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Abstract: In this study, exact and approximate solutions of higher-dimensional time-fractional
diffusion equations were obtained using a relatively new method, the fractional reduced differential
transform method (FRDTM). The exact solutions can be found with the benefit of a special function,
and we applied Caputo fractional derivatives in this method. The numerical results and graphical
representations specified that the proposed method is very effective for solving fractional diffusion
equations in higher dimensions.

Keywords: fractional reduced differential transform method; fractional calculus; time-fractional
diffusion equations; Caputo derivative

1. Introduction

Fractional calculus is a generalization of integration and differentiation to noninteger-
order fundamental operator aDα

t where a and t are the bounds of the operation and
α ∈ R; this notation was designed by Harold T. Davis. Diverse definitions for fractional
derivatives have been proposed such as Riemann–Liouville, Caputo, Hadamard, Erdélyi–
Kober, Grünwald–Letnikov, Marchaud, and Riesz, to name a few. The three greatest regular
definitions for the universal fractional differintegral are the Caputo, the Riemann–Liouville,
and the Grünwald–Letnikov definition [1–3].

In this study, we used the Caputo fractional derivative; the binary significant explana-
tions for that are the initial conditions for fractional-order differential equations in a form
connecting only the limit values of integer-order derivatives at the lower terminal initial
time [3]. Similarly, the fractional derivative of a constant function is zero.

Up to now, there have been diverse methods for solving fractional differential equa-
tions using different definitions of fractional derivatives. Let us indicate some of these
applications: Almeida et al. [4] applied fractional differential equations for modeling partic-
ular real phenomena, though Bulut et al. [5] considered the nonlinear time-fractional Burg-
ers equation via the improved Bernoulli subequation function method. Atangana et al. [6]
considered an advection–dispersion model with a fractional order and fractal dimen-
sion. Alshammari et al. [7] proposed residual power series (RPS) to find the numerical
solution of a class of fractional Bagley–Torvik problems (FBTP) arising in a Newtonian
fluid. Similarly, Yépez-Martínez et al. [8] solved the nonlinear coupled spacetime-fractional
mKdV partial differential equation using Feng’s first integral method. The definition of
the beta fractional derivative to find exact and approximate solutions of time-fractional
diffusion equations in different dimensions was modified in [9,10]. Youssri [11] adopted
the spectral Tau method for solving the nonlinear Riccati initial-value problem with a
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new generalized Caputo FF derivative. Youssri et al. [12] presented the numerical so-
lutions of the fractional pantograph differential equations (FPDEs) using generalized
Lucas polynomials (GLPs). Abd-Elhameed et al. [13] presented an explicit formula that
approximates the fractional derivatives of Chebyshev polynomials of the first kind in the
Caputo sense. Abd-Elhameed and Youssri [14] derived novel formulae for the high-order
derivatives of Chebyshev polynomials of the fifth kind.

Keskin and Oturanc [15] suggested the fractional reduced differential transform
method (FRDTM). The FRDTM is one of the best common methods for solving fractional
partial differential equations as the FRDTM is a generalization of the reduced differential
transform method (RDTM), which in turn is a generalization of the differential transform
method (DTM) for solving different types of differential equations. Scholars frequently
try to find different methods to simplify the resulting solutions and decrease the solution
steps, making the progress of mathematical techniques required to complete the greatest
consequences. The applicability of the FRDTM to some diverse categories of fractional dif-
ferential equations has been obtainable as follows: Mukhtar et al. [16] applied the FRDTM
to solve nonlinear fractional Burgers equations in different dimensions. Gupta [17] of-
fered the approximate analytical solutions of the Benney–Lin equation with a fractional
time derivative. Srivastava et al. [18] used the FRDTM to obtain the exact solution of a
mathematical model for the generalized time-fractional-order biological population model,
for multiterm time-fractional diffusion equations. Abuasad et al. [19] suggested a modi-
fied method of the FRDTM, and the FRDTM approximate solution of the time-fractional
Korteweg–de Vries equation was offered by Ebenezer et al. [20].

An application of the FRDTM to a system of linear and nonlinear fractional partial differ-
ential equations was organized by Singh [21]. Rawashdeh [22] applied the FRDTM to solve
nonlinear fractional partial differential equations such as the spacetime-fractional Burgers’ equa-
tions and the time-fractional Cahn–Allen equations. Singh and Kumar [23] used the FRDTM to
find approximate solutions of time-fractional-order multidimensional Navier–Stokes equations.
The fractional Helmholtz equations were considered to find exact and approximate solutions
via the FRDTM by Abuasad et al. [24]. Furthermore, Abuasad et al. [25] found approximate
solutions of the fractional SSIS epidemic model using the fractional multistep differential
transformed method.

The main benefits of the FRDTM are that it can be applied to diverse types of linear
and nonlinear PFDEs in different dimensions. The multistep differential transform method
(MsDTM) can overcome the central complications of the differential transform method (DTM)
and reduced differential transform method (RDTM), which are that the achieved series
solution often converges in the real irrelevant space and the range of convergence is a precise
slow procedure or completely divergent given a wider space [25]. Abdou [26] used the
FRDTM to develop a scheme to study the numerical solution of time-fractional nonlinear
evolution equations under initial conditions. Comparing the DTM, RDTM, FRDTM, and
MsDTM, we found that the DTM is an upgraded method of the Taylor series method,
which requests extra computational work for large orders, and it decreases the size of the
computational domain [27]. Meanwhile, the RDTM is simpler than the DTM, and the whole
number of calculations needed in the RDTM is less than that in the DTM [28]. The FRDTM
is an improved method of the RDTM for fractional-order derivatives. The MsDTM can
overcome the difficulties of the DTM and RDTM, where the series solutions often converge
in a very insignificant space and the range of convergence is a long procedure or completely
divergent in a long time span.

The importance of this research lies in finding the exact and approximate solutions for
higher-dimensional time-fractional diffusion equations using a relatively new method and
comparing the exact solutions of nonfractional diffusion equations with the approximate
solutions for different values of the fractional derivatives. The novel aspect of this research
is the explanation of the FRDTM with simple and sequential steps so that every researcher
can apply and understand the method directly without referring to other literature. The
other distinctive aspect of this research is to find a general formula for the solutions, which
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reach the exact solution in the first and second examples, and to compare the nonfractional
exact solutions with the approximate fractional solutions using figures in two and three
dimensions. The central physical purpose of accepting and studying diffusion equations
of fractional orders is to define the phenomena of anomalous diffusion, usually met in
transport processes through complex and/or disordered media with fractal supports [29].
The time-fractional diffusion Equations (12)–(14) can be interpreted as a model of the
diffusion of a particle under the action of the external force.

This paper is organized as follows: After giving simple properties and definitions
of the fractional derivative in Section 2, we introduce the proposed method in Section 3.
Section 4 presents the exact and approximate solutions of three examples of time-fractional
diffusion equations. Section 5 is the conclusion.

2. Preliminaries and Fractional Derivative Order

The unique functions of mathematical physics are found to be very useful for find-
ing solutions of initial- and boundary-value problems governed by partial differential
equations and fractional differential equations, and they play a significant and exciting
role as solutions of fractional-order differential equations [30]. Many special functions
have attracted the attention of researchers, such as the Wright function, the error function,
and the Millin–Ross function. In this paper, our attention is focused on only two types of
these special functions: the Mittag–Leffler function and the Gamma function. We used the
Mittag–Leffler function since after finding the solution in a compact form, we can write
the exact solution by using the definition of the Mittag–Leffler function, while the Gamma
function is an essential part of the definition of fractional derivatives.

2.1. Mittag–Leffler Function

The Mittag–Leffler (M-L) function is named after a Swedish mathematician who de-
fined and studied it in 1903. The M-L function is a straight generalization of the exponential
function ex. The one-parameter M-L function in powers series is given by the formula [3]:

Eγ(x) =
∞

∑
k=0

xk

Γ(γk + 1)
, (γ > 0). (1)

For selected integer values of γ, we obtain:

E0(x) =
1

1− z
, E1(x) = ex,

E2(x) = cosh(
√

x).

In powers series, the two-parameter M-L function is defined by:

Eγ,β(x) =
∞

∑
k=0

xk

Γ(γk + β)
, (γ > 0, β > 0). (2)

For special choices of the parameters γ and β, we obtain the famous traditional functions:

E1,1(x) = E1(x) = ex, E1,2(x) =
ex − 1

x
,

E2,1(x2) = cosh(x), E2,2(x2) =
sinh(x)

x
.
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2.2. Caputo Fractional Derivative

Let a ∈ R, then the (left-sided) Caputo fractional derivative
(cDα

a+y
)
(x) (the small c

represents the Caputo derivative) of order α ∈ R+ is well defined as [31]:

(cDα
a+y)(x) =

1
Γ(n− α)

∫ x

a

y(n)(t)
(x− t)α−n+1 dt , (3)

for (n − 1 < α < n; x ≥ a), n ∈ N and Γ(x) is the Gamma function. For the ease of
presentation, we symbolize the Caputo fractional derivative as Dα

x f (x).

3. Fractional Reduced Differential Transform Method for n+1 Variables

This section gives the basic definitions and properties of the FRDTM [16,18,32,33].
Consider a function f (t, x1, x2, . . . , xn) to be analytical and continuously differentiable with
respect to (n + 1) variables in the domain of interest, such that:

f (t, x1, x2, . . . , xn) = m1(x1)m2(x2) · · ·mn(xn)h(t). (4)

Then, from the properties of the DTM and motivated by the components of the form
xi1

1 xi2
2 · · · x

in
n tαj, we write the general solution function f (t, x1, x2, . . . , xn) as an infinite

linear combination of such components:

f (t, x1, x2, . . . , xn) =
∞

∑
i1=0

m1(i1)xi1
1

∞

∑
i2=0

m2(i2)xi2
2 · · ·

∞

∑
in=0

mn(in)xin
n

∞

∑
j=0

h(j)tαj

=
∞

∑
i1=0

∞

∑
i2=0
· · ·

∞

∑
in=0

∞

∑
j=0

F(i1, i2, . . . , in, j)xi1
1 xi2

2 · · · x
in
n tαj ,

(5)

where F(i1, i2, . . . , in, j) = m1(i1)m2(i2) · · ·mn(in)h(j) is referred to as the spectrum of
f (t, x1, x2, . . . , xn). Furthermore, the lowercase f (t, x1, x2, . . . , xn) is used for the original
function, while its fractional reduced transformed function is represented by the uppercase
Fk(x1, x2, . . . , xn), which is called the T-function.

3.1. Step 1: Finding the Fractional Reduced Transformed Function

Let f (t, x1, x2, . . . , xn) be analytical and continuously differentiable with respect to
n + 1 variables t, x1, x2, . . . , xn in the domain of interest, then the FRDTM in n dimensions
of f (t, x1, x2, . . . , xn) is given by:

Fk(x1, x2, . . . , xn) =
1

Γ(kα + 1)
[Dαk

t ( f (t, x1, x2, . . . , xn))]t=t0 , (6)

where k = 0, 1, 2, · · · , with the time-fractional derivative.

3.2. Step 2: Finding the Inverse of the Fractional Reduced Transformed Function

The inverse FRDTM of Fk(x1, x2, . . . , xn) is defined by:

f (t, x1, x2, . . . , xn) :=
∞

∑
k=0

Fk(x1, x2, . . . , xn)(t− t0)
kα. (7)

From (6) and (7), we have:

f (t, x1, x2, . . . , xn) =
∞

∑
k=0

1
Γ(kα + 1)

[Dαk
t ( f (t, x1, x2, . . . , xn))]t=t0(t− t0)

kα.
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In particular, for t0 = 0, the above equation becomes:

f (t, x1, x2, . . . , xn) =
∞

∑
k=0

1
Γ(kα + 1)

[Dαk
t ( f (t, x1, x2, . . . , xn))]t=0tkα. (8)

3.3. Step 3: Finding the Approximate Solution

The inverse transformation of the set of values {Fk(x1, x2, . . . , xn)}m
k=0 gives an ap-

proximate solution as:

f̃m(t, x1, x2, . . . , xn) =
m

∑
k=0

Fk(x1, x2, . . . , xn)tαk, (9)

where m is the order of the approximate solution.

3.4. Step 4: Finding the Exact Solution

The exact solution using the FRDTM is given by:

f (t, x1, x2, . . . , xn) = lim
m→∞

f̃m(t, x1, x2, . . . , xn). (10)

In Table 1, we provide certain properties of the FRDTM, where δ(k−m) is defined by:

δ(k−m) =

{
1, k = m
0, k 6= m ,

(11)

where f = f (t, x1, x2 . . . , xn), u = u(t, x1, x2 . . . , xn), Fk = Fk(x1, x2 . . . , xn), and Uk =
Uk(x1, x2 . . . , xn).

We prove Property 3 from Table 1 in two dimensions; other proofs of the properties
can be found in [33–36].

If w(x, y) = Dnα
x u(x, y), then Wk(y) =

Γ(α(k + n) + 1)
Γ(kα + 1)

U(k + n)(y).

From Equation (6), we have:

Wk(y) =
1

Γ(kα + 1)
[Dαk

x (Dnα
x u(x, y))]x=x0 ,

=
1

Γ(kα + 1)
[Dα(k+n)

x u(x, y))]x=x0 ,

=
Γ((k + n)α + 1)

Γ((k + n)α + 1)Γ(kα + 1)
[Dα(k+n)

x u(x, y))]x=x0 ,

=
Γ((k + n)α + 1)

Γ(kα + 1)
U(k + n)(y).

Table 1. Fundamental operations of the FRDTM for n + 1 variables.

Original Function Transformed Function

1. f = c1u± c2v Fαk = c1Uαk ± c2Vαk

2. f = uv Fαk = ∑k
i=0 UαiVα(k−i)

3. f = Dmα
t u Fαk =

Γ(α(k + m) + 1)
Γ(kα + 1)

Uα(k+m)
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Table 1. Cont.

Original Function Transformed Function

4. f =
∂hu
∂xh

i
Fαk =

∂hUαk

∂xh
i

, i = 1, 2, . . . , n

5. f = xm
i tr Fkα = xm

i δ(αk− r), i = 1, 2, . . . , n

6. f = xm
i tru Fαk = xm

i

k

∑
i=0

δ(αi− r)Uα(k−r), i = 1, 2, . . . , n

4. Numerical Examples

The purpose of this paper is to apply the FRDTM to find exact and approximate
solutions for time-fractional diffusion equations in two, three, and four dimensions. The
time-fractional diffusion equation is gained from the standard diffusion equation by consis-
tently changing the first-order time derivative with a specified fractional derivative.

To show the effectiveness of the proposed method for finding exact and approximate
solutions, we apply the FRDTM in two-, three-, and four-dimensional time-fractional
diffusion equations.

∂β f (X, t)
∂tβ

= D∆ f (X, t)−∇ ·W(X) f (X, t) , 0 < β ≤ 1, D > 0, (12)

subject to initial and boundary conditions:

f (X, 0) = φ(X), X ∈ Ω, (13)

f (X, t) = ϕ(X, t), X ∈ ∂Ω, t ≥ 0. (14)

Here, ∂β/∂tβ(·) is the m-β-derivative of order β. ∆ is the Laplace operator. ∇ is the
Hamilton operator. Ω = [0, L1]× [0, L2]× · · · × [0, Ld] is the spatial domain of the problem.
d is the dimension of the space, X = (x1, x2, · · · , xd). ∂Ω is the boundary of Ω. f (X, t)
denotes the probability density function of finding a particle at X in time t. The positive
constant D depends on the temperature, the friction coefficient, the universal gas constant,
and lastly, the Avogadro constant. W(X) is the external force. Equation (12) can be
interpreted as a model of the diffusion of a particle under the action of the external force
W(X) [37]. In this section, we establish the applicability of the proposed method through
test examples.

4.1. Example 1: Two-Dimensional Time-Fractional Diffusion Equations

Let D = 1, W(X) = −1, Ω = [0, 1], then Equation (12) can be written as:

∂β f (x, t)
∂tβ

=
∂2 f (x, t)

∂x2 +
∂ f (x, t)

∂x
, 0 < β ≤ 1. (15)

The initial condition is given by:

f (x, 0) = ex, x ∈ [0, 1]. (16)

Applying the appropriate properties given in Table 1 to Equation (15), we obtain the
following recurrence relation:

Fk+1(x) =
Γ(kβ + 1)

Γ(β(k + 1) + 1)

(
∂2 f (k− 1)

∂x ∂x
+

∂ f (k− 1)
∂x

)
, (17)



Fractal Fract. 2021, 5, 168 7 of 19

for k = 0, 1, 2, · · · . From (17), we find the inverse transform coefficients of xkα as:

F0 = ex,

F1 =
2ex

Γ(β + 1)
,

F2 =
4ex

Γ(2β + 1)
,

F3 =
8ex

Γ(3β + 1)
, · · · ,

or in general,

Fk =
2kex

Γ(1 + kβ)
, where k ≥ 0. (18)

After a small number of iterations, the differential inverse transform of {Fk(y)}∞
k=0 will

provide the resulting series solution:

f (x, t) =
∞

∑
k=0

Fk(x)tkβ

= ex +
2ex

Γ(β + 1)
tβ +

4ex

Γ(2β + 1)
t2β

+
8ex

Γ(3β + 1)
t3β + · · · ,

which can be written in compact form,

f (x, t) = ex
∞

∑
k=0

(2tβ)k

Γ(1 + kβ)
. (19)

By the M-L function, we find the exact solution of Equation (15) subject to (16):

f (x, t) = exEβ(2tβ), (20)

where 0 < β ≤ 1 and Eβ(z) is the one-parameter M-L function (1), and this is exactly the same
solution obtained using the FVHPIM with the modified Riemann–Liouville derivative [37].
In comparison with the approximate solution obtained by the HDM via the modified beta
derivative equation, the FRDTM gives the direct exact solution with simple computations [9].
In the case of β = 1, we have E1(2t) = e2t. Then, the exact solution of nonfractional
Equation (15) when β = 1 is:

f (x, t) = ex+2t. (21)

Figure 1 shows the exact solution of nonfractional order and the three-dimensional plot for the
approximate solution by the FRDTM of the fractional order (β = 0.8), while Figure 2 depicts
the approximate solutions of the fractional orders (β = 0.6, 0.4). In these four figures, it is
interesting to note that with a constant range for both variables t and x, the lower the value
of the fractional order, the greater the value of the approximate solutions is at the highest
value of the variable t. Figure 3 depicts solutions in two-dimensional plots for different values
of β. Through this figure, we can notice that the lower the fractional order, the more the
approximate solutions move away from the exact solution of nonfractional order, and their
value increases with the value of the variable t being constant. Figure 4 shows solutions in
two-dimensional plots for different values of x. In this figure, we notice, with a constant value
of the nonfractional order β, that the greater the values of the variable x, the greater the values
of the approximate solutions are with a constant range of the variable t.
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Figure 1. The FRDTM solutions f (x, t): (a) β = 1 and (b) β = 0.8.
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Figure 2. The FRDTM solutions f (x, t): (a) β = 0.6 and (b) β = 0.4.
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Figure 3. The FRDTM solutions f (x, t) for (exact (nonfractional)), β = 0.8, 0.6, 0.4; x ∈ [0, 1] and
t = 0.1.
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Figure 4. The FRDTM solutions f (x, t) for different values of x; β = 1 and t ∈ [0, 1].

4.2. Example 2: Three-Dimensional Time-Fractional Diffusion Equations

Let D = 1, Ω = [0, 1] × [0, 1], W = −(x, y) in Equation (12), then we have the
following TFDE:

∂β f (x, y, t)
∂tβ

=
∂2 f (x, y, t)

∂x2 +
∂2 f (x, y, t)

∂y2 + x
∂ f (x, y, t)

∂x
+ y

∂ f (x, y, t)
∂y

+ 2 f (x, y, t) , (22)

with initial condition:
f (x, y, 0) = x + y. (23)

Using the suitable properties from Table 1 for Equation (22), we achieve the next recurrence
relation:

Fk+1(x, y) =
Γ(kβ + 1)

Γ(β(k + 1) + 1)
(

∂2w(k)
∂x ∂x

+
∂2 f (k)
∂y ∂y

+ x
∂ f (k)

∂x
+ y

∂ f (k)
∂y

+ 2 f (k)) , (24)



Fractal Fract. 2021, 5, 168 10 of 19

where k = 0, 1, 2, · · · . The inverse transform coefficients of tkβ are as follows:

F0 = x + y ,

F1 =
3(x + y)
Γ(β + 1)

,

F2 =
9(x + y)

Γ(2β + 1)
,

F3 =
27(x + y)
Γ(3β + 1)

, · · · .

More generally,

Uk = (x + y)
(3)k

Γ(1 + kβ)
. (25)

Again, if we continue in the same manner, and after a few iterations, the differential inverse
transform of {Fk(x, y)}∞

k=0 will give the following series solution:

f (x, y, t) =
∞

∑
k=0

Fk(x, y)tkβ

= (x + y) +
3(x + y)
Γ(β + 1)

tβ +
9(x + y)

Γ(2β + 1)
t2β

+
27(x + y)
Γ(3β + 1)

t3β + · · · .

In compact form,

f (x, y, t) = (x + y)
∞

∑
k=0

(3tβ)k

Γ(1 + kβ)
, (26)

and using the M-L function, we obtain the exact solution:

f (x, y, t) = (x + y) Eβ(3tβ), (27)

where 0 < β ≤ 1 and Eβ(z) is the one-parameter M-L function (1), which is exactly the
same result obtained using the FVHPIM via the m-R-L derivative [37]. In the case of β = 1,
E1(3t) = e3t, the exact solution of the nonfractional Equation (22) is:

u(x, y) = (x + y)e3t. (28)

Figure 5 shows the exact solution of nonfractional order and the three-dimensional plot of
the approximate solution of the FRDTM (β = 0.9), while Figure 6 depicts the approximate
solutions for (β = 0.7, 0.5). Figure 7 depicts solutions in two-dimensional plots for different
values of β. Figure 8 shows solutions in two-dimensional plots for different values of x.
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Figure 5. The FRDTM solutions f (x, y, t): (a) (exact solution: nonfractional) β = 1 and (b) β = 0.9.
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Figure 6. The FRDTM solutions f (x, y, t): (a) β = 0.7 and (b) β = 0.5.
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Figure 7. The FRDTM solutions f (x, y, t) for β = 1 (exact (nonfractional)), 0.8, 0.7, 0.6; x ∈ [0, 1];
t = 0.1, and y = 0.1.
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Figure 8. The FRDTM solutions f (x, y, t) for different values of x; β = 1; t ∈ [0, 1], and y = 0.5.

4.3. Example 3: Four-Dimensional Time-Fractional Diffusion Equations

Let D = 1, Ω = [0, 1]× [0, 1]× [0, 1], F(x, y, z) = −(x, y, z) in Equation (12), then we
have the following TFDE:

∂βu(x, y, z, t)
∂tβ

= ∆u(x, y, z, t) + x
∂u(x, y, z, t)

∂x
+

y
∂u(x, y, z, t)

∂y
+ z

∂u(x, y, z, t)
∂z

+ 3u(x, y, z, t), 0 < β ≤ 1, (29)

with the initial condition,
u(x, y, z, 0) = (x + y + z)2. (30)

Using the appropriate properties from Table 1 for Equation (29), we obtain the following
recurrence relation:
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Fk+1(x, y, z) =
Γ(kβ + 1)

Γ(β(k + 1) + 1)
(

∂2w(k)
∂x ∂x

+
∂2 f (k)
∂y ∂y

+
∂2w(k)
∂z ∂z

+x
∂ f (k)

∂x
+ y

∂ f (k)
∂y

+ z
∂ f (k)

∂z
+ 3 f (k)) ,

(31)

where k = 0, 1, 2, · · · . The inverse transform coefficients of tkβ are as follows:

F0 = (x + y + z)2,

F1 =
5(x + y + z)2 + 6

Γ(β + 1)
,

F2 =
25(x + y + z)2 + 48

Γ(2β + 1)
,

F3 =
125(x + y + z)2 + 294

Γ(3β + 1)
,

F4 =
625(x + y + z)2 + 1632

Γ(4β + 1)
,

F5 =
3125(x + y + z)2 + 8646

Γ(5β + 1)
, · · · .

If we continue in the same manner, and after a few iterations, the differential inverse
transform of {Fk(x, y, z)}∞

k=0 will give the following series solution:

f (x, y, z, t) =
∞

∑
k=0

Fk(x, y, z)tkβ

= (x + y + z)2 +
5(x + y + z)2 + 6

Γ(β + 1)
tβ +

25(x + y + z)2 + 48
Γ(2β + 1)

t2β

+
125(x + y + z)2 + 294

Γ(3β + 1)
t3β + · · · .

In the case of β = 1, the tenth-order approximate solution of nonfractional Equation (29) is
given by:

f10(x, y, Z, t)=
t10(9765625(x + y + z)2 + 29119728

)
3628800

+
t9(1953125(x + y + z)2 + 5800326

)
362880

+
t8(390625(x + y + z)2 + 1152192

)
40320

+
t7(78125(x + y + z)2 + 227814

)
5040

+
1

720
t6
(

15625(x + y + z)2 + 44688
)

+
1

120
t5
(

3125(x + y + z)2 + 8646
)

+
1
24

t4
(

625(x + y + z)2 + 1632
)

+
1
6

t3
(

125(x + y + z)2 + 294
)

+
1
2

t2
(

25(x + y + z)2 + 48
)

+t
(

5(x + y + z)2 + 6
)
+ (x + y + z)2.

(32)
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Equation (29) has been solved using the FVHPIM via m-R-L derivative [37], and the exact
solution is:

u(x, y, z, t) = ((3 + (x + y + z)2))Eβ(5tβ)− 3Eβ(3tβ). (33)

Figure 9 shows the exact solution of nonfractional order and the three-dimensional plot of
the approximate solution of the FRDTM (β = 1), while Figure 10 depicts the approximate
solutions for (β = 0.9, 0.7). Figure 11 depicts solutions in two-dimensional plots for
different values of β. Figure 12 shows solutions in two-dimensional plots for different
values of x.
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Figure 9. (a) (Exact solution: nonfractional) and (b) FRDTM β = 1.
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Figure 10. FRDTM solutions f (x, y, z, t): (a) β = 0.9 and (b) β = 0.7.
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Figure 11. The FRDTM solutions f (x, y, z, t) for β = 1, 0.9, 0.8, 0.7 and the exact (nonfractional)
solution; x ∈ [0, 1]; t = 0.1, z = 0.5, and y = 0.5.
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Figure 12. The FRDTM solutions f (x, y, z, t) for different values of x; β = 1; t ∈ [0, 1], z = 0.5, and
y = 0.5.

5. Conclusions

Finding an exact solution is often considered difficult in most cases. By applying the
FRDTM in Sections 4.1 and 4.2, we were able to find exact solutions in the case of the two-
and three-dimensional time-fractional diffusion equations, then we plotted the approximate
solutions for different values of the fractional-order β in the three- and two-dimensional
time-fractional diffusion equation, and we also depicted the approximate solutions for
different values of x. An approximate solution in the four-dimensional time-fractional
diffusion equation was found in Section 4.3, and we compared it with the exact solution of a
nonfractional differential equation, then we plotted the approximate solutions for different
values of the fractional-order β in three- and two-dimensions. Furthermore, we depicted
the approximate solutions for different values of x. The graphical representations of the
exact and approximate solutions showed the power of the FRDTM for solving different
dimensions of the time-fractional diffusion equation. The computations of this paper were
carried out by using the computer package of Mathematica 9.
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