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Abstract: In the current study, a new class of an infinite system of two distinct fractional orders
with p-Laplacian operator is presented. Our mathematical model is introduced with the Caputo–
Katugampola fractional derivative which is considered a generalization to the Caputo and Hadamard
fractional derivatives. In a new sequence space associated with a tempered sequence and the
sequence space c0 (the space of convergent sequences to zero), a suitable new Hausdorff measure
of noncompactness form is provided. This formula is applied to discuss the existence of a solution
to our infinite system through applying Darbo’s theorem which extends both the classical Banach
contraction principle and the Schauder fixed point theorem.
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1. Introduction

Differential and integral equations take place in the research work of p-Laplacian equa-
tion with n-dimensional space, a gas turbulent flow in porous media and non-newtonian
fluid (see [1–3] and references cited therein). Infinite systems of fractional differential
equations play a considerable role in several nonlinear analysis branches. These systems
demonstrate some examples that cover the theorems for neural nets, dissociation of poly-
mers and branching process. Therefore, the study of infinite systems drew the attention of
a number of contributors (see [4–8] and references given therein).

It is well known that the concept of diffusion is associated with random motion of
particles in space, usually denoted as Brownian motion [9]. Random fractional differential
equations are useful mathematical tools to model problems involving memory effects
and uncertainties. Since integer order differential equations cannot precisely describe the
experimental and field measurement data, as an alternative approach, fractional order
differential equation models are now being widely applied [10]. Mainradi and Pironi [9]
have revisited the Brownian motion on the basis of the fractional Langevin equation. The
two fluctuation-dissipation theorems and of the techniques of the Fractional Calculus
have provided the analytical expressions of the correlation functions. The random force
has been shown to be represented by a superposition of the usual white noise with a
fractional noise. The fractional Langevin differential equation has been under consideration
by several contributions [11–14]. Various types of this equation have been proposed
and investigated using different approaches, see [15] and the references cited therein.
Zhou et al. [15] considered the fractional Langevin differential equation subject to p-
Laplacian operator in the Caputo sense of the form
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cDµΦp[(
cDν + λ)u(t)] = f (t, u(t), cDαu(t)), t ∈ [0, 1].

In spite of the great significance of fractional Langevin equation with λ = 0 (the
dissipative parameter), infinite systems and p-Laplacian operator in differential equations
theory, there is no contributor, as far as we know, that has touched on bringing them
together. This is what stimulated us in this paper to present the following system

ρn
c Dµn Φp(

ρn
c Dνn un(t)) = fn(t, u(t), ρ

c Dαu(t)), t ∈ [0, 1], n ∈ N (1)

where Φp(r) = |r|p−2r, p > 1 is the p-Laplacian operator, u(t) = (un(t)) is a convergent

sequence, fn : [0, 1]× cβ
0 × cβ

0 → cβ
0 are continuously differentiable functions, 0 < ρn ≤ 1,

0 < µn ≤ 1, 1 < νn ≤ 2, α = (αn), 0 < αn < νn, ρ
c Dα is the Caputo generalized fractional

derivative due to Katugampola [16] and the space cβ
0 is the tempered space with the

tempering sequence β = (βn). This system subjects to the assumptions

un(0) = 0, ρn
c Dµn un(0) = 0, lim

t→0
t1−ρn u′n(t) = 0. (2)

The value of the Caputo–Katugampola fractional derivative is found in the verity that
it is a generalization of Hadamard and Caputo fractional approaches. It has drawn the
attention of many authors who have construct their mathematical models based on it. For
more details and properties, see [17]. Zeng et al. [18] provided a numerical method for
solving generalized fractional differential equation of the Caputo–Katugampola derivative.
Almeida et al. [17] proved an existence and uniqueness solution for a fractional Cauchy-
type problem and then presented a simple numerical procedure to obtain a decomposition
formula for the Caputo–Katugampola derivative. For more contributions, see [19,20] and
references given therein.

Unquestionably, the fractional differential equation is a powerful mathematical case for
presenting extra flexibility in treatment with numerous real-world implementations. More
speciality, the fractional differential equations are extensively used in modeling different
phenomena such as diffusion modeling [21], robot manipulators [22], economics [23],
and many more. In view of its distinguished interest, several contributors have paid
their attentions to deeply discuss the boundary value problems presented based on such
equations (see [24–26]).

The measures of noncompactness theory make up an extremely remarkable branch
of the nonlinear functional analysis. It permits us to choose an extremely important class
of operators as generalizations of compact operators. Those operators satisfy the Darbo
contractions with respect to a measure of noncompactness. The measures of noncompact-
ness are widely used in fixed point theory. Darbo fixed point theorem is a good way to
investigate the existence and uniqueness of solution to differential and integral equations
via applying measures of noncompactness techniques [27,28].

The main goal of this article can be outlined as follows. In a tempered sequence
space associated with the classical sequence space c0, a suitable Hausdorff measure on
noncompactness is presented and used to investigate the infinite system (1) and (2) by
aiding of Darbo fixed point theorem which extends both the classical Banach contraction
principle and the Schauder fixed point theorem [29].

2. Preliminaries

This section is separated into two subsections. The first subsection inserts the main
results and basic concepts needed in fractional calculus. The other subsection provides a
short survey for the measure of noncompactness.

2.1. Fractional Calculus

Katugampola [30] defined a approach of fractional integral as
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ρ Iµ f (t) =
ρ1−µ

Γ(µ)

∫ t

0

sρ−1 f (s)
(tρ − sρ)1−µ

ds (3)

where 0 < ρ ≤ 1 and µ > 0, provided that the integral exists. He has shown that it satisfies
the semigroup property

ρ Iν ρ Iµ f (t) = ρ Iν+µ f (t), ν > 0, µ > 0. (4)

It is clear that

ρ Iµtρλ =
Γ(λ + 1)

ρµΓ(µ + λ + 1)
tρ(λ+µ), µ > 0, λ > −1. (5)

Jarad et al. [31] evolved a Katugampola fractional derivative in the Caputo sense [32]
to be

ρ
cDµ f (t) =

(
ρ In−µ

(
t1−ρ d

dt

)n
f
)
(t), n− 1 < µ ≤ n, n ∈ N

=
ρµ−n+1

Γ(n− µ)

∫ t

0

sρ−1

(tρ − sρ)µ−n+1

(
s1−ρ d

ds

)n
f (s)ds. (6)

It is remarkable to note that the approach above leads to a Caputo–Hadamard deriva-
tive when ρ→ 0 and Caputo derivative when ρ→ 1. Some of its properties are provided
as [31]

Lemma 1. Suppose n ∈ N, n− 1 < µ ≤ n and 0 < ρ ≤ 1. Then, we have

ρ
cDµtρλ =

ρµΓ(λ + 1)
Γ(λ− µ + 1)

tρ(λ−µ), λ > −1, λ 6= 0, 1, · · · , n− 1

ρ
cDµtρλ = 0, λ = 0, 1, · · · , n− 1
ρ
cDµ A = 0, A is a constant
ρ
cDµ ρ Iν f (t) = ρ Iν−µ f (t), ν ≥ µ

ρ Iµ ρ
cDµ f (t) = f (t)−

n−1

∑
r=0

artρr, ar, r = 0, 1, · · · , n− 1, are constants.

Lemma 2. The p-Laplacian operator Φp, p > 1 satisfies

(1) Φp is increasing, continuous and invertible with inverse Φ−1
p = Φq where q > 1 and

1/p + 1/q = 1.
(2) |Φp(x)| = Φp(|x|) and Φp(λx) = λp−1Φp(x), λ > 0
(3) Ref. [3] For all x, y > 0

Φp(x + y) ≤ Φp(x) + Φp(y), i f p < 2

Φp(x + y) ≤ 2p−2(Φp(x) + Φp(y)), i f p ≥ 2.

(4) Refs. [33,34] For all x, y ∈ R, there exist c1 > 0 and c2 > 0 satisfy

|Φp(x)−Φp(y)| ≤ c1|x− y|p−1 i f 1 < p ≤ 2

|Φp(x)−Φp(y)| ≤ c2(|x|+ |y|)p−2|x− y| i f p > 2.

Lemma 3. Suppose that the function f : [0, 1]→ R is a continuous function, ρ ∈ (0, 1], µ ∈ (0, 1]
and ν ∈ (1, 2]. Then, the boundary value problem

ρ
c DµΦp(

ρ
c Dνu(t)) = f (t), t ∈ [0, 1], p ≥ 1 (7)
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subject to the assumptions

u(0) = 0, ρ
c Dνu(0) = 0, lim

t→0
t1−ρu′(t) = 0 (8)

has the unique solution

u(t) =
ρ1−ν

Γ(ν)

∫ t

0

sρ−1

(tρ − sρ)1−ν
Φq

(
ρ1−µ

Γ(µ)

∫ s

0

rρ−1 f (r)
(sρ − rρ)1−µ

dr
)

ds. (9)

Proof. Operate by ρ Iµ on both sides of (7) with using the last statement of Lemma 1
to obtain

Φp(
ρ
c Dνu(t)) = ρ Iµ f (t) + a0.

Taking the p-Laplacian inverse and the second condition in (8) produces

ρ
c Dνu(t) = Φq(

ρ Iµ f (t)).

Again, operating by ρ Iν on all sides of the former equation and inserting the last item
of Lemma 1 obtains

u(t) = ρ IνΦq(
ρ Iµ f (t)) + a1 + a2tρ.

Inserting the first and last conditions produces a1 = a2 = 0. By the definition (3),
one can obtain (3). Conversely, by substituting (9) into the left side in (7) and applying
Lemma 1, we can obtain the right side of Equation (9). It is easy to view that the solution (9)
verifies all assumptions of (8).

2.2. Hausdorff Measure of Noncompactness and Tempered Sequence Space

Let c0 be the sequence space of all sequences u = (un) converging to zero and β = (βn)
be a positive non-increasing real sequence. Such a sequence is called the tempering
sequence. Banas and Krajewska [35] have presented the tempered sequence space

cβ
0 = {u ∈ c0|βnun → 0 as n→ ∞}

and proved that the space cβ
0 is a Banach space equipped the norm

‖u‖
cβ

0
= sup

n∈N
{βn|un|, u ∈ c0}.

It is worth pointing that if the tempering sequence β is a constant sequence or it is
bounded from below, then the norm in the tempered sequence space cβ

0 is equivalent to
the classical supremum norm in c0. They have proved that the Hausdorff measure of
noncompactness can be given by the formula

χ
cβ

0
(B) = lim

m→∞
sup
n≥m
{βn|un|, u ∈ B} (10)

where B is subset of a nonempty bounded set of the Banach space cβ
0 and the Hausdorff

measure of noncompactness is the mapping χ : B → [0, ∞) defined by

χ(B) = inf{ε > 0|B has a f inite ε− net in Banach space}.

For extra details of Hausdorff measure of noncompactness, see [29,36].
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Theorem 1 (Darbo Theorem [29]). Suppose B is a closed, bounded, convex and nonempty subset
of a Banach space X. Let F : B → B be a continuous map and there exists a positive constant
k ∈ [0, 1) satisfies the property χ(FB) ≤ kχ(B). Then, F has a fixed point in B.

3. Basic Constructions and Main Results

Consider C([0, 1], cβ
0 ) is the space contains continuous sequence functions defined on

the interval [0, 1] and belong to the space cβ
0 : That is u(t) ∈ C([0, 1], cβ

0 ) leads to βnun(t)→ 0
as n → ∞ and un : [0, 1] → R is continuous function for all n ∈ N where β = (βn) is a
positive non-increasing sequence with β∞ 6= 0. Consider the space

X =
{

u(t)|u ∈ C([0, 1], cβ
0 ) and ρ

c Dαu(t) ∈ C([0, 1], cβ
0 )
}

where 0 < α < ν and 1 < ν ≤ 2. It is easy to see that the space X is Banach space under
the norm

‖u‖ = ‖u‖
cβ

0
+ ‖ ρ

c Dαu‖
cβ

0
. (11)

Based on to the Formula (10) and Theorem 1.3 in [6], we can derive the Hausdorff
measure of noncompactness in the form

χX(B) = lim
m→∞

sup
n≥m

{
max
t∈[0,1]

{βn|un(t)|}+ max
t∈[0,1]

{βn| ρn
c Dαn un(t)|}, u ∈ B

}
(12)

where B is subset of a nonempty bounded set of the Banach space X.
It is clear that the unique solution of the infinite system (1) and (2) comes immediately

by replacing u, µ, ν, α, ρ and f by un, µn, νn, αn, ρn and fn, respectively, in Lemma 3. Our
discussion of the existence results for the infinite system (1) and (2) will be investigated
under the following assumptions:

(H1) The functions fn : [0, 1]× cβ
0 × cβ

0 → cβ
0 are continuous for all n ∈ N and satisfy the

Lipschitz condition with Lipschitz constant L as

| fn(t, u1, v1)− fn(t, u2, v2)| ≤ L(|u1 − u2|+ |v1 − v2|), ui, vi ∈ cβ
0 , i = 1, 2.

(H2) There exist nonnegative sequence functions, gn(t) and hn(t), that satisfy the inequality

| fn(t, u, v)| ≤ gn(t) + hn(t)(|un(t)|p−1 + |vn(t)|p−1)

for all n ∈ N, p > 1, t ∈ [0, 1] and u, v ∈ C([0, 1], cβ
0 ).

(H3) There are positive constants A and C such that

A = sup
n∈N

max
t∈[0,1]

βn|gn(t)|q−1 and C = sup
n∈N

max
t∈[0,1]

|hn(t)|q−1, q > 1.

For the convenance of computations, let

∆ν = sup
n∈N

ρ
µn(1−q)−νn
n Γ(µn(q− 1) + 1)

Γq−1(µn + 1)Γ(µn(q− 1) + νn + 1)
. (13)

Theorem 2. Under the suppositions above, the infinite system (1) and (2) has at least one solution
in X for all p > 1 provided that ∆ < 1 where

∆ = 4(q−2)H(q−2)C(∆ν + ∆ν−α),
1
p
+

1
q
= 1

and H(·) is the Heaviside step function.
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Proof. Define the operator Fp : X→ X such that

(Fpun)(t) = ρn Iνn Φq

(
ρn Iµn fn(t, u(t), ρ

c Dαu(t))
)

.

By the continuity of fn, n ∈ N according to (H1), the operator Fp is continuous for all
p > 1. Furthermore, it is not difficult with using Lemmas 1 and 2 to show

|(Fpun)(t)| =
∣∣∣ ρn Iνn Φq

(
ρn Iµn fn(t, u(t), ρ

c Dαu(t))
)∣∣∣ ≤ ρn Iνn Φq

(
ρn Iµn | fn(t, u(t), ρ

c Dαu(t))|
)

In view of (H2) and (H3) with using the the relation (5) and the facts
Φq(xy) = Φq(x)Φq(y) and Φq(x) = xq−1, x > 0, we find that

βnΦq

(
ρn Iµn | fn(t, u(t), ρ

c Dαu(t))|
)

≤ βnΦq

(
ρn Iµn

[
gn(t) + hn(t)(|un(t)|p−1 + | ρ

c Dαu(t))|p−1
])

= Φq

(
ρn Iµn

[
β

p−1
n gn(t) + hn(t)((βn|un(t)|)p−1 + (βn| ρ

c Dαu(r))|)p−1)
])

= Φq(Ap−1 + Cp−1(‖u‖p−1

cβ
0

+ ‖ ρ
c Dαu)‖p−1

cβ
0

))Φq(
ρn Iµn 1)

= Φq

(
Ap−1 + Cp−1(‖u‖p−1

cβ
0

+ ‖ ρ
c Dαu)‖p−1

cβ
0

)

)
Φq

(
sρnµn

ρ
µn
n Γ(µn + 1)

)

=
sρnµn(q−1)

ρ
µn(q−1)
n Γq−1(µn + 1)

Φq

(
Ap−1 + Cp−1(‖u‖p−1

cβ
0

+ ‖ ρ
c Dαu)‖p−1

cβ
0

)

)
From the third statement of Lemma 2, we have

Φq

(
Ap−1 + Cp−1(‖u‖p−1

cβ
0

+ ‖ ρ
c Dαu)‖p−1

cβ
0

)

)
≤ 2(q−2)H(q−2)A + 4(q−2)H(q−2)C‖u‖

Hence, we obtain

‖Fpu‖
cβ

0
= sup

n∈N
max
t∈[0,1]

βn|(Fpun)(t)|

=
(

2(q−2)H(q−2)A + 4(q−2)H(q−2)C‖u‖
)

sup
n∈N

max
t∈[0,1]

ρ
µn(1−q)
n

Γq−1(µn + 1)
ρn Iνn tρnµn(q−1)

=
(

2(q−2)H(q−2)A + 4(q−2)H(q−2)C‖u‖
)

sup
n∈N

max
t∈[0,1]

ρ
µn(1−q)−νn
n Γ(µn(q− 1) + 1)tρn(µn(q−1)+νn)

Γq−1(µn + 1)Γ(µn(q− 1) + νn + 1)

=
(

2(q−2)H(q−2)A + 4(q−2)H(q−2)C‖u‖
)

sup
n∈N

ρ
µn(1−q)−νn
n Γ(µn(q− 1) + 1)

Γq−1(µn + 1)Γ(µn(q− 1) + νn + 1)

=
(

2(q−2)H(q−2)A + 4(q−2)H(q−2)C‖u‖
)

∆ν

where ∆ν is defined in (13). From the 4th statement of Lemma 1, we have

(
ρn
c Dαn Fpun)(t) = ρn Iνn−αn Φq

(
ρn Iµn | fn(t, u(t), ρ

c Dαu(t))|
)

Similarly, we have

‖ ρ
c DαFpu‖

cβ
0
≤
(

2(q−2)H(q−2)A + 4(q−2)H(q−2)C‖u‖
)

∆ν−α
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These conclude that

‖Fpu‖ = ‖Fpu‖
cβ

0
+ ‖ ρ

c DαFpu‖
cβ

0
≤
(

2(q−2)H(q−2)A + 4(q−2)H(q−2)C‖u‖
)
(∆ν + ∆ν−α)

which leads to the boundedness of the operator Fpu for all p > 1. Now, we present the set
B ⊂ X such that

B = {u ∈ X|‖u‖ ≤ r, u holds the conditions (2)}

The subspace B is bounded, closed and convex, with fix radius r satisfies(
2(q−2)H(q−2)A + 4(q−2)H(q−2)Cr

)
(∆ν + ∆ν−α) ≤ r.

It is obvious that the operator Fp : B → B is bounded. In order to prove the continuity
of Fp on the set B, let u, v ∈ B and for all ε > 0 there exists

0 < δ < max

{
εp−1β

2−p
1

Lcp−1
1 ∆p−1

ν

,
εp−1β

2−p
1

Lcp−1
1 ∆p−1

ν−α

}
, 1 < q ≤ 2, p > 2

0 < δ < max

{
εβ

2−p
∞ (A + 4q−2Cr)p−2

2q−1Lc2∆ν
,

εβ
2−p
∞ (A + 4q−2Cr)p−2

2q−1Lc2∆ν−α

}
, 1 < p ≤ 2, q > 2

where L is Lipschitz constant (H1) such that ‖u− v‖ < δ. In fact, we obtain

|(Fpun)(t)− (Fpvn)(t)| ≤ ρn Iνn
∣∣∣Φq

(
ρn Iµn fn(t, u(t), ρ

c Dαu(t))
)
−Φq

(
ρn Iµn fn(t, v(t), ρ

c Dαv(t))
)∣∣∣

When 1 < q ≤ 2, using the 4th statement in Lemma 2 and (H1) obtains

‖Fpu− Fpv‖
cβ

0
= sup

n∈N
max
t∈[0,1]

βn|(Fpun)(t)− (Fpvn)(t)|

≤ c1 sup
n∈N

max
t∈[0,1]

β
2−q
n

ρn Iνn
(

ρn Iµn βn| fn(t, u(t), ρ
c Dαu(t))− fn(t, v(t), ρ

c Dαv(t))|
)q−1

≤ c1Lq−1 sup
n∈N

max
t∈[0,1]

β
2−q
n

ρn Iνn
(

ρn Iµn(βn|u(t)− v(t)|+ βn| ρ
c Dαu(t)− ρ

c Dαv(t))|
)q−1

≤ c1Lq−1 sup
n∈N

max
t∈[0,1]

β
2−q
n

ρn Iνn( ρn Iµn 1)q−1‖u− v‖q−1

≤ c1Lq−1β
2−q
1 ∆nu‖u− v‖q−1 ≤ c1Lq−1β

2−q
1 ∆νδq−1 <

ε

2

and

‖ ρ
c DαFpu− ρ

c DαFpv‖
cβ

0
≤ c1Lq−1β

2−q
1 ∆nu‖u− v‖q−1 ≤ c1Lq−1β

2−q
1 ∆ν−αδq−1 <

ε

2

which mean that ‖Fpu− Fpv‖ ≤ ε and so the operator Fp is continuous on the set B when
1 < q ≤ 2. Similarly, when q > 2, we find that

‖Fpu− Fpv‖
cβ

0
≤ c2 sup

n∈N
max
t∈[0,1]

ρn Iνn
[

ρn Iµn βn| fn(t, u(t), ρ
c Dαu(t))− fn(t, v(t), ρ

c Dαv(t))|

×
(

ρn Iµn [| fn(t, u(t), ρ
c Dαu(t))|+ | fn(t, v(t), ρ

c Dαv(t))|]
)q−2]

.

It is easy to see that

ρn Iµn βn| fn(t, u(t), ρ
c Dαu(t))− fn(t, v(t), ρ

c Dαv(t))| ≤ Ltρnµn

ρ
µn
n Γ(µn + 1)

‖u− v‖
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and, with noting q− 2 = (2− p)(q− 1),(
ρn Iµn [| fn(t, u(t), ρ

c Dαu(t))|+ | fn(t, v(t), ρ
c Dαv(t))|]

)q−2

≤
(

ρn Iµn [2gn(t) + hn(t)(|u|p−1 + | ρ
c Dαu(t)|p−1 + |v|p−1 + | ρ

c Dαv(t)|p−1)]
)(2−p)(q−1)

≤ β
p−2
n (2q−1A + 23q−6C(‖u‖+ ‖v‖))2−p( ρn Iµn 1)q−2

≤ β
p−2
n (2q−1A + 23q−5Cr))2−p

(
tρnµn

ρ
µn
n Γ(µn + 1)

)q−2

= 2q−2β
p−2
n (A + 4q−1Cr)2−p

(
tρnµn

ρ
µn
n Γ(µn + 1)

)q−2

Hence, for q > 2 and 1 < p < 2, we have

‖Fpu− Fpv‖
cβ

0
≤ 2q−2(A + 4q−1Cr)2−pLc2

× sup
n∈N

max
t∈[0,1]

β
p−2
n

ρn Iνn

(
tρnµn(q−1)

ρ
µn(q−1)
n Γq−1(µn + 1)

)
‖u− v‖

≤ 2q−2β
p−2
∞ (A + 4q−1Cr)2−pLc2∆νδ

and

‖ ρ
c DαFpu− ρ

c DαFpv‖
cβ

0
≤ 2q−2β

p−2
∞ (A + 4q−1Cr)2−pLc2∆ν−αδ

which mean that ‖Fpu− Fpv‖ ≤ ε and so the operator Fp is continuous on the set B when
q > 2. To prove that the operator Fpu(t) is continuous uniformly on the interval [0, 1], let
0 ≤ t1 < t2 ≤ 1. Then, we can obtain that

|Fpu(t2)− Fpu(t1)| =
∣∣∣∣∣ ρ1−νn

n
Γ(νn + 1)

∫ t2

0

sρn−1

(tρn
2 − sρn)1−νn

Φq

(
ρn Iµn fn(s, u(s), ρ

c Dαu(s))
)

ds

− ρ1−νn
n

Γ(νn + 1)

∫ t1

0

sρn−1

(tρn
1 − sρn)1−νn

Φq

(
ρn Iµn fn(s, u(s), ρ

c Dαu(s))
)

ds

∣∣∣∣∣
≤ Ωρ1−νn

n
Γ(νn + 1)

(∫ t1

0

(
sρn−1

(tρn
2 − sρn)1−νn

− sρn−1

(tρn
1 − sρn)1−νn

)
ds +

∫ t2

t1

sρn−1

(tρn
2 − sρn)1−νn

ds

)

≤ Ωρ1−νn
n

Γ(νn + 1)

(∫ t2

0

sρn−1

(tρn
2 − sρn)1−νn

ds−
∫ t1

0

sρn−1

(tρn
1 − sρn)1−νn

ds

+
∫ t2

0

sρn−1

(tρn
2 − sρn)1−νn

ds−
∫ t1

0

sρn−1

(tρn
2 − sρn)1−νn

ds

)

≤ 2Ωρ1−νn
n

Γ(νn + 1)

(∫ t2

0

sρn−1

(tρn
2 − sρn)1−νn

ds−
∫ t1

0

sρn−1

(tρn
1 − sρn)1−νn

ds

)

=
2Ω

ρνn
n Γ(νn + 1)

(
tρnνn
2 − tρnνn

1

)
where Ω = Φ(| fn|), which tends to zero uniformly as t1 → t2. Similarly, we have

| ρ
c DαFpu(t2)−

ρ
c DαFpu(t1)| =

2Ω
ρνn−αn

n Γ(νn − αn + 1)

(
tρn(νn−αn)
2 − tρn(νn−αn)

1

)
.
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Thus, the operator Fpu(t) is continuous uniformly on [0, 1]. The measure of noncom-
pactness due to Hausdorff is evaluated, as above, by using (12) as

χX(FB) = lim
m→∞

sup
n≥m

{
max
t∈[0,1]

{βn|Fpun(t)|}+ max
t∈[0,1]

{βn| ρn
c Dαn Fpun(t)|}, u ∈ B

}
≤ 4(q−2)H(q−2)C(∆ν + ∆ν−α) lim

m→∞
sup
n≥m

max
t∈[0,1]

βn(|un(t)|+ | ρn
c Dαn un(t)|)

= 4(q−2)H(q−2)C(∆ν + ∆ν−α)χX(un(t)) = ∆χX(un(t)).

Since ∆ < 1, according Darbo fixed point theorem, then our system (1)–(2) has at least
a solution in the set B on the unit interval [0, 1].

4. Illustrated Numerical Example

Let us provide the example below:

1
2
c D

3
4 Φ3(

1
2
c D

3
2 un(t)) = fn(t, u(t), t

1
2 u′(t)), t ∈ [0, 1], n ∈ N. (14)

This system subject to the assumptions

un(0) = 0,
1
2
c D

3
4 un(0) = 0, lim

t→0
t

1
2 u′n(t) = 0 (15)

ρn = 1/2, µn = 3/4, νn = 3/2, p = 3, q = 3/2, α = 1. Furthermore, we take the tempered
sequence (βn) = (1 + 1/n) and

fn(t, y, z) =
e−nt cos2(nt)

(t + 1)2 +
t2e−nt

2(2π − t)2(t + n)2

∞

∑
i=n

sin2(iπt)
(i + t)2 (y2

i + z2
i ).

It is obvious that the tempered sequence (βn) = (1 + 1/n) is a positive decreasing
sequence for all n ∈ N with β∞ = 1 6= 0. Furthermore, one can check that hn ∈ c0 and
hn ∈ cβ

0 . In order to verify the assumption (H1). Let y, y′, z, z′ ∈ cβ
0 . Then,

| fn(t, y, z)− fn(t, y′, z′)| ≤ t2e−nt

2(2π − t)2(t + n)2

∞

∑
i=n

1
(i + t)2 (|y

2
i − y′2i |+ |z2

i − z′2i |)

≤ 1
2(2π − 1)2

∞

∑
i=1

1
i2
(|y + y′||y− y′|+ |z + z′||z− z′|)

≤ L(|y− y′|+ |z− z′|)

where L = π2r
6(2π−1)2 and r is the radius of the closed ball B which is fully compatible with

the assumption (H1). It is easy to see that

| fn(t, y, z)| ≤ e−nt cos2(nt)
(t + 1)2 +

t2e−nt

2(2π − t)2(t + n)2

∞

∑
i=n

1
(i + t)2 (|yn|2 + |zn|2)

= gn(t) + hn(t)(|yn|2 + |zn|2)

which is fully coincident with the assumption (H2), where

gn(t) =
e−nt cos2(nt)

(t + 1)2 , hn(t) =
t2e−nt

2(2π − t)2(t + n)2

∞

∑
i=n

1
(i + t)2 .

According the third assumption (H3), we find that
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C = sup
n∈N

max
t∈[0,1]

|hn(t)|q−1 =

(
π2

12(2π − 1)2

) 1
2

=
π√

12(2π − 1)
' 0.171658.

Therefore,

∆ = 4(q−2)H(q−2)C(∆ν + ∆ν−α) ' (0.5)(0.171658)(1.90248 + 1.78358) = 0.316371 < 1

These lead to all assumptions of the theorem are satisfied. Hence, the infinite system (1)
and (2) has at least one solution in [0, 1].

5. Conclusions

In the present study, we investigated an infinite system of fractional order with p-
Laplacian operator. We used the Caputo–Katugampola derivative in our model, which
related to several well-known fractional derivatives. The existence of solution to our
infinite system is discussed by using the Darbo’s fixed point theorem through applying
the Hausdorff measure of noncompactness technique. A new sequence space related to
c0 space is presented to be our domain. An illustrated numerical example is provided to
show that the applicability of our idea in practice.
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