))| < Y|x —y|. Thus, ® ~ 0.8 < 1. Clearly, all the conditions
of Theorem 3.1 are satisfied; therefore, BVP (12) has a unique solution.
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