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Abstract: This paper is devoted to generalizing the standard system of Navier boundary value
problems to a fractional system of coupled sequential Navier boundary value problems by using
terms of the Caputo derivatives. In other words, for the first time, we design a multi-term fractional
coupled system of Navier equations under the fractional boundary conditions. The existence theory
is studied regarding solutions of the given coupled sequential Navier boundary problems via the
Krasnoselskii’s fixed-point theorem on two nonlinear operators. Moreover, the Banach contraction
principle is applied to investigate the uniqueness of solution. We then focus on the Hyers–Ulam-type
stability of its solution. Furthermore, the approximate solutions of the proposed coupled fractional
sequential Navier system are obtained via the generalized differential transform method. Lastly, the
results of this research are supported by giving simulated examples.

Keywords: coupled systems; existence; GDT-method; numerical solutions; navier problem; H-U-type
stability analysis

1. Introduction

Fractional differential equations (FDEs) are considered an important area of research
in the direction of the applications of fractional calculus. Regarding applications of FDEs,
one can observe some fields including aerodynamics, biochemistry, electro-chemistry,
bioengineering, physics, viscoelasticity, mathematical biology, and so on (see [1,2]). In the
last few years, a large number of studies regarding the existence theory for different FDEs
have received much attentions from researchers and some examples include [3–18]. Since
we can model some of applied phenomena in the framework of the fractional coupled
systems, a large number of researchers have conducted many research studies on the
existence of solution for such a type of systems (for instances, see [19–23]).

Stability analysis along with numerical techniques are the most important components
of research in this regard. Usually, obtaining the exact solutions of a non-linear boundary
problem in the fractional settings is time-consuming wor,k and it is a task full of challenges.
Therefore, these items motivated mathematicians to find the best approximate solutions
for existing boundary value problems (BVPs). To perform this, various procedures were
introduced, including decomposition methods [24,25], HATM [26], q-HATM [27], and
integral transforms [28].
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The generalized differential transform method (GDT-method) is considered as one of
the most accurate and strongest techniques for finding approximate solutions of nonlinear
or linear FDEs. This transform can be observed in some papers such as [29,30] in which
the authors have used it to analyze approximate solutions of the given BVPs. Notice
that there is no specified method to study nonlinear FDEs for obtaining explicit solutions.
Therefore, a reliable method is required to find approximate solutions in the framework of
finite/infinite series regarding the given FBVPs.

In 2018, Shah et al. [31] established the existence results and obtained approximate
solutions with the help of GDT-method for the system of coupled FDEs with movable
integral conditions: 

cDpµ(t) = y1(t, ν(t)), (∀ t ∈ I),

cDqν(t) = y2(t, µ(t)), (∀ t ∈ I),

µ(0) = 0, ν(0) = 0,

µ(1) =
∫ c1

0
µ(r)dr, ν(1) =

∫ c2

0
ν(r)dr,

by assuming 1 < p, q ≤ 2, y1, y2 ∈ C(I× [0, ∞)), I := [0, 1], and 0 < c1, c2 < 1. In 2020,
Alrabaiah, Ahmad, Shah, and Rahman [32] conducted qualitative research regarding H-U-
type stability of solutions to a system of coupled nonlinear integral delay pantograph BVPs:

D
`1
0 µ(t) + χ1(t, µ(at), ν(t),Dq1

0 ν(t)) = 0, (∀ t ∈ I),

D`2
0 ν(t) + χ2(t, µ(t), ν(at),Dq2

0 µ(t)) = 0,

µ(0) = 0, µ(1) =
∫ 1

0
y(r)µ(r)dr,

ν(0) = 0, ν(1) =
∫ 1

0
y(r)ν(r)dr,

with 1 < `1, `2 ≤ 2. I := [0, 1], 0 < q1, q2, a < 1, and χ1, χ2 : I×R3 → R are nonlinear, and
y : (0, 1)→ [0, ∞) is bounded.

In this paper, inspired by [33] and the above papers, we focus on the intention in
which some qualitative aspects of possible solutions for a system of the coupled fractional
sequential Navier model are investigated. In more precise words, we consider the following
structure of a coupled sequential Navier FBVPs as follows:

CD`1
(CD`2 µ

)
(t) = K

(
t, ν(t), CD`2 ν(t)

)
, (t ∈ O := [0, 1]),

CD`∗1
(CD`∗2 ν

)
(t) = M

(
t, µ(t), CD`∗2 µ(t)

)
, (t ∈ O := [0, 1]),

γµ(0) = δµ(1) = αCD`2 µ(0) = βCD`2 µ(1) = 0,

γ∗ν(0) = δ∗ν(1) = α∗CD`∗2 ν(0) = β∗CD`∗2 ν(1) = 0,

(1)

where `1, `∗1 ∈ (1, 2], `2, `∗2 ∈ (1, 2] and γ, δ, α, β, γ∗, δ∗, α∗, β∗ ∈ R+. Moreover, the operator
CD(·) denotes the Caputo fractional derivative of different orders. Furthermore, two
continuous single-valued functions K, M : O × R2 → R are assumed to be arbitrary
equipped with some needed properties, which are explained in the sequel.

Notice that the novelty of our paper is that the above suggested structure for the
Navier problem is unique and novel, and one can consider it as a generalized fractional
model of standard Navier problem in the context of Caputo operators. Indeed, by taking
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`1 = `∗1 = `2 = `∗2 = 2 and γ = γ∗ = δ = δ∗ = α = α∗ = β = β∗ = 1, we obtain the
standard system of Navier BVPs of the fourth orders formulated by the following.

µ(4)(t) = K
(
t, ν(t), ν′′(t)

)
, (t ∈ O := [0, 1]),

ν(4)(t) = M
(
t, µ(t), µ′′(t)

)
, (t ∈ O := [0, 1]),

µ(0) = µ(1) = µ′′(0) = µ′′(1) = 0,

ν(0) = ν(1) = ν′′(0) = ν′′(1) = 0.

(2)

For deriving the needed conditions implying the uniqueness and existence of solutions
to a given coupled system of sequential Navier FBVPs, fixed point theory is used in this
paper. In this direction, the Krasnoselskii’s fixed point theorem and Banach’s contraction
principle have the key role for proving the existence and uniqueness of solution. To
study the H-U-type stability criterion, we first define the relevant notions for the given
system (Equation (1)) and then prove the results with respect to this qualitative property.
Along with these, in the sequel, the approximate solutions of Equation (1) are obtained
by applying numerical algorithms arising in the GDT-method. All these approximate
solutions are plotted in two illustrative examples. We emphasize that the main motivation
is that we conduct our research based on numerical methods of differential transform
type to search for approximate solutions of a new fractional model of Navier BVP, which
is more applicable in fourth-order models arising in engineering, and this renders our
theoretical findings as useful results. In other words, for the first time, we apply the
generalized differential transform method for a real model of boundary value problems to
investigate the qualitative behaviors of the given system. Until now, the existing limited
works regarding the Navier problem studied the existence results for integer-order systems,
while we not only generalize the supposed system to a fractional structure but we also try
to use an accurate algorithm for finding the approximate solution. These results show the
novelty of our research. By the accuracy of this method, we can analyze other models in
this direction.

The rest of the contents are as follows: Preliminaries are collected in the next sec-
tion. The results in relation to the existence of solution and its uniqueness are presented
in Section 3. In Section 4, the results regarding H-U-type stability criterion are proved.
Section 5 introduces numerical algorithms of the GDT-method for a given sequential sys-
tem (1). Different cases of the sequential Navier system are analyzed in two examples (with
graphs) in Section 6. The last section is devoted to presenting conclusive remarks.

2. Preliminaries

As we will observe, two concepts of the fractional operators such as the Riemann–
Liouville integral and the Caputo derivative play useful roles in this study. Therefore, we
recall several properties of them here.

Definition 1 ([2,34]). The Riemann–Liouville integral operator of the fractional order ` for a given
function µ : [0,+∞)→ R is defined by the following:

RI`µ(t) =
1

Γ(`)

∫ t

0
(t− r)`−1µ(r)dr, ` > 0,

if it exists.
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Definition 2 ([2,34]). By taking m = 1 + [`], for µ ∈ C(R≥0,R), the `-th-Riemann–Liouville
derivation operator is defined by the following:

RD`µ(t) =
( d

dt

)m 1
Γ(m− `)

∫ t

0
(t− r)m−`−1µ(r)dr,

if it exists.

Definition 3 ([2,34]). By taking m = 1 + [`], for µ ∈ AC(m)(R≥0,R), the `-th-Caputo deriva-
tion operator is defined by the following:

CD`µ(t) =
1

Γ(m− `)

∫ t

0
(t− r)m−`−1µ(m)(r)dr,

if it exists.

Proposition 1 ([1]). If ` ∈ (m− 1, m), then for each µ ∈ Cm−1(0, ∞):

RI`
(CD`µ

)
(t) = µ(t) + c0 + c1t+ c2t

2 + · · ·+ cm−1t
m−1,

is valid for some c0, c1, . . . , cm−1 ∈ R.

In the next section, we establish some results regarding the existence criteria.

3. Results for Existence

It is an evident notion that B = {µ(t) : µ(t), CD`2 µ(t) ∈ CR≥0(O)} is a space of
the Banach type subject to the norm ‖µ‖B = maxt∈O |µ(t)| + maxt∈O |CD`2 µ(t)|. Con-
sequently, B×B is a product Banach space that is equipped with norm ‖(µ, ν)‖B×B =
max{‖µ‖B, ‖ν‖B}.

Proposition 2. Let T ∈ CR(O), `1 ∈ (1, 2), `2 ∈ (1, 2), and γ, δ, α, β ∈ R+. Then the solution
of the nonlinear sequential fractional Navier BVP defined by the following:

CD`1
(CD`2 µ

)
(t) = T(t), (t ∈ O),

γµ(0) = δµ(1) = αCD`2 µ(0) = βCD`2 µ(1) = 0,
(3)

is given by

µ(t) =
∫ t

0

(t− r)`1+`2−1

Γ(`1 + `2)
T(r)dr− t

∫ 1

0

(1− r)`1+`2−1

Γ(`1 + `2)
T(r)dr

+
t− t`2+1

Γ(`2 + 2)

∫ 1

0

(1− r)`1−1

Γ(`1)
T(r)dr. (4)

Proof. We consider the function µ as a solution for the nonlinear sequential Navier BVP (3).
Then, we obtain the following: CD`1

(CD`2 µ
)
(t) = T(t). By virtue of `1 ∈ (1, 2) and by

taking the fractional integral in the Riemann-Liouville settings of order `1 on both sides of
the latter equation, we get

CD`2 µ(t) =
∫ t

0

(t− r)`1−1

Γ(`1)
T(r)dr + c0 + c1t,
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so that c0, c1 ∈ R are some constants that we need to find. Now, by the third condition
αCD`2 µ(0) = 0, we obtain c0 = 0. Thus, the following is the case.

CD`2 µ(t) =
∫ t

0

(t− r)`1−1

Γ(`1)
T(r)dr + c1t. (5)

On the other hand, by considering Equation (5) and the fourth condition βCD`2 µ(1) = 0,
we obtain the following.

β
∫ 1

0

(1− r)`1−1

Γ(`1)
T(r)dr + βc1 = 0,

Thus, the following is the case.

c1 = −
∫ 1

0

(1− r)`1−1

Γ(`1)
T(r)dr. (6)

In the sequel, in view of Equation (6), relation (5) becomes the following.

CD`2 µ(t) =
∫ t

0

(t− r)`1−1

Γ(`1)
T(r)dr− t

∫ 1

0

(1− r)`1−1

Γ(`1)
T(r)dr. (7)

Again, by virtue of `2 ∈ (1, 2) and by taking the fractional integral in the Riemann–
Liouville settings of order `2 on both sides of the latter equation, we obtain the following:

µ(t) =
∫ t

0

(t− r)`1+`2−1

Γ(`1 + `2)
T(r)dr− t`2+1

Γ(`2 + 2)

∫ 1

0

(1− r)`1−1

Γ(`1)
T(r)dr + c∗0 + c∗1t,

in which c∗0 and c∗1 ∈ R are some constants that we have to find. Immediately, the first
condition γµ(0) = 0 gives us c∗0 = 0. Consequently, we have the following.

µ(t) =
∫ t

0

(t− r)`1+`2−1

Γ(`1 + `2)
T(r)dr− t`2+1

Γ(`2 + 2)

∫ 1

0

(1− r)`1−1

Γ(`1)
T(r)dr + c∗1t. (8)

Lastly, the second condition δµ(1) = 0 implies that the following is the case.

δ
∫ 1

0

(1− r)`1+`2−1

Γ(`1 + `2)
T(r)dr− δ

Γ(`2 + 2)

∫ 1

0

(1− r)`1−1

Γ(`1)
T(r)dr + δc∗1 = 0.

Consequently, the constant c∗1 is obtained as follows.

c∗1 = −
∫ 1

0

(1− r)`1+`2−1

Γ(`1 + `2)
T(r)dr +

1
Γ(`2 + 2)

∫ 1

0

(1− r)`1−1

Γ(`1)
T(r)dr.

We insert c∗1 into Equation (8) and obtain the following.

µ(t) =
∫ t

0

(t− r)`1+`2−1

Γ(`1 + `2)
T(r)dr− t

∫ 1

0

(1− r)`1+`2−1

Γ(`1 + `2)
T(r)dr

+
t− t`2+1

Γ(`2 + 2)

∫ 1

0

(1− r)`1−1

Γ(`1)
T(r)dr,

This yields the result that µ satisfies the integral Equation (4), and the proof is com-
pleted.

In view of above proposition, we here present an equivalent version of the coupled
system of integral equations in relation to the given system of coupled sequential Navier
BVPs (1) by the following proposition.
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Proposition 3. Let `1, `∗1 ∈ (1, 2], `2, `∗2 ∈ (1, 2] and γ, δ, α, β, γ∗, δ∗, α∗, β∗ ∈ R+ and
K, M ∈ CR≥0 (O ×R≥0 ×R≥0). Then, an equivalent version of the coupled BVPs of fractional
Navier differential equations is as follows:

CD`1
(CD`2 µ

)
(t) = K

(
t, ν(t), CD`2 ν(t)

)
, (t ∈ O := [0, 1]),

CD`∗1
(CD`∗2 ν

)
(t) = M

(
t, µ(t), CD`∗2 µ(t)

)
, (t ∈ O := [0, 1]),

γµ(0) = δµ(1) = αCD`2 µ(0) = βCD`2 µ(1) = 0,

γ∗ν(0) = δ∗ν(1) = α∗CD`∗2 ν(0) = β∗CD`∗2 ν(1) = 0,

(9)

This is given by the following coupled integral equations.



µ(t) =
∫ t

0

(t− r)`1+`2−1

Γ(`1 + `2)
K
(
r, ν(r), CD`2 ν(r)

)
dr− t

∫ 1

0

(1− r)`1+`2−1

Γ(`1 + `2)
K
(
r, ν(r), CD`2 ν(r)

)
dr

+
t− t`2+1

Γ(`2 + 2)

∫ 1

0

(1− r)`1−1

Γ(`1)
K
(
r, ν(r), CD`2 ν(r)

)
dr, (∀ t ∈ O),

ν(t) =
∫ t

0

(t− r)`
∗
1+`∗2−1

Γ(`∗1 + `∗2)
M
(
r, µ(r), CD`∗2 µ(r)

)
dr− t

∫ 1

0

(1− r)`
∗
1+`∗2−1

Γ(`∗1 + `∗2)
M
(
r, µ(r), CD`∗2 µ(r)

)
dr

+
t− t`

∗
2+1

Γ(`∗2 + 2)

∫ 1

0

(1− r)`
∗
1−1

Γ(`∗1)
M
(
r, µ(r), CD`∗2 µ(r)

)
dr, (∀ t ∈ O).

(10)

Based on Proposition 3 and because of our further proofs, we here define H1 : B→ B

and H2 : B→ B by the following:

(H1ν)(t) =
∫ t

0

(t− r)`1+`2−1

Γ(`1 + `2)
K
(
r, ν(r), CD`2 ν(r)

)
dr

− t

∫ 1

0

(1− r)`1+`2−1

Γ(`1 + `2)
K
(
r, ν(r), CD`2 ν(r)

)
dr (11)

+
t− t`2+1

Γ(`2 + 2)

∫ 1

0

(1− r)`1−1

Γ(`1)
K
(
r, ν(r), CD`2 ν(r)

)
dr,

and

(H2µ)(t) =
∫ t

0

(t− r)`
∗
1+`∗2−1

Γ(`∗1 + `∗2)
M
(
r, µ(r), CD`∗2 µ(r)

)
dr

− t

∫ 1

0

(1− r)`
∗
1+`∗2−1

Γ(`∗1 + `∗2)
M
(
r, µ(r), CD`∗2 µ(r)

)
dr (12)

+
t− t`

∗
2+1

Γ(`∗2 + 2)

∫ 1

0

(1− r)`
∗
1−1

Γ(`∗1)
M
(
r, µ(r), CD`∗2 µ(r)

)
dr.

Thus, the following system of operator equations is produced as follows.µ(t) = H1ν(t),

ν(t) = H2µ(t).
(13)
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Now, we introduce H? : B×B −→ B×B defined by H?(µ, ν) = (H1ν, H2µ), and
we find its fixed points. To perform this, we try to use the theory of fixed points due to the
Banach and Krasnoselskii. Let us now remember these two fixed point theorems.

Theorem 1 (Banach, [35]). Let B be a complete metric space and H : B→ B be a contraction.
Then, there is a unique µ ∈ B such that H(µ) = µ.

Theorem 2 (Krasnoselskii, [35]). Assume that E 6= ∅ is a bounded, closed, and convex set
in the Banach space B and H1,H2 : E → B are two operators satisfying the following: (a)
H1µ1 +H2µ2 ∈ E, for each µ1, µ2 ∈ E; (b)H1 is a contraction; (c)H2 is compact and continuous.
Then, there is µ ∈ E such thatH1µ +H2µ = µ.

To continue the proof of our main results, we focus on the following hypotheses that
are required.

Hypothese 1 (H1). M, K ∈ C(O×R≥0 ×R≥0,R≥0) for t ∈ O and (µ1, µ2), (µ̂1, µ̂2), (ν1, ν2),
(ν̂1, ν̂2) ∈ R2.

Hypothese 2 (H2). There is 0 < CK ∈ R satisfying the following.∣∣K(t, µ1, µ2)− K(t, µ̂1, µ̂2)
∣∣ ≤ CK

(∣∣µ1 − µ̂1
∣∣+ ∣∣µ2 − µ̂2

∣∣), t ∈ O, (µ1, µ2), (µ̂1, µ̂2) ∈ R2.

Hypothese 3 (H3). There is 0 < CM ∈ R satisfying the following.∣∣M(t, ν1, ν2)− K(t, ν̂1, ν̂2)
∣∣ ≤ CM

(∣∣ν1 − ν̂1
∣∣+ ∣∣ν2 − ν̂2

∣∣),

for t ∈ O and (ν1, ν2), (ν̂1, ν̂2) ∈ R2.

Now, for more convenience in computations, we set the following.

∆1 =
2

Γ(`1 + `2 + 1)
+

1
Γ(`1 + 1)Γ(`2 + 2)

+
1

Γ(3− `2)Γ(`1 + `2 − 1)
+

1
Γ(3− `2)Γ(`2)Γ(`1 + 1)

,

∆2 =
2

Γ(`∗1 + `∗2 + 1)
+

1
Γ(`∗1 + 1)Γ(`∗2 + 2)

+
1

Γ(3− `∗2)Γ(`
∗
1 + `∗2 − 1)

+
1

Γ(3− `∗2)Γ(`
∗
2)Γ(`

∗
1 + 1)

.

At this time, we can establish the following existence theorem.

Theorem 3. Suppose that Hypotheses (H1)–(H3) are valid together with CK∆1 < 1 and CM∆2 < 1.
Then, the coupled sequential FBVPs of the Navier model (1) possess a unique solution.

Proof. First, we choose $ ≥ max
{

∆1θ1
1−CK∆1

, ∆2θ2
1−CM∆2

}
, where Θ1 = maxt∈O

∣∣K(t, 0, 0)
∣∣ and

Θ2 = maxt∈O
∣∣M(t, 0, 0)

∣∣. We consider the bounded, closed, and convex set Λ defined by

Λ =
{
(µ, ν) ∈ B×B :

∥∥(µ, ν)
∥∥
B×B ≤ $

}
. From Hypotheses (H1) and (H2), we can

write, for each t ∈ O and (µ, ν) ∈ Λ, that the following is the case.∣∣H1ν(t)
∣∣ ≤ 1

Γ(`1 + `2)

∫ t

0
(t− r)`1+`2−1∣∣K(r, ν(r), CD`2 ν(r))

∣∣dr

+
t

Γ(`1 + `2)

∫ 1

0
(1− r)`1+`2−1∣∣K(r, ν(r), CD`2 ν(r))

∣∣dr

+
t− t`2+1

Γ(`1)Γ(`2 + 2)

∫ 1

0
(1− r)`1−1∣∣K(r, ν(r), CD`2 ν(r))

∣∣dr
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≤ 1
Γ(`1 + `2)

∫ t

0
(t− r)`1+`2−1

(∣∣K(r, ν(r), CD`2 ν(r))− K(r, 0, 0)
∣∣+ ∣∣K(r, 0, 0)

∣∣)dr

+
t

Γ(`1 + `2)

∫ 1

0
(1− r)`1+`2−1

(∣∣K(r, ν(r), CD`2 ν(r))− K(r, 0, 0)
∣∣+ ∣∣K(r, 0, 0)

∣∣)dr

+
t− t`2+1

Γ(`1)Γ(`2 + 2)

∫ 1

0
(1− r)`1−1

(∣∣K(r, ν(r), CD`2 ν(r))− K(r, 0, 0)
∣∣+ ∣∣K(r, 0, 0)

∣∣)dr

≤ 1
Γ(`1 + `2)

∫ t

0
(t− r)`1+`2−1(CK‖ν‖B + Θ1

)
dr

+
t

Γ(`1 + `2)

∫ 1

0
(1− r)`1+`2−1(CK‖ν‖B + Θ1

)
dr

+
t− t`2+1

Γ(`1)Γ(`2 + 2)

∫ 1

0
(1− r)`1−1(CK‖ν‖B + Θ1

)
dr

≤
(
CK$ + Θ1

)[ 2
Γ(`1 + `2 + 1)

+
1

Γ(`1 + 1)Γ(`2 + 2)

]
. (14)

By some simple calculations, we obtain the following.

∣∣(H1ν)′′(t)
∣∣ =

∣∣∣∣∣ 1
Γ(`1 + `2 − 2)

∫ t

0
(t− r)`1+`2−3K(r, ν(r), CD`2 ν(r))dr

− `2t
`2−1

Γ(`2 + 1)Γ(`1)

∫ 1

0
(1− r)`1−1K(r, ν(r), CD`2 ν(r))dr

∣∣∣∣∣
≤ 1

Γ(`1 + `2 − 2)

∫ t

0
(t− r)`1+`2−3∣∣K(r, ν(r), CD`2 ν(r))

∣∣dr

+
`2t

`2−1

Γ(`2 + 1)Γ(`1)

∫ 1

0
(1− r)`1−1∣∣K(r, ν(r), CD`2 ν(r))

∣∣dr

≤
(
CK$ + Θ1

)[ 1
Γ(`1 + `2 − 1)

+
1

Γ(`2)Γ(`1 + 1)

]
.

Then, by Definition 3, we obtain the following.

∣∣∣CD`2(H1ν)(t)
∣∣∣ =

∣∣∣∣∣ 1
Γ(2− `2)

∫ t

0
(t− r)1−`2(H1ν)′′(r)dr

∣∣∣∣∣
≤ 1

Γ(2− `2)

∫ t

0
(t− r)1−`2

∣∣∣(H1ν)′′(r)
∣∣∣dr (15)

≤
(
CK$ + Θ1

)
t2−`2

[ 1
Γ(3− `2)Γ(`1 + `2 − 1)

+
1

Γ(3− `2)Γ(`2)Γ(`1 + 1)

]

≤
(
CK$ + Θ1

)[ 1
Γ(3− `2)Γ(`1 + `2 − 1)

+
1

Γ(3− `2)Γ(`2)Γ(`1 + 1)

]
.
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Thus, Equations (14) and (15) provide the following.

‖H1ν‖B ≤
(
CK$ + Θ1

)[ 2
Γ(`1 + `2 + 1)

+
1

Γ(`1 + 1)Γ(`2 + 2)

+
1

Γ(3− `2)Γ(`1 + `2 − 1)
+

1
Γ(3− `2)Γ(`2)Γ(`1 + 1)

]
(16)

≤
(
CK$ + Θ1

)
∆1 ≤ $.

By following the same procedure, we can obtain the following.

‖H2µ‖B ≤
(
CM$ + Θ2

)[ 2
Γ(`∗1 + `∗2 + 1)

+
1

Γ(`∗1 + 1)Γ(`∗2 + 2)

+
1

Γ(3− `∗2)Γ(`
∗
1 + `∗2 − 1)

+
1

Γ(3− `∗2)Γ(`
∗
2)Γ(`

∗
1 + 1)

]
(17)

≤
(
CM$ + Θ2

)
∆2 ≤ $.

Consequently, Equations (16) and (17) result in
∥∥H?(µ, ν)

∥∥
B×B ≤ $. Therefore H?(Λ) ⊆ Λ.

We prove that H? is a contraction. For this aim, let us consider (µ, ν), (µ̂, ν̂) ∈ Λ, and
t ∈ O arbitrarily. Then, we have the following.∣∣H1ν(t)− H1ν̂(t)

∣∣
≤ 1

Γ(`1 + `2)

∫ t

0
(t− r)`1+`2−1∣∣K(r, ν(r), CD`2 ν(r))− K(r, ν̂(r), CD`2 ν̂(r))

∣∣dr

+
t

Γ(`1 + `2)

∫ 1

0
(1− r)`1+`2−1∣∣K(r, ν(r), CD`2 ν(r))− K(r, ν̂(r), CD`2 ν̂(r))

∣∣dr

+
t− t`2+1

Γ(`1)Γ(`2 + 2)

∫ 1

0
(1− r)`1−1∣∣K(r, ν(r), CD`2 ν(r))− K(r, ν̂(r), CD`2 ν̂(r))

∣∣dr (18)

≤ 1
Γ(`1 + `2)

∫ t

0
(t− r)`1+`2−1CK

(∣∣ν(r)− ν̂(r)
∣∣+ ∣∣CD`2 ν(r)− CD`2 ν̂(r)

∣∣)dr

+
t

Γ(`1 + `2)

∫ 1

0
(1− r)`1+`2−1CK

(∣∣ν(r)− ν̂(r)
∣∣+ ∣∣CD`2 ν(r)− CD`2 ν̂(r)

∣∣)dr

+
t− t`2+1

Γ(`1)Γ(`2 + 2)

∫ 1

0
(1− r)`1−1CK

(∣∣ν(r)− ν̂(r)
∣∣+ ∣∣CD`2 ν(r)− CD`2 ν̂(r)

∣∣)dr

≤ CK

[ 2
Γ(`1 + `2 + 1)

+
1

Γ(`2 + 2)Γ(`1 + 1)

]∥∥ν− ν̂
∥∥
B

.

On the other hand, since the following is the case:∣∣(H1ν)′′(t)− (H1ν̂)′′(t)
∣∣

≤ 1
Γ(`1 + `2 − 2)

∫ t

0
(t− r)`1+`2−3

∣∣∣K(r, ν(r), CD`2 ν(r))− K(r, ν̂(r), CD`2 ν̂(r))
∣∣∣dr
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+
`2t

`2−1

Γ(`2 + 1)Γ(`1)

∫ 1

0
(1− r)`1−1

∣∣∣K(r, ν(r), CD`2 ν(r))− K(r, ν̂(r), CD`2 ν̂(r))
∣∣∣dr

≤ 1
Γ(`1 + `2 − 2)

∫ t

0
(t− r)`1+`2−3CK

(∣∣ν(r)− ν̂(r)
∣∣+ ∣∣CD`2 ν(r)− CD`2 ν̂(r)

∣∣)dr (19)

+
`2t

`2−1

Γ(`2 + 1)Γ(`1)

∫ 1

0
(1− r)`1−1CK

(∣∣ν(r)− ν̂(r)
∣∣+ ∣∣CD`2 ν(r)− CD`2 ν̂(r)

∣∣)dr

≤ CK

[ 1
Γ(`1 + `2 − 1)

+
1

Γ(`2)Γ(`1 + 1)

]∥∥ν− ν̂
∥∥
B

,

by using (19), we obtain the following.∣∣∣CD`2(H1ν)(t)− CD`2(H1ν̂)(t)
∣∣∣

=

∣∣∣∣∣ 1
Γ(2− `2)

∫ t

0
(t− r)1−`2(H1ν)′′(r)dr− 1

Γ(2− `2)

∫ t

0
(t− r)1−`2(H1ν̂)′′(r)dr

∣∣∣∣∣
≤ 1

Γ(2− `2)

∫ t

0
(t− r)1−`2

∣∣∣(H1ν)′′(r)− (H1ν̂)′′(r)
∣∣∣dr (20)

≤ CK

[ 1
Γ(3− `2)Γ(`1 + `2 − 1)

+
1

Γ(3− `2)Γ(`2)Γ(`1 + 1)

]∥∥ν− ν̂
∥∥
B

.

From Equations (18) and (20), we obtain the following.∥∥H1ν− H1ν̂
∥∥
B
≤ CK∆1

∥∥ν− ν̂
∥∥
B

. (21)

By the same arguments, we obtain the following.∥∥H2µ− H2µ̂
∥∥
B
≤ CM∆2

∥∥µ− µ̂
∥∥
B

. (22)

Therefore, Equations (21) and (22) together with the assumptions CK∆1 < 1 and
CM∆2 < 1 result in

∥∥H?(µ, ν)− H?(µ̂, ν̂)
∥∥
B×B ≤

∥∥(µ, ν)− (µ̂, ν̂)
∥∥
B×B. This means that

H? is a contraction. Hence, Theorem 1 ensured that the coupled sequential FBVPs of Navier
model (1) possess a unique solution; thus, the proof is now completed.
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In order to continue the establishment of the main existence result, we need to decom-
pose the operators H1 and H2 as follows: H1 = Φ̂1 + Ψ̂1 and H2 = Φ̂2 + Ψ̂2, where the
following is the case.

Φ̂1ν(t) =
∫ t

0

(t− r)`1+`2−1

Γ(`1 + `2)
K
(
r, ν(r), CD`2 ν(r)

)
dr,

Ψ̂1ν(t) = −t
∫ 1

0

(1− r)`1+`2−1

Γ(`1 + `2)
K
(
r, ν(r), CD`2 ν(r)

)
dr

+
t− t`2+1

Γ(`2 + 2)

∫ 1

0

(1− r)`1−1

Γ(`1)
K
(
r, ν(r), CD`2 ν(r)

)
dr,

Φ̂2µ(t) =
∫ t

0

(t− r)`
∗
1+`∗2−1

Γ(`∗1 + `∗2)
M
(
r, µ(r), CD`∗2 µ(r)

)
dr,

Ψ̂2µ(t) = −t
∫ 1

0

(1− r)`
∗
1+`∗2−1

Γ(`∗1 + `∗2)
M
(
r, µ(r), CD`∗2 µ(r)

)
dr

+
t− t`

∗
2+1

Γ(`∗2 + 2)

∫ 1

0

(1− r)`
∗
1−1

Γ(`∗1)
M
(
r, µ(r), CD`∗2 µ(r)

)
dr.

(23)

In this case, the operator H? can be expressed as H? = Φ̂ + Ψ̂, where Φ̂ and Ψ̂ are
given by the following.

Φ̂(µ, ν) = (Φ̂1ν, Φ̂2µ) and Ψ̂(µ, ν) = (Ψ̂1ν, Ψ̂2µ).

In addition, suppose that the functions K and M satisfy the following assumption.

Hypothese 4 (H4). There exists ΥK, ΥM, ΩK, ΩM ∈ R+ such that the following is the case:∣∣K(t, ν(t), CD`2 ν(t))
∣∣ ≤ ΥK

(
|ν(t)|+ |CD`2 ν(t)|

)
+ ΩK,

and ∣∣M(t, µ(t), CD`∗2 µ(t))
∣∣ ≤ ΥM

(
|µ(t)|+ |CD`∗2 µ(t)|

)
+ ΩM,

for all t ∈ O and for each (µ, ν) ∈ B2.

Theorem 4. Suppose that the assumptions Hypotheses (H1)–(H4) hold. Furthermore, the conditions

CK

[ 1
Γ(`1 + `2 + 1)

+
1

Γ(`2 + 2)Γ(`1 + 1)
+

1
Γ(3− `2)Γ(`2)Γ(`1 + 1)

]
< 1, (24)

and

CM

[ 1
Γ(`∗1 + `∗2 + 1)

+
1

Γ(`∗2 + 2)Γ(`∗1 + 1)
+

1
Γ(3− `∗2)Γ(`

∗
2)Γ(`

∗
1 + 1)

]
< 1, (25)

are valid. Then, the coupled sequential FBVPs of Navier model (1) has at least one solution.

Proof. First of all, the continuity property of the operator H? is obtained from that of
the functions K and M. Let the set D be bounded in Λ ∈ B×B. Then, in view of the
assumption (H4), we have the following for any t ∈ O and all (µ, ν) ∈ D.
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∣∣Φ̂1ν(t)
∣∣ ≤ ∫ t

0

(t− r)`1+`2−1

Γ(`1 + `2)

∣∣∣K(r, ν(r), CD`2 ν(r)
)∣∣∣dr

≤
ΥK
∥∥ν
∥∥
B
+ ΩK

Γ(`1 + `2 + 1)
. (26)

On the other hand, by

∣∣(Φ̂1ν
)′′
(t)
∣∣ ≤ ∫ t

0

(t− r)`1+`2−3

Γ(`1 + `2 − 2)

∣∣∣K(r, ν(r), CD`2 ν(r)
)∣∣∣dr

≤
ΥK
∥∥ν
∥∥
B
+ ΩK

Γ(`1 + `2 − 1)
,

and by Definition 3, we obtain the following.

∣∣CD`2
(
Φ̂1ν

)
(t)
∣∣ ≤ ∫ t

0

(t− r)1−`2

Γ(2− `2)

∣∣∣(Φ̂1ν
)′′
(r)
∣∣∣dr

≤
ΥK
∥∥ν
∥∥
B
+ ΩK

Γ(3− `2)Γ(`1 + `2 − 1)
. (27)

Thus, Equations (26) and (27) provide the following.

∥∥Φ̂1ν
∥∥
B
≤
(
ΥK
∥∥ν
∥∥
B
+ ΩK

)[ 1
Γ(`1 + `2 + 1)

+
1

Γ(3− `2)Γ(`1 + `2 − 1)

]
. (28)

In a similar manner, we have the following.

∥∥Φ̂2µ
∥∥
B
≤
(
ΥM
∥∥µ
∥∥
B
+ ΩM

)[ 1
Γ(`∗1 + `∗2 + 1)

+
1

Γ(3− `∗2)Γ(`
∗
1 + `∗2 − 1)

]
. (29)

Therefore, Equations (28) and (29) provide the boundedness of Φ̂(D).
In the sequel, we shall investigate that Φ̂ is equicontinuous. Let τ1, τ2 ∈ O with

τ1 < τ2 and (µ, ν) ∈ B×B. We have the following.

∣∣Φ̂1ν(τ1)− Φ̂1ν(τ2)
∣∣ ≤ 1

Γ(`1 + `2)

[ ∫ τ1

0

[
(τ2 − r)`1+`2−1 − (τ1 − r)`1+`2−1

]∣∣∣K(r, ν(r), CD`2 ν(r)
)∣∣∣dr

+
∫ τ2

τ1

(τ2 − r)`1+`2−1
∣∣∣K(r, ν(r), CD`2 ν(r)

)∣∣∣dr

]
(30)

≤
ΥK
∥∥ν
∥∥
B
+ ΩK

Γ(`1 + `2 + 1)

(
τ`1+`2

2 − τ`1+`2
1

)
.

In a similar manner, we obtain the following.

∣∣Φ̂2µ(τ1)− Φ̂2µ(τ2)
∣∣ ≤ ΥM

∥∥µ
∥∥
B
+ ΩM

Γ(`∗1 + `∗2 + 1)

(
τ
`∗1+`∗2
2 − τ

`∗1+`∗2
1

)
. (31)

We also have the following.
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∣∣CD`2
(
Φ̂1ν

)
(τ1)− CD`2

(
Φ̂1ν

)
(τ2)

∣∣
≤ 1

Γ(2− `2)

[ ∫ τ1

0

[
(τ1 − r)1−`2 − (τ2 − r)1−`2

]∣∣∣(Φ̂1ν
)′′
(r)
∣∣∣dr +

∫ τ2

τ1

(τ2 − r)1−`2
∣∣∣(Φ̂1ν

)′′
(r)
∣∣∣dr

]
(32)

≤
2
(
ΥK
∥∥ν
∥∥
B
+ ΩK

)
Γ(3− `2)Γ(`1 + `2 − 1)

(
τ2 − τ1

)2−`2 .

By using the same arguments, we obtain the following.

∣∣CD`∗2
(
Φ̂2µ

)
(τ1)− CD`∗2

(
Φ̂2µ

)
(τ2)

∣∣ ≤ 2
(
ΥM
∥∥µ
∥∥
B
+ ΩM

)
Γ(3− `∗2)Γ(`

∗
1 + `∗2 − 1)

(
τ2 − τ1

)2−`∗2 . (33)

From inequalities (Equations (30)–(33)), we conclude

∥∥Φ̂1ν(τ1)− Φ̂1ν(τ2)
∥∥
B
≤
(
ΥK
∥∥ν
∥∥
B
+ ΩK

)[τ`1+`2
2 − τ`1+`2

1
Γ(`1 + `2 + 1)

+
2(τ2 − τ1)

2−`2

Γ(3− `2)Γ(`1 + `2 − 1)

]
, (34)

and

∥∥Φ̂2µ(τ1)− Φ̂2µ(τ2)
∥∥
B
≤
(
ΥM
∥∥µ
∥∥
B
+ ΩM

)[τ
`∗1+`∗2
2 − τ

`∗1+`∗2
1

Γ(`∗1 + `∗2 + 1)
+

2(τ2 − τ1)
2−`∗2

Γ(3− `∗2)Γ(`
∗
1 + `∗2 − 1)

]
. (35)

The obtained inequalities (34)–(35) provide
∥∥Φ̂1ν(τ1) − Φ̂1ν(τ2)

∥∥
B
→ 0 and∥∥Φ̂2µ(τ1)− Φ̂2µ(τ2)

∥∥
B
→ 0 if τ1 − τ2 → 0. Therefore, by Arzela–Ascoli’s theorem, it fol-

lows that Φ̂ is continuous and compact.
Finally, we prove the last part of the theorem regarding the operator Ψ̂. For each

(ν, ν̂) ∈ B×B, we have the following.∣∣Ψ̂1ν(t)− Ψ̂1ν̂(t)
∣∣ ≤ t

Γ(`1 + `2)

∫ 1

0
(1− r)`1+`2−1

∣∣∣K(r, ν(r), CD`2 ν(r)
)
− K

(
r, ν̂(r), CD`2 ν̂(r)

)∣∣∣dr

+
t− t`2+1

Γ(`2 + 1)Γ(`1)

∫ 1

0
(1− r)`1−1

∣∣∣K(r, ν(r), CD`2 ν(r)
)
− K

(
r, ν̂(r), CD`2 ν̂(r)

)∣∣∣dr (36)

≤ CK

[
1

Γ(`1 + `2 + 1)
+

1
Γ(`2 + 1)Γ(`1 + 1)

]∥∥ν− ν̂
∥∥
B

.

Similarly, we have the following.

∣∣Ψ̂2µ(t)− Ψ̂2µ̂(t)
∣∣ ≤ CM

[
1

Γ(`∗1 + `∗2 + 1)
+

1
Γ(`∗2 + 1)Γ(`∗1 + 1)

]∥∥µ− µ̂
∥∥
B

. (37)

We also have the following:

∣∣(Ψ̂1ν
)′′
(t)−

(
Ψ̂1ν̂

)′′
(t)
∣∣ ≤ CK

Γ(`2)Γ(`1 + 1)

∥∥ν− ν̂
∥∥
B

, (38)

and ∣∣(Ψ̂2µ
)′′
(t)−

(
Ψ̂2µ̂

)′′
(t)
∣∣ ≤ CM

Γ(`∗2)Γ(`
∗
1 + 1)

∥∥µ− µ̂
∥∥
B

. (39)
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Then, the following is the case:

∣∣CD`2 Ψ̂1ν(t)− CD`2 Ψ̂1ν̂(t)
∣∣ ≤ 1

Γ(2− `2)

∫ t

0
(t− r)1−`2

∣∣∣(Ψ̂1ν
)′′
(r)−

(
Ψ̂1ν̂

)′′
(r)
∣∣∣dr

≤ CK
Γ(3− `2)Γ(`2)Γ(`1 + 1)

∥∥ν− ν̂
∥∥
B

, (40)

and ∣∣CD`∗2 Ψ̂2µ(t)− CD`∗2 Ψ̂2µ̂(t)
∣∣ ≤ CM

Γ(3− `∗2)Γ(`
∗
2)Γ(`

∗
1 + 1)

∥∥µ− µ̂
∥∥
B

. (41)

Consequently, in view of Equations (36), (37), (40), and (41), we obtain

∣∣Ψ̂1ν(t)− Ψ̂1ν̂(t)
∣∣ ≤ CK

[
1

Γ(`1 + `2 + 1)
+

1
Γ(`2 + 2)Γ(`1 + 1)

+
1

Γ(3− `2)Γ(`2)Γ(`1 + 1)

]∥∥ν− ν̂
∥∥
B

, (42)

and

∣∣Ψ̂2µ(t)− Ψ̂2µ̂(t)
∣∣ ≤ CM

[
1

Γ(`∗1 + `∗2 + 1)
+

1
Γ(`∗2 + 2)Γ(`∗1 + 1)

+
1

Γ(3− `∗2)Γ(`
∗
2)Γ(`

∗
1 + 1)

]∥∥µ− µ̂
∥∥
B

. (43)

Therefore, from Equations (42) and (43) together with the conditions (24) and (25), it
follows that Ψ̂ is a contraction. Hence, by the conclusion of Theorem 2, we conclude H?

has at least one fixed point which is the solution of the coupled sequential FBVPs of Navier
model (1).

4. Results for H-U-Type Stability

In the present section, we investigate some sufficient conditions to obtain H-U-stability
results of the solutions to the coupled sequential FBVPs of Navier model (1). Before starting
work in this regard, we present some auxiliary definitions.

Definition 4 ([36,37]). Let H? : B→ B. Then, the operator equation of the following:

H?p = p, p ∈ B, (44)

is said to be H-U-stable, if for the given inequality∣∣p(t)− H?p(t)
∣∣ ≤ ε, ∀ t ∈ O,

there is some wH? > 0 such that for each solution p ∈ C(O,R) of the Equation (44), we can find
some ĥ ∈ C(O,R) satisfying (44) such that the following is the case.∣∣p(t)− ĥ(t)

∣∣ ≤ wH?ε, ∀ t ∈ O.

Now, based on above definition, we define two operators Hi : B −→ B, i ∈ {1, 2}.
The coupled system of the following:

µ(t) = H1ν(t),

ν(t) = H2µ(t),
(45)



Fractal Fract. 2021, 5, 166 15 of 26

is called H-U-stable if, for the system, the following is the case.
∣∣µ(t)− H1ν(t)

∣∣ ≤ ε1, t ∈ O,∣∣ν(t)− H2µ(t)
∣∣ ≤ ε2, t ∈ O,

(46)

Two constants wH1 , wH2 > 0 can be found provided that for each (µ, ν) satisfying (45),
a unique solution (ĥ, h̃) exists for the system (45) such that the following is the case.

∣∣µ(t)− ĥ(t)
∣∣ ≤ wH1 ε1, ∀ t ∈ O,∣∣ν(t)− h̃(t)
∣∣ ≤ wH2 ε2, ∀ t ∈ O.

Remark 1. There are two functions ϕ, χ ∈ C(O,R) with respect to µ and ν, respectively, and
that satisfy the following: |ϕ(t)| ≤ ε1, for t ∈ O,

|χ(t)| ≤ ε2, for t ∈ O,

and 
CD`1

(CD`2 µ
)
(t) = K

(
t, ν(t), CD`2 ν(t)

)
+ ϕ(t), (t ∈ O := [0, 1]),

CD`∗1
(CD`∗2 ν

)
(t) = M

(
t, µ(t), CD`∗2 µ(t)

)
+ χ(t), (t ∈ O := [0, 1]).

Lemma 1. Suppose that (µ, ν) ∈
(
C(O,R)

)2 is a solution of (46) with the following.
∣∣µ′′(t)− (H1ν)′′(t)

∣∣ ≤ γ1, γ1 ∈ R>0, t ∈ O,∣∣ν′′(t)− (H2µ)′′(t)
∣∣ ≤ γ2, γ2 ∈ R>0, t ∈ O.

Then, the following system of inequalities holds:
∥∥µ− H1ν

∥∥
B
≤ η1ε1 +

γ1

Γ(3− `2)
,

∥∥ν− H2µ
∥∥
B
≤ η2ε2 +

γ2

Γ(3− `∗2)
,

where η1 =
2

Γ(`1 + `2 + 1)
+

1
Γ(`2 + 2)Γ(`1 + 1)

, η2 =
2

Γ(`∗1 + `∗2 + 1)
+

1
Γ(`∗2 + 2)Γ(`∗1 + 1)

,

and H1 and H2 are defined by Equations (11) and (12), respectively.

Proof. In view of the condition (2) (Remark 1), we have the following.

CD`1
(CD`2 µ

)
(t) = K

(
t, ν(t), CD`2 ν(t)

)
+ ϕ(t), (t ∈ O),

CD`∗1
(CD`∗2 ν

)
(t) = M

(
t, µ(t), CD`∗2 µ(t)

)
+ χ(t), (t ∈ O),

γµ(0) = δµ(1) = αCD`2 µ(0) = βCD`2 µ(1) = 0,

γ∗ν(0) = δ∗ν(1) = α∗CD`∗2 ν(0) = β∗CD`∗2 ν(1) = 0.

(47)

By Proposition (3), the solution of Equation (47) is given by the following.
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µ(t) =
∫ t

0

(t− r)`1+`2−1

Γ(`1 + `2)
K
(
r, ν(r), CD`2 ν(r)

)
dr− t

∫ 1

0

(1− r)`1+`2−1

Γ(`1 + `2)
K
(
r, ν(r), CD`2 ν(r)

)
dr

+
t− t`2+1

Γ(`2 + 2)

∫ 1

0

(1− r)`1−1

Γ(`1)
K
(
r, ν(r), CD`2 ν(r)

)
dr +

∫ t

0

(t− r)`1+`2−1

Γ(`1 + `2)
ϕ(r)dr,

− t

∫ 1

0

(1− r)`1+`2−1

Γ(`1 + `2)
ϕ(r)dr +

t− t`2+1

Γ(`2 + 2)

∫ 1

0

(1− r)`1−1

Γ(`1)
ϕ(r)dr,

ν(t) =
∫ t

0

(t− r)`
∗
1+`∗2−1

Γ(`∗1 + `∗2)
M
(
r, µ(r), CD`∗2 µ(r)

)
dr− t

∫ 1

0

(1− r)`
∗
1+`∗2−1

Γ(`∗1 + `∗2)
M
(
r, µ(r), CD`∗2 µ(r)

)
dr

+
t− t`

∗
2+1

Γ(`∗2 + 2)

∫ 1

0

(1− r)`
∗
1−1

Γ(`∗1)
M
(
r, µ(r), CD`∗2 µ(r)

)
dr +

∫ t

0

(t− r)`
∗
1+`∗2−1

Γ(`∗1 + `∗2)
χ(r)dr,

− t

∫ 1

0

(1− r)`
∗
1+`∗2−1

Γ(`∗1 + `∗2)
χ(r)dr +

t− t`
∗
2+1

Γ(`∗2 + 2)

∫ 1

0

(1− r)`
∗
1−1

Γ(`∗1)
χ(r)dr.

Since t ∈ O, then from the last system, we have the following:∣∣∣µ(t)− [ ∫ t

0

(t− r)`1+`2−1

Γ(`1 + `2)
K(r, ν(r), CD`2 ν(r))dr− t

∫ 1

0

(1− r)`1+`2−1

Γ(`1 + `2)
K(r, ν(r), CD`2 ν(r))dr

+
t− t`2+1

Γ(`2 + 2)

∫ 1

0

(1− r)`1−1

Γ(`1)
K(r, µ(r), CD`2 ν(r))dr

]∣∣∣
=
∣∣∣ ∫ t

0

(t− r)`1+`2−1

Γ(`1 + `2)
ϕ(r)dr− t

∫ 1

0

(1− r)`1+`2−1

Γ(`1 + `2)
ϕ(r)dr +

t− t`2+1

Γ(`2 + 2)

∫ 1

0

(1− r)`1−1

Γ(`1)
ϕ(r)dr

∣∣∣
≤
∫ t

0

(t− r)`1+`2−1

Γ(`1 + `2)

∣∣ϕ(r)∣∣dr− t

∫ 1

0

(1− r)`1+`2−1

Γ(`1 + `2)

∣∣ϕ(r)∣∣dr +
t− t`2+1

Γ(`2 + 2)

∫ 1

0

(1− r)`1−1

Γ(`1)

∣∣ϕ(r)∣∣dr

≤
( 2

Γ(`1 + `2 + 1)
+

1
Γ(`2 + 2)Γ(`1 + 1)

)
ε1 = η1ε1, t ∈ O,

which provides the following.∣∣µ(t)− H1ν(t)
∣∣ ≤ η1ε1, t ∈ O. (48)

With the same computation techniques, we obtain the following.∣∣ν(t)− H2µ(t)
∣∣ ≤ η2ε2, t ∈ O. (49)

On the other hand, we have the following.

∣∣∣CD`2 µ(t)− CD`2 H1ν(t)
∣∣∣ ≤ 1

Γ(2− `2)

∫ t

0
(t− r)1−`2

∣∣µ′′(r)− (H1ν)′′(r)
∣∣dr ≤ γ1

Γ(3− `2)
, (50)

With the same arguments, we obtain the following.∣∣∣CD`∗2 ν(t)− CD`∗2 H2µ(t)
∣∣∣ ≤ γ2

Γ(3− `∗2)
. (51)
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Therefore, from Equations (48)–(51), it follows that the following is the case.
∥∥µ− H1ν

∥∥
B
≤ η1ε1 +

γ1

Γ(3− `2)
,∥∥ν− H2µ

∥∥
B
≤ η2ε2 +

γ2

Γ(3− `∗2)
,

The proof is completed.

Theorem 5. Consider the assumptions (H2) and (H3). If the following is the case:

max

{[
η1ε1 + CK∆1η2ε2 +

γ1

Γ(3− `2)
+

γ2CK∆1

Γ(3− `∗2)

](
1− CKCM∆1∆2

)−1,

[
η2ε2 + CM∆2η1ε1 +

γ2

Γ(3− `∗2)
+

γ1CM∆2

Γ(3− `2)

](
1− CKCM∆1∆2

)−1
}

< 1,

where CKCM∆1∆2 < 1, then the solution of the coupled BVPs of fractional Navier DEs (9) is
H-U-stable.

Proof. Let (µ, ν) ∈
(
C(O,R)

)2 be a solution of the following system of inequalities:
∣∣∣CD`1

(CD`2 µ
)
(t)− K(t, ν(t), CD`2 ν(t))

∣∣∣ ≤ ε1, t ∈ O,∣∣∣CD`∗1
(CD`∗2 ν

)
(t)−M(t, µ(t), CD`∗2 µ(t))

∣∣∣ ≤ ε2, t ∈ O,

and (ĥ, h̃) ∈
(
C(O,R)

)2 be a unique solution of the following.

CD`1
(CD`2 ĥ

)
(t) = K

(
t, h̃(t), CD`2 h̃(t)

)
, t ∈ O,

CD`∗1
(CD`∗2 h̃

)
(t) = M

(
t, ĥ(t), CD`∗2 ĥ(t)

)
, t ∈ O,

γĥ(0) = δĥ(1) = αCD`2 ĥ(0) = βCD`2 ĥ(1) = 0,

γ∗ h̃(0) = δ∗ h̃(1) = α∗CD`∗2 h̃(0) = β∗CD`∗2 h̃(1) = 0.

(52)

Then, by Proposition (3) together with Equation (9), the solution of Equation (52) is
given by

ĥ(t) =
∫ t

0

(t− r)`1+`2−1

Γ(`1 + `2)
K
(
r, h̃(r), CD`2 h̃(r)

)
dr− t

∫ 1

0

(1− r)`1+`2−1

Γ(`1 + `2)
K
(
r, h̃(r), CD`2 h̃(r)

)
dr

+
t− t`2+1

Γ(`2 + 2)

∫ 1

0

(1− r)`1−1

Γ(`1)
K
(
r, h̃(r), CD`2 h̃(r)

)
dr = H1h̃(t),

and

h̃(t) =
∫ t

0

(t− r)`
∗
1+`∗2−1

Γ(`∗1 + `∗2)
M
(
r, ĥ(r), CD`∗2 ĥ(r)

)
dr− t

∫ 1

0

(1− r)`
∗
1+`∗2−1

Γ(`∗1 + `∗2)
M
(
r, ĥ(r), CD`∗2 ĥ(r)

)
dr

+
t− t`

∗
2+1

Γ(`∗2 + 2)

∫ 1

0

(1− r)`
∗
1−1

Γ(`∗1)
M
(
r, ĥ(r), CD`∗2 ĥ(r)

)
dr = H2ĥ(t).

Then, from the last system, we can write the following.
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∣∣µ(t)− ĥ(t)
∣∣+ ∣∣∣CD`2 µ(t)− CD`2 ĥ(t)

∣∣∣ =
∣∣µ(t)− H1h̃(t)

∣∣+ ∣∣∣CD`2 µ(t)− CD`2 H1h̃(t)
∣∣∣

=
∣∣µ(t)− H1ν(t) + H1ν(t)− H1h̃(t)

∣∣
+

∣∣∣CD`2 µ(t)− CD`2 H1ν(t) + CD`2 H1ν(t)− CD`2 H1h̃(t)
∣∣∣

≤
∣∣µ(t)− H1ν(t)

∣∣+ ∣∣H1ν(t)− H1h̃(t)
∣∣

+
∣∣∣CD`2 µ(t)− CD`2 H1ν(t)

∣∣+ ∣∣CD`2 H1ν(t)− CD`2 H1h̃(t)
∣∣∣.

From the last inequalities and Lemma (1) with some modifications, we obtain the
following. ∥∥µ− ĥ

∥∥
B
≤

∥∥µ− H1ν
∥∥
B
+
∥∥H1ν− H1h̃

∥∥
B

≤ η1ε1 +
γ1

Γ(3− `2)
+ CK∆1

∥∥ν− h̃
∥∥
B

. (53)

In an analogous manner, we find the following.∥∥ν− h̃
∥∥
B
≤ η2ε2 +

γ2

Γ(3− `∗2)
+ CM∆2

∥∥µ− ĥ
∥∥
B

. (54)

Since we have assumed that CKCM∆1∆2 < 1, then from Equations (53) and (54),
we obtain∥∥µ− ĥ

∥∥
B
≤
[

η1ε1 + CK∆1η2ε2 +
γ1

Γ(3− `2)
+

γ2CK∆1

Γ(3− `∗2)

](
1− CKCM∆1∆2

)−1, (55)

and∥∥ν− h̃
∥∥
B
≤
[

η2ε2 + CM∆2η1ε1 +
γ2

Γ(3− `∗2)
+

γ1CM∆2

Γ(3− `2)

](
1− CKCM∆1∆2

)−1. (56)

Consequently, Equations (55) and (56) result in the following.

∥∥(µ, ν)−
(
ĥ, h̃
)∥∥

B×B ≤ max

{[
η1ε1 + CK∆1η2ε2 +

γ1

Γ(3− `2)
+

γ2CK∆1

Γ(3− `∗2)

](
1− CKCM∆1∆2

)−1,

[
η2ε2 + CM∆2η1ε1 +

γ2

Γ(3− `∗2)
+

γ1CM∆2

Γ(3− `2)

](
1− CKCM∆1∆2

)−1
}

.

Consequently, the solution of the coupled BVPs of fractional Navier differential
Equations (9) is H-U-stable.

5. Numerical Solutions via GDT-Method

Due to the complexity of the nonlinear FDEs, it would be time consuming to obtain
the exact solutions of given boundary problems with complicated nonlinear boundary
conditions. Hence, we need to try deriving new approximate techniques and methods
to solve these nonlinear problems. In the existing techniques, there exist some numerical
methods that are applicable in finding the approximate solutions for nonlinear BVPs of
non-integer orders. In the present study, we aim to apply one of these methods called
the differential transformation method, which Zhou has presented in [38] and Odibat
et al. had later extended it to the generalized version called GDT-Method in [39]. It is
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an iterative technique that yields analytical solutions of the Taylor series to FDEs with
arbitrary boundary or initial conditions. In fact, it is with respect to the generalized Taylor’s
formulas. For this reason, we shall use the GDT-Method to obtain approximate solutions
of our coupled Navier FBVPs (1).

The generalized differential transform for the sth-derivative of µ(t) and ν(t) in terms
of one variable is introduced by

µ?(s) =
1

Γ(1 + sτ)

[(cDτ
)s

µ(t)
]∣∣∣

t=0
, ν?(s) =

1
Γ(1 + sτ)

[(cDτ
)s

ν(t)
]∣∣∣

t=0
, (57)

in which
(cDτ

)s
=

s−times︷ ︸︸ ︷
cDτ .cDτ . . . cDτ [40]. The inverses are given as follows.

µ(t) =
∞

∑
s=0

µ?(s)tτs, ν(t) =
∞

∑
s=0

ν?(s)tτs.

Therefore, the approximate solutions of the Navier model (1) are found in the form of
a finite series of the analytical polynomials:

µ(t) =
N

∑
s=0

µ?(s)tτs, ν(t) =
N

∑
s=0

ν?(s)tτs, (58)

where τ stands for the order of the mentioned transformation and must be taken so that
lτ = `2, pτ = `∗2 , mτ = `1 + `2, and nτ = `∗1 + `∗2 with l, p,m, n ∈ N and µ?(s), ν?(s) are the
generalized differential transforms of µ(t) and ν(t), respectively, and they are given as

µ?(m+ s) =
Γ((m+ s)τ − `1 − `2 + 1)

Γ((m+ s)τ + 1)
K?(s, ν?(s)),

ν?(n+ s) =
Γ((n+ s)τ − `∗1 − `∗2 + 1)

Γ((n+ s)τ + 1)
M?(s, µ?(s)),

(59)

in which K?(s, ν?(s)) and M?(s, µ?(s)) are the generalized τth-differential transforms of
K(s, ν(s)) and M(s, µ(s)), respectively.

Since µ(0) = 0, ν(0) = 0, cD`2 µ(0) = 0, and cD`∗2 ν(0) = 0, so their GDTs provide
µ?(l) = ĉ, ν?(p) = c̃, µ?(0) = 0, and ν?(0) = 0, µ?(s) = 0, for all s satisfying 0 < sτ < `2
or l < s < m, ν?(s) = 0, for all s satisfying 0 < sτ < `∗2 or p < s < n, where ĉ and c̃ ∈ R
are unknowns that can be computed by applying other initial conditions of the Navier
model (1).

By recursive Equation (59), the solution (µ(t), ν(t)) of Navier problem (1) can be
represented via the following series:

µ(t) =
N

∑
s=0

µ?
ĉ,c̃(s)t

τs, ν(t) =
N

∑
s=0

ν?ĉ,c̃(s)t
τs, (60)

where µ?
ĉ,c̃(s), and ν?ĉ,c̃(s) are coefficients in terms of ĉ and c̃, which can be obtained by

invoking other initial conditions of given Navier problem (1).
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From (60), we have the following.

µ(1) =
N

∑
s=0

µ?
ĉ,c̃(s),

ν(1) =
N

∑
s=0

ν?ĉ,c̃(s),

δcD`2 µ(1) =
β

Γ(2− `2)

∫ 1

0
(1− λ)1−`2

N

∑
s=0

sµ?
ĉ,c̃(s)τs

(
τs− 1

)
λτs−2dλ,

δ∗cD`2 ν(1) =
β∗

Γ(2− `∗2)

∫ 1

0
(1− λ)1−`∗2

N

∑
s=0

sν?ĉ,c̃(s)τs
(
τs− 1

)
λτs−2dλ.

(61)

Therefore, Equation (61) yields the following system.

δ
N

∑
s=0

µ?
ĉ,c̃(s)−

βτ2

Γ(2− `2)

N

∑
s=0

s2µ?
ĉ,c̃(s)

∫ 1

0
(1− λ)1−`2 λτs−2dλ

+
βτ

Γ(2− `2)

N

∑
s=0

sµ?
ĉ,c̃(s)

∫ 1

0
(1− λ)1−`2 λτs−2dλ = 0

δ∗
N

∑
s=0

ν?ĉ,c̃(s)−
β∗τ2

Γ(2− `∗2)

N

∑
s=0

s2µ?
ĉ,c̃(s)

∫ 1

0
(1− λ)1−`∗2 λτs−2dλ

+
β∗τ

Γ(2− `∗2)

N

∑
s=0

sν?ĉ,c̃(s)
∫ 1

0
(1− λ)1−`∗2 λτs−2dλ = 0

(62)

Finally, by solving Equation (62) in terms of ĉ and c̃ and replacing them in Equation (60),
we find the approximate solutions of Navier model (1).

Estimation of Error

The base of the GDT-method consists in finding a development in fractional series for
solutions of nonlinear models containing fractional derivatives around the initial value t0.

µ(t) =
+∞

∑
k=0

ak(t− t0)
sk, k ∈ I = (t0, t0 + r), r > 0,

ν(t) =
+∞

∑
k=0

bk(t− t0)
sk, k ∈ I = (t0, t0 + r), r > 0.

(63)

For estimation of error, the following theorems are useful.

Theorem 6 ([41]). Let Ψk(t) = ak(t− t0)
sk. Then, the series solution

+∞

∑
k=0

Ψk(t) converges if

there exists 0 < γ < 1 such that the following is the case.∥∥Ψk+1(t)
∥∥ ≤ γ

∥∥Ψk(t)
∥∥, ∀k ≥ k0, for some k0 ∈ N.

Theorem 7 ([41]). Suppose that the series solution
+∞

∑
k=0

Ψk(t) with Ψk(t) = ak(t− t0)
sk converges

to the solution µ(t). If the truncated series
m

∑
k=0

Ψk(t) is an approximation to the solution µ(t), then

the maximum absolute truncated error is estimated as follows.∥∥∥∥µ(t)−
m

∑
k=0

Ψk(t)

∥∥∥∥ ≤ 1
1− γ

γm−m0+1 max
t∈I

∣∣am0(t− t0)
sm0
∣∣, for any m0 ≥ 0 and am0 6= 0.
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In conclusion, in view of Theorem 6, we find that the fractional power series solution

µ(t) =
+∞

∑
k=0

ak(t− t0)
sk converges to the exact solution if there exists 0 < γ < 1 such that∥∥Ψk+1(t)

∥∥ ≤ γ
∥∥Ψk(t)

∥∥, ∀k ≥ k0, for some k0 ∈ N. In other words, if for each j ≥ k0, we
have the folllowing:

γj+1 =


‖Ψj+1(t)‖
‖Ψj(t)‖

, ‖Ψj(t)‖ 6= 0,

0, ‖Ψj(t)‖ = 0,

j ∈ N∪{0}, where ‖Ψj(t)‖ = max
t∈I

∣∣aj(t− t0)
sj∣∣ then, the series solution

+∞

∑
k=0

Ψk(t) converges

to the exact solution µ(t), when 0 ≤ γj ≤ 1, for all j ≥ k0. In addition, the conclusion of
Theorem 7 confirms that the maximum absolute truncation error is estimated to be the
following: ∥∥∥∥µ(t)−

m

∑
k=0

Ψk(t)

∥∥∥∥ ≤ 1
1− β

γm−m0+1 max
t∈I

∣∣am0(t− t0)
sm0
∣∣,

where β = {γj, m0 + 1, m0 + 2, ..., m + 1}. Consequently, if the trucated series( m

∑
k=0

Ψk(t),
n

∑
k=0

Φk(t)

)
is an approximation to the solution

(
µ(t), ν(t)

)
defined by Equation (63), then the maximum

absolute truncated error is estimated as follows:
∥∥∥∥µ(t)−

m

∑
k=0

Ψk(t)

∥∥∥∥ ≤ 1
1− β

γm−m0+1 max
t∈I

∣∣am0(t− t0)
sm0
∣∣, for any m0 ≥ 0 and am0 6= 0.∥∥∥∥ν(t)−

n

∑
k=0

Φk(t)

∥∥∥∥ ≤ 1
1− δ

δn−n0+1 max
t∈I

∣∣an0(t− t0)
sn0
∣∣, for any n0 ≥ 0 and bn0 6= 0,

where β = {γj, m0 + 1, m0 + 2, ..., m + 1} and δ = {δj, n0 + 1, n0 + 2, ..., n + 1}.

6. Examples

Example 1. We design the following system of coupled sequential Navier FBVPs:

CD
5
4
(CD

7
4 µ
)
(t) =

e−t
(
|ν(t)|+

∣∣∣CD 7
4 ν(t)

∣∣∣)(
9 + e−t

)(
1 + |ν(t)|+

∣∣∣CD 7
4 ν(t)

∣∣∣) , (t ∈ O := [0, 1]),

CD
3
2
(CD

5
4 ν
)
(t) =

|µ(t)|+
∣∣∣CD 8

5 µ(t)
∣∣∣(

π + e−2t
)(

1 + |µ(t)|+
∣∣∣CD 8

5 µ(t)
∣∣∣) , (t ∈ O := [0, 1]),

µ(0) = µ(1) = CD
7
4 µ(0) = CD

7
4 µ(1) = 0,

ν(0) = ν(1) = CD
5
4 ν(0) = CD

5
4 ν(1) = 0,

(64)

where `1 =
5
4

, `2 =
7
4

, `∗1 =
3
2

, `∗2 =
5
4

, and the following is the case.

K(t, ν1, ν2) =
e−t
(
|ν1(t)|+ |ν2(t)|

)(
9 + e−t

)(
1 + |ν1(t)|+ |ν2(t)|

) , M(t, µ1, µ2) =
|µ1(t)|+ |µ2(t)|(

π2 + e−2t
)(

1 + |µ1(t)|+ |µ2(t)|
) .
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Then, for each t ∈ [0, 1] and µ1, µ2, µ̂1, µ̂2, ν1, ν2, ν̂1, ν̂2 ∈ [0,+∞), we have

∣∣K(t, ν1, ν2)− K(t, ν̂1, ν̂2)
∣∣ =

e−t

9 + e−t

∣∣∣∣ ν1(t) + ν2(t)

1 + ν1(t) + ν2(t)
− ν̂1(t) + ν̂2(t)

1 + ν̂1(t) + ν̂2(t)

∣∣∣∣
=

e−t

9 + e−t

∣∣∣∣ ν1(t)− ν̂1(t) + ν2(t)− ν̂2(t)(
1 + ν1(t) + ν2(t)

)(
1 + ν̂1(t) + ν̂2(t)

) ∣∣∣∣
≤ 1

9

[∣∣ν1(t)− ν̂1(t)
∣∣+ ∣∣ν2(t)− ν̂2(t)

∣∣],
and ∣∣M(t, µ1, µ2)−M(t, µ̂1, µ̂2)

∣∣ ≤ 1
π2

[∣∣µ1(t)− µ̂1(t)
∣∣+ ∣∣µ2(t)− µ̂2(t)

∣∣].
Thus, CK =

1
9

, CM =
1

π2 , ∆1 ≈ 2.6662 and ∆2 ≈ 2.8342. Hence, CK∆1 < 1, CM∆2 < 1.
We observe that Theorem (3) is valid. Consequently, the system of sequential Navier FB-

VPs (64) has one solution.
Here, we try to find an approximate solution of the given sequential Navier FBVP (64) via

the GDT-Method. Choose τ =
1
4

, which yields l = 7, p = 5, m = 12 and n = 11. By virtue of
Equation (59) for the sequential Navier FBVPs (64), we have the following.

µ?(s+ 12) =
Γ
(
s
4 + 1

)
Γ
(
s
4 + 4

)K?(s, ν?(s)),

ν?(s+ 11) =
Γ
(
s
4 + 1

)
Γ
(
s
4 + 15

4
)M?(s, µ?(s)).

(65)

Then, we obtain the following.

µ?(0) = 0, µ?(1) = 0, µ?(2) = 0, µ?(3) = 0, µ?(4) = 0, µ?(5) = 0,
µ?(6) = 0, µ?(7) = ĉ, µ?(8) = 0, µ?(9) = 0, µ?(10) = 0, µ?(11) = 0,

ν?(0) = 0, ν?(1) = 0, ν?(2) = 0, ν?(3) = 0, ν?(4) = 0, ν?(5) = c̃,
ν?(6) = 0, ν?(7) = ĉ, ν?(8) = 0, ν?(9) = 0, ν?(10) = 0.

By Equation (62), we obtain the following.

N

∑
s=0

µ?
ĉ,c̃(s) −

1
16Γ(0.25)

N

∑
s=0

s2µ?
ĉ,c̃(s)

∫ 1

0
(1− λ)−0.75λ

s
4−2dλ

+
1

4Γ(0.25)

N

∑
s=0

sµ?
ĉ,c̃(s)

∫ 1

0
(1− λ)−0.75λ

s
4−2dλ = 0

N

∑
s=0

ν?ĉ,c̃(s) − 1
16Γ(0.75)

N

∑
s=0

s2µ?
ĉ,c̃(s)

∫ 1

0
(1− λ)−0.25λ

s
4−2dλ

+
1

4Γ(0.75)

N

∑
s=0

sν?ĉ,c̃(s)
∫ 1

0
(1− λ)−0.25λ

s
4−2dλ = 0.

(66)

By using the recurrence relationship (65) truncated, respectively, at s = 15 and s = 20 and
computing the constants ĉ and c̃ from Equation (66), the approximate solutions (µ1(t), ν1(t)),
(µ2(t), and ν2(t)) are obtained byµ1(t) = 0.1103t1.75 − 0.1247t3 + 0.1054t3.25 − 0.0063t3.5 + 0.0054t3.75,

ν1(t) = 0.7307t1.75 − 1.1231t3 + 0.1070t3.25 − 0.1876t3.5 + 0.1667t3.75,
(67)

and
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µ2(t) = 0.1103t1.75 − 0.1247t3 + 0.1054t3.25 − 0.0063t3.5 + 0.0054t3.75 − 0.0343t4

+0.0322t4.25 − 0.0213t4.5 + 0.0204t4.75 − 0.0017t5,

ν2(t) = 0.7307t1.75 − 1.1231t3 + 0.1070t3.25 − 0.1876t3.5 + 0.1667t3.75 − 0.0436t4

+0.0378t4.25 − 0.0293t4.5 + 0.0254t4.75 − 0.0212t5.

(68)

The results are illustrated graphically in Figure 1.

Figure 1. The graphs of the approximte solutions (µ1, ν1) and (µ2, ν2) relative to the exact solution
(µ, ν) of the sequential Navier model (64).

Note to the following example in which we change the coefficients of the boundary
conditions.

Example 2. We design the following system of coupled sequential Navier FBVPs with new bound-
ary conditions.

CD
5
4
(CD

7
4 µ
)
(t) =

e−t
(
|ν(t)|+

∣∣∣CD 7
4 ν(t)

∣∣∣)(
9 + e−t

)(
1 + |ν(t)|+

∣∣∣CD 7
4 ν(t)

∣∣∣) , (t ∈ O := [0, 1]),

CD
3
2
(CD

5
4 ν
)
(t) =

|µ(t)|+
∣∣∣CD 8

5 µ(t)
∣∣∣(

π + e−2t
)(

1 + |µ(t)|+
∣∣∣CD 8

5 µ(t)
∣∣∣) , (t ∈ O := [0, 1]),

√
2µ(0) = 6µ(1) =

√
2CD

7
4 µ(0) = 3CD

7
4 µ(1) = 0,

πν(0) = 3ν(1) = πCD
5
4 ν(0) = CD

5
4 ν(1) = 0.

(69)
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Similarly to the previous example, from the recurrence relationship (65) truncated, respectively,
at s = 15, s = 20, the approximate solutions (µ1(t), ν1(t)), (µ2(t), and ν2(t)) are obtained byµ1(t) = 0.1012t1.75 − 0.1333t3 + 0.0527t3.25 − 0.0173t3.5 + 0.0027t3.75,

ν1(t) = 0.5321t1.75 − 0.1231t3 + 0.0357t3.25 − 0.3689t3.5 + 0.0556t3.75,
(70)

and

µ2(t) = 0.1012t1.75 − 0.1333t3 + 0.0527t3.25 − 0.0173t3.5 + 0.0027t3.75 − 0.0124t4

+0.0161t4.25 − 0.00284t4.5 + 0.0102t4.75 − 0.0083t5,

ν2(t) = 0.5321t1.75 − 0.1231t3 + 0.0357t3.25 − 0.3689t3.5 + 0.0556t3.75 − 0.0139t4

+0.0226t4.25 − 0.0898t4.5 + 0.0085t4.75 − 0.0106t5.

(71)

The results are illustrated graphically in Figure 2.

Figure 2. The graphs of the approximate solutions (µ1, ν1) and (µ2, ν2) relative to the exact solution
(µ, ν) of the sequential Navier model (69).

7. Conclusions

In this paper, by means of a fixed point theorem due to Krasnoselskii, we studied
the existence criterion for solutions of a system of coupled sequential Navier FBVPs and
then investigated its uniqueness by terms of the contraction principle due to Banach.
After that, the necessary criteria for H-U-type stability of solutions to such a system
of coupled sequential FBVPs arising in Navier model (1) have been derived. Next, the
approximate solutions of the given system were computed and founded via the generalized
differential transformation, and we illustrated some results graphically in relation to the
given system of Navier FBVPs in two different numerical examples based on it. If we
compare the exact solution to the approximate solution in these examples, then we find
that the generalized differential transform method yields the accurate outcomes for the
assumed fractional nonlinear sequential Navier problem. The simplicity and accuracy of
this numerical method reveal its applicability for approximating the solutions of different
fractional systems arising in various real-world models. Even in future studies, we aim
to conduct a similar research study for several nonlinear systems of real-world models in
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the framework of the fractional FBVPs supplemented with generalized operators having
non-singular kernels .
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