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Abstract: There has been a considerable evolution of the theory of fractal interpolation function (FIF)
over the last three decades. Recently, we introduced a multivariate analogue of a special class of FIFs,
which is referred to as α-fractal functions, from the viewpoint of approximation theory. In the current
note, we continue our study on multivariate α-fractal functions, but in the context of a few complete
function spaces. For a class of fractal functions defined on a hyperrectangle Ω in the Euclidean space
Rn, we derive conditions on the defining parameters so that the fractal functions are elements of
some standard function spaces such as the Lebesgue spaces Lp(Ω), Sobolev spacesWm,p(Ω), and
Hölder spaces Cm,σ(Ω), which are Banach spaces. As a simple consequence, for some special choices
of the parameters, we provide bounds for the Hausdorff dimension of the graph of the corresponding
multivariate α-fractal function. We shall also hint at an associated notion of fractal operator that maps
each multivariate function in one of these function spaces to its fractal counterpart. The latter part
of this note establishes that the Riemann–Liouville fractional integral of a continuous multivariate
α-fractal function is a fractal function of similar kind.

Keywords: multivariate fractal functions; function spaces; Hausdorff dimension; fractal operator;
fractional integral

1. Preamble

This note aims to offer a modest contribution to the field of fractal interpolation. In
particular, we consider a special class of fractal interpolation functions referred to as the
α-fractal function, which has played a considerable role in the theory of univariate fractal
approximation. Our work in the current note seeks to show that a few results on the
construction of univariate α-fractal functions in various function spaces and associated
fractal operator (see, for instance, [1]) carry over to higher dimensions.

For a prescribed data set D = {(x0, y0), (x1, y1), . . . , (xk, yk)} in R2 with increasing
abscissae, there are multitude of methods to construct a continuous function that maps
each xi to yi—generally known as interpolation methods—available in the field of classical
numerical analysis and approximation theory. Roughly speaking, the fractal interpolation
function (FIF for short), as introduced by Barnsley in the original version [2], is a continuous
function g : [x0, xk]→ R that interpolates D such that the graph of g, denoted by Gr(g), is
a self-referential set (fractal set). Here the word fractal or self-referential is used to indicate
that Gr(g) is the attractor of an iterated function system [3]. That is, roughly, Gr(g) is a
finite union of tranformed copies of itself. For a compendium of the theory of FIF and its
applications in interpolation and approximation, the reader is referred to the book and
monograph [4,5]; the recent articles [6–8] may also be of interest.

In her research works on fractal interpolation, Navascués emphasized a special class of
univariate FIFs, named α-fractal functions, (see, for instance, [9,10]) which garnered a signif-
icant amount of research attention in fractal approximation theory. It is our opinion that the
notion of α-fractal functions assisted the field of fractal interpolation to find connections and
consequences in other branches of mathematics such as approximation theory, harmonic
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analysis, functional analysis and the theory of bases and frames; see, for instance, [11,12]. In
the research works reported in [13,14], authors utilized α-fractal functions to demonstrate
that FIFs can be applied in various constrained approximation problems.

Several extensions of FIF to higher dimensions, in particular, bivariate FIFs or fractal
surfaces, have been studied in the literature; see, for example, [4,15–19]. Despite that the
α-fractal function facilitated the theory of univariate FIF to merge seamlessly with various
fields in mathematics, a similar approach to multivariate FIFs was not attempted except
for a few research works on bivariate α-fractal functions reported lately in [20–22]. The
aforementioned works on bivariate α-fractal functions find their origin, perhaps implicitly,
in the general framework for the construction of fractal surfaces introduced in [23].

While an increasing amount of literature is being published in the field of univariate
FIFs and fractal surfaces, the research in multivariate FIFs are still inadequate, especially
in the framework of α-fractal functions. In the context of multivariate FIFs, the ingenious
constructions appeared in [24,25], though worth mentioning, do not seem to be suitable for
the implementation of the α-fractal function formalism. On the other hand, our acquain-
tance with the univariate and bivariate α-fractal functions revealed that the development
of multivariate analogue of α-fractal function could be highly beneficial for the expansion
of multivariate fractal approximation theory. Stimulated by the construction of fractal
surface in [23], recently we put forward a satisfactory extension of the Barnsley’s theory of
univariate FIF to the multivariate case [26].

In this note, we continue to explore the notion of multivariate α-fractal functions.
In the first part, we define multivariate α-fractal functions in various function spaces
such as the Lebesgue spaces Lp, Sobolev spacesWm,p, and Hölder spaces Cm,σ. We also
hint at some elementary properties of the fractal operator associated with the notion of
multivariate α-fractal functions.

Fractal dimension is an important parameter of fractal geometry providing informa-
tion about the geometric structure of the objects that it deals with. There are different
notions of fractal dimension, the two most commonly used being the Hausdorff dimension
and box dimension [27]. In particular, the Hausdorff dimension and box dimension of the
graphs of fractal interpolation functions have been investigated; see, for instance, [2,4,15,28].
Since the aforementioned fractal dimensions are scale-independent, they may not be useful
for describing scale-dependent laws and more complicated phenomena in nature. To
this end, a new definition of fractal dimension, referred to as the two-scale dimension, is
broached in [29], and it is perhaps more akin to physics than mathematics. However, we
are forced to settle for less in the framework of multivariate α-fractal functions considered
herein, because the analysis for the fractal dimension of the general nonaffine case is subtle.
We shall just mention bounds for the Hausdorff dimension of the graph of the multivariate
α-fractal function as an immediate consequence of its Hölder continuity for suitable choice
of parameters.

On the other hand, fractional calculus, which broadly deals with derivatives and
integrals of fractional order, is rather an old subject. During the last decades, fractional
calculus has opened its wings wider to cover several real world applications in science
and engineering. Despite being an old subject, fractional calculus continues to be a hot
topic of research, resulting in a substantial body of literature; we refer the reader to
the informative surveys [30,31]. Some recent developments made in the direction of
fractional PDEs and their applications deserve a special mention; see, for instance, [32–35].
Studies on the interconnection between fractional calculus and fractal geometry have
gained significant attention in recent years. For some links between the two-scale problem
mentioned previously and fractional calculus, the reader may consult [36]. In the second
part of this note, our modest aim is to show that the fractional integral of the multivariate
fractal function considered herein is again a fractal function of a similar kind.

Overall, this note discusses how some results in univariate fractal interpolation, to
be specific α-fractal functions, fractal operator and fractional calculus of fractal functions,
carry over to higher dimensions. We strongly believe that these research findings may
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assist efforts to find interesting interconnections between multivariate FIFs and the theory
of PDEs.

2. Preparatory Facts

To begin with, we list pertinent definitions and notation for use throughout the
remainder of this note.

The set of first n natural numbers shall be denoted by Σn. For l = (l1, . . . , ln) ∈
(N∪ {0})n, called a multi-index, let |l| = ∑n

k=1 lk. Given two multi-indices l = (l1, . . . , ln)
and l′ = (l

′
1, . . . , l

′
n), we say that l′ ≤ l if l

′
k ≤ lk for all k ∈ Σn. For l′ ≤ l, we define:(

l
l′

)
=

n

∏
k=1

(
lk
l′k

)
.

Let n ≥ 2 and Ω = ∏n
k=1 Ik be an n-dimensional hyperrectangle, where each Ik =

[ak, bk] is a closed and bounded interval in R. For a function g : Ω → R and X0 =
(x0

1, . . . , x0
n) ∈ Ω, denoted by

Dl(g)(X0) =
∂l1+...+ln g

∂x1
l1 . . . ∂xn

ln
(X0),

provided the right-hand side exists.

2.1. Function Spaces

The purpose here is to provide a short presentation of various function spaces that are
used in this note. We refer to Triebel [37] for more information.

Let C(Ω) denote the Banach space of all real-valued continuous functions defined on
Ω, endowed with the sup-norm ‖.‖∞. For a positive integer m, we consider the linear space
Cm(Ω) defined by

Cm(Ω) =
{

g ∈ C(Ω) : Dl(g) exists and it is continuous for each multi-index l

with |l| ≤ m
}

.

For any g ∈ Cm(Ω), we define

‖g‖Cm(Ω) = ∑
|l|≤m

‖Dl(g)‖∞.

It is well-known that Cm(Ω) equipped with ‖.‖Cm(Ω) is a Banach space. Next, we
recall the Lebesgue spaces. For 0 < p ≤ ∞, let

Lp(Ω) =
{

g : Ω→ R such that g is measurable and ‖g‖p < ∞
}

,

where ‖g‖p is defined as

‖g‖p =


( ∫

Ω |g(X)|p dX

) 1
p

, for 0 < p < ∞.

ess supX∈Ω |g(X)|, for p = ∞.

It is a standard result in functional analysis that
(
Lp(Ω), ‖.‖p

)
is a Banach space for

1 ≤ p ≤ ∞. For 0 < p < 1, ‖.‖p is a quasi-norm, that is, in place of the triangle inequality
one has

‖g + h‖p ≤ 2
1
p
(
‖g‖p + ‖h‖p

)
,

and Lp(Ω) is a quasi-Banach space.
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Let g ∈ Lp(Ω). For a multi-index l, a function h : Ω → R is called the lth-weak
derivative of g if it satisfies∫

Ω
g(X)Dlφ(X) dX = (−1)|l|

∫
Ω

h(X)φ(X) dX,

for all infinitely differentiable functions φ with compact support contained in Ω. By a slight
abuse of notation, we write lth-weak derivative of g as Dl(g) = h.

For 1 ≤ p ≤ ∞ and a non-negative integer m,Wm,p(Ω) denotes the Sobolev space
with smoothness m and integrability p defined by

Wm,p(Ω) =
{

g : Ω→ R such that Dl(g) ∈ Lp(Ω) for all multi-index l with |l| ≤ m
}

.

The linear spaceWm,p(Ω) endowed with the norm

‖g‖Wm,p(Ω) =


(

∑|l|≤m ‖Dl(g)‖p
p

) 1
p
, for 1 ≤ p < ∞.

max|l|≤m ‖Dl(g)‖∞, for p = ∞.

is a Banach space. For p = 2, it is a Hilbert space, which shall be denoted byHm(Ω).
A function g : Ω → R is Hölder continuous with exponent σ ∈ (0, 1] (or σ- Hölder

continuous) if ∣∣g(X)− g(Y)
∣∣ ≤ Cg‖X−Y‖σ,

for all X, Y ∈ Ω and some Cg > 0, called a Hölder constant of g. Given a Hölder continuous
g : Ω→ R with exponent σ, the σ-Hölder semi-norm of g is defined by

[g]σ = sup
X,Y∈Ω,X 6=Y

∣∣g(X)− g(Y)
∣∣

‖X−Y‖σ
.

If m is a positive integer, then the Hölder space Cm,σ(Ω) is defined as

Cm,σ(Ω) =
{

g ∈ Cm(Ω) : Dl(g) is σ-Hölder continuous

for all multi-index l with |l| = m
}

.

The space Cm,σ(Ω) equipped with the norm

‖g‖Cm,σ(Ω) = ‖g‖Cm(Ω) + ∑
|l|=m

[
Dl(g)

]
σ

is a Banach space. Note that C0,σ(Ω) coincides with the space of all Hölder continuous
functions with exponent σ.

2.2. Towards Multivariate FIF

Here we shall equip ourselves with a few rudiments needed for multivariate fractal
functions that concern us. As mentioned previously, let Ik = [ak, bk], k = 1, 2, . . . , n be
compact intervals in R and Ω = ∏n

k=1 Ik be an n-dimensional hyperrectangle.
Let n ≥ 2 be an integer and ∆ = {(x1,i1 , x2,i2 , . . . , xn,in) ∈ Rn : ik = 0, 1, . . . , Nk;

k = 1, . . . , n} be such that ak = xk,0 < xk,1 < · · · < xk,Nk
= bk for each k = 1, 2, . . . , n.

Note that ak = xk,0 < xk,1 < · · · < xk,Nk
= bk determines a partition of Ik into subintervals

Ik,ik =
[
xk,ik−1

, xk,ik

)
for ik = 1, 2, . . . , Nk−1 and Ik,Nk

=
[
xk,Nk−1

, xk,Nk

]
. It is worth to note

that Ik = ∪Nk
ik=1 Ik,ik and each knot point in the partition of Ik is exactly in one of the

subintervals Ik,ik , ik = 1, 2 . . . , Nk mentioned above. We call such a set ∆ as a partition of Ω
for an obvious reason.
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For convenience, let us introduce the following notation. For a positive integer N,

ΣN = {1, 2, . . . , N}, ΣN,0 = {0, 1, . . . N},
∂ΣN,0 = {0, N}, intΣN,0 = {1, 2, . . . , N − 1}.

For each ik ∈ ΣNk , let uk,ik : Ik → Ik,ik be an affine map of the form

uk,ik (x) = ak,ik x + bk,ik ,

satisfying {
uk,ik (xk,0) = xk,ik−1 and uk,ik (xk,Nk

) = xk,ik if ik is odd,
uk,ik (xk,0) = xk,ik and uk,ik (xk,Nk

) = xk,ik−1 if ik is even.
(1)

When the interval Ik,ik involved in the definition of the affine map is half-open, the
above equation needs to be interpreted in terms of the one-sided limit. For instance, when
ik ∈ {1, 2, . . . , Nk−1} is odd, uk,ik (xk,Nk

) = xk,ik in (1) actually means limx→x−k,Nk
uk,ik (x) =

xk,ik .
Note that ∣∣uk,ik (x)− uk,ik (x′)

∣∣ ≤ γk,ik |x− x′|, ∀ x, x′ ∈ Ik, (2)

for 0 ≤ γk,ik = |ak,ik | < 1. Using the definition of the map uk,ik , one can verify that

u−1
k,ik

(xk,ik ) = u−1
k,ik+1(xk,ik ), (3)

for all ik ∈ intΣNk ,0.
Let τ : Z× {0, N1, N2, . . . , Nn} → Z be defined by{

τ(i, 0) = i− 1, τ(i, Nk) = i, if i is odd,
τ(i, 0) = i, τ(i, Nk) = i− 1, if i is even.

(4)

Using the above notation, we see that uk,ik (xk,jk ) = xk,τ(ik ,jk) for all ik ∈ ΣNk , jk ∈ ∂ΣNk ,0
and k ∈ Σn.

It is easy to observe that the boundary of Ω in the usual metric of Rn is

∂Ω =
{

X = (x1, . . . , xk,jk , . . . xn) ∈ Ω : jk ∈ ∂ΣNk ,0, k ∈ Σn
}

.

3. Multivariate α-Fractal Functions in Some Complete Function Spaces

This section targets to construct fractal functions (self-referential functions) in the
complete function spaces Cm(Ω), Lp(Ω),Wm,p(Ω) and Cm,σ(Ω), which we recalled in the
previous section. To this end, let X be any of the function space from the list

{
Cm(Ω),Lp(Ω),

Wm,p(Ω), Cm,σ(Ω)
}

and f ∈ X, be a fixed function, which we shall refer to as the germ
function. Let b ∈ X be a fixed function, called the base function.

For each g ∈ X, and X = (x1, . . . , xn) ∈ ∏n
k=1 Ik,ik , (i1, . . . , in) ∈ ∏n

k=1 ΣNk , we define
Tf (g) as

Tf (g)(X) = f (X) + αi1 ...in(g− b)
(
u−1

i1 ...in(X)
)
, (5)

where u−1
i1 ...in(X) =

(
u−1

1,i1
(x1), . . . , u−1

1,i1
(xn)

)
and αi1 ...in are real numbers such that

max
{
|αi1 ...in | : (i1, . . . , in) ∈

n

∏
k=1

ΣNk

}
< 1.
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The ∏n
k=1 Nk-tuple comprised of the real numbers αi1 ...in is called the scaling vector and

it is denoted by α. We define

‖α‖∞ = max
{
|αi1 ...in | : (i1, . . . , in) ∈

n

∏
k=1

ΣNk

}
.

The main objective in this section is to choose the scale vector α and base function
b in (5) so that the Read-Bajraktarević (RB) operator Tf is a well-defined map, and, in
fact, Tf is a contraction map on the function X or a suitable subspace of X. It is worth to
emphasize that throughout the current note, a partition ∆ of the hyperrectangle Ω is chosen
as mentioned in the previous section.

Theorem 1. Let f ∈ Cm(Ω) and define

Cm
f (Ω) :=

{
g ∈ Cm(Ω) : g(X) = f (X) ∀ X ∈ ∂Ω

}
.

Suppose that the scaling vector α is so chosen that

max
(i1,...,in)∈∏n

k=1 ΣNk

{
|αi1 ...in |

∏n
k=1 |ak,ik |m

}
< 1

and b ∈ Cm
f (Ω).

Then the following hold.

1. The map Tf given in (5) is well-defined on Cm
f (Ω).

2. In fact, Tf : Cm
f (Ω)→ Cm

f (Ω) ⊂ Cm(Ω) is a contraction map.
3. As a consequence, by the Banach fixed point theorem, there exists a unique function f α

∆,b ∈
Cm

f (Ω) such that

Dl( f α
∆,b)(x1,i1 , x2,i2 , . . . , xn,in) = Dl( f )(x1,i1 , x2,i2 , . . . , xn,in),

for all (i1, . . . , in) ∈ ∏n
k=1 ΣNk ,0 and multi-index l with |l| ≤ m. Moreover, the function f α

∆,b
and its derivatives satisfy the self-referential equations given by

Dl( f α
∆,b)(X) = Dl( f )(X) +

αi1 ...in

∏n
k=1 alk

k,ik

(
Dl( f α

∆,b − b)
)(

u−1
i1 ...in(X)

)
, (6)

for all X ∈ ∏n
k=1 Ik,ik , (i1, . . . , in) ∈ ∏n

k=1 ΣNk and multi-index l with |l| ≤ m.

Proof. We shall first show that Tf is well-defined on Cm
f (Ω), that is, we show that Tf (g) ∈

Cm
f (Ω) for all g ∈ Cm

f (Ω).
Let g ∈ Cm

f (Ω) and X = (x1, . . . , xr, . . . , xn) ∈ ∏n
k=1 Ik,ik be such that xr ∈ Ir,ir ∩ Ir,ir+1

for some r ∈ Σn and ir ∈ intΣNr ,0.
Note that this is possible only when xr = xr,ir and in that case, by (3), we have(

u−1
1,i1

(x1), . . . , u−1
r,ir (xr,ir ), . . . , u−1

n,in(xn)
)
=
(
u−1

1,i1
(x1), . . . , u−1

r,ir+1(xr,ir ), . . . , u−1
n,in(xn)

)
,

and u−1
i1 ...in(X) ∈ ∂Ω. So, by the specified choice of b, we have

Dl(g− b)
(
u−1

1,i1
(x1), . . . , u−1

r,ir (xr,ir ), . . . , u−1
1,i1

(xn)
)
= 0,
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for all multi-index l with |l| ≤ m. Thus,

Dl(Tf (g))(x1, . . . , xr, . . . , xn)

= Dl( f )(x1, . . . , xr, . . . , xn)

+
αi1 ...in

∏n
k=1 alk

k,ik

[Dl(g− b)]
(
u−1

1,i1
(x1), . . . , u−1

r,ir (xr,ir
)
, . . . , u−1

1,i1
(xn))

= Dl( f )(x1, . . . , xr, . . . , xn)

+
αi1 ...in

∏n
k=1 alk

k,ik

[Dl(g− b)]
(
u−1

1,i1
(x1), . . . , u−1

r,ir (xr,ir+1), . . . , u−1
1,i1

(xn)
)

= Dl( f )(x1, . . . , xr, . . . , xn).

That is, Dl(Tf (g)
)
(X) = Dl( f )(X) irrespective of whether xr is considered as a point

in Ir,ir or as a point in Ir,ir+1. The above observation also yields the following:

1. Dl(Tf (g)
)
(X) = Dl( f )(X) for all X ∈ ∂Ω and |l| ≤ m.

2. Dl(Tf (g)
)
(x1,i1 , . . . , xn,in) = Dl( f )(x1,i1 , . . . , xn,in) for all (i1, . . . , in) ∈ ∏n

k=1 ΣNk and
|l| ≤ m.

In particular, Tf (g) ∈ Cm
f (Ω).

Next, let g, h ∈ Cm
f (Ω) and l be a multi-index with |l| ≤ m. Then∣∣∣Dl [Tf (g)− Tf (h)](X)

∣∣∣ = ∣∣∣ αi1 ...in

∏n
k=1 alk

k,ik

Dl(g− h)(u−1
i1 ...in(X))

∣∣∣
≤ max

(i1,...,in)∈∏n
k=1 ΣNk

{
|αi1 ...in |

∏n
k=1 |ak,ik |m

}
‖Dl(g− h)‖∞.

Taking sum over all |l| ≤ m, we get

‖Tf (g)− Tf (h)‖Cm(Ω) ≤ max
(i1,...,in)∈∏n

k=1 ΣNk

{
|αi1 ...in |

∏n
k=1 |ak,ik |m

}
‖g− h‖Cm(Ω).

Since, max(i1,...,in)∈∏n
k=1 ΣNk

{
|αi1...in |

∏n
k=1 |ak,ik

|m

}
< 1, the map Tf : Cm

f (Ω) → Cm
f (Ω) is

a contraction. Rest of the claim follows by a simple application of the Banach fixed
point theorem.

Example 1. Let us consider the surface in R3 defined by the bivariate function f (x, y) =
1√

x2+y2+1
for all (x, y) ∈ [−1, 1]× [−1, 1] and a mesh partition ∆ = {−1,−0.5, 0, 0.5, 1} ×

{−1,−0.5, 0, 0.5, 1} of the square [−1, 1] × [−1, 1]. Fractal functions f α
∆,b corresponding to f

associated with different choices of scale vector α and base function b are shown below.
Let us consider two base functions as follows:

b1(x, y) = 1− (x− 1)(x + 1)(y− 1)(y + 1) f (x, y),

and

b2(x, y) =
1
2
(
(x + 1) f (1, y)− (x− 1) f (−1, y) + (y + 1) f (x, 1)− (y− 1) f (x,−1)

)
− 1

4
(
(x + 1)(y + 1) f (1, 1)− (x− 1)(y + 1) f (−1, 1)

)
− 1

4
(
(x− 1)(y− 1) f (−1,−1)− (x + 1)(y− 1) f (1,−1)

)
.
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Figure 1a is the graph of the germ function f (x, y) = 1√
x2+y2+1

. Figure 1b is the

graph of fractal perturbation f α
∆,b with base function b = b1 and uniform scale vector α,

where αi1i2 = 0.7 for all ik ∈ Σ4 for k = 1, 2. Figure 1c depicts the graph of f α
∆,b with base

function b = b2 and uniform scale vector α as taken previously. Finally, Figure 1d displays
the graph of f α

∆,b with base function b = b2 and uniform scale vector α, where αi1i2 = 0.01.
In this case, the parameters satisfy the conditions prescribed in Theorem 1, for m = 1. Thus,
Figure 1a,b corroborate the technique demonstrated for the construction of smoothness
preserving fractal functions in Theorem 1.

(a) Seed function f (x, y) = 1√
x2+y2+1

(b) f α
∆,b with uniform scale α = (0.7) and b = b1

(c) f α
∆,b with uniform scale α = (0.7) and b = b2 (d) f α

∆,b with uniform scale α = (0.01) and b = b2

Figure 1. Fractal functions corresponding to the seed function f associated with different choices of
base function and scale vector.

Theorem 2. Let f ∈ Cm,σ(Ω) and define

Cm,σ
f (Ω) :=

{
g ∈ Cm,σ(Ω) : g(X) = f (X) ∀ X ∈ ∂Ω

}
.

Choose the scale vector satisfying

max
(i1,...,in)∈∏n

k=1 ΣNk

{ |αi1 ...in |
∏n

k=1 |ak,ik |m+σ

}
< 1 (7)

and the base function b ∈ Cm,σ
f (Ω). Then the RB operator Tf defined in (5) is a contraction on

Cm,σ
f (Ω), and its unique fixed point f α

∆,b satisfies the self-referential Equation (6).

Proof. Using Theorem 1 we see that Tf (g) ∈ Cm
f (Ω) for all g ∈ Cm,σ

f (Ω). We shall show

that for all multi-index l with |l| = m, Dl(Tf (g)) is Hölder continuous with exponent σ.
Towards this, let X, Y ∈ ∏n

k=1 Ik,ik be two points in the same rectangular mesh. We have
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∣∣Dl(Tf (g))(X)− Dl(Tf (g))(Y)
∣∣

=
∣∣∣ αi1 ...in

∏n
k=1 alk

k,ik

[
Dl(g− b)(u−1

i1 ...in(X))− Dl(g− b)(u−1
i1 ...in(Y))

]∣∣∣
≤

|αi1 ...in |
∏n

k=1 |ak,ik |lk
∣∣Dl(g)(u−1

i1 ...in(X))− Dl(g)(u−1
i1 ...in(Y))

∣∣
+

|αi1 ...in |
∏n

k=1 |ak,ik |lk
∣∣Dl(b)(u−1

i1 ...in(X))− Dl(b)(u−1
i1 ...in(Y))

∣∣
≤

CDl(g)|αi1 ...in |
∏n

k=1 |ak,ik |lk
‖u−1

i1 ...in(X)− u−1
i1 ...in(Y)‖

σ

+
CDl(b)|αi1 ...in |
∏n

k=1 |ak,ik |lk
‖u−1

i1 ...in(X)− u−1
i1 ...in(Y)‖

σ

=

[
CDl(g)|αi1 ...in |
∏n

k=1 |ak,ik |lk
+

CDl(b)|αi1 ...in |
∏n

k=1 |ak,ik |lk

]
‖u−1

i1 ...in(X)− u−1
i1 ...in(Y)‖

σ

≤ max
(i1,...,in)∈∏n

k=1 ΣNk

|αi1 ...in |
∏n

k=1 |ak,ik |m+σ

[
CDl(g) + CDl(b)

]
‖X−Y‖σ,

where CDl(g) and CDl(b) denote the Hölder constants of Dl(g) and Dl(b), respectively. If
X and Y lie in two distinct but in adjacent meshes, then by taking point on their common
boundary and repeating the above steps we get∣∣∣Dl(Tf (g))(X)− Dl(Tf (g))(Y)

∣∣∣
≤ 2 max

(i1,...,in)∈∏n
k=1 ΣNk

|αi1 ...in |
∏n

k=1 |ak,ik |m+σ
[CDl(g) + CDl(b)]‖X−Y‖σ.

Since the total number of rectangular meshes is ∏n
k=1 Nk, for any X, Y ∈ Ω, we have∣∣Dl(Tf (g))(X)− Dl(Tf (g))(Y)

∣∣
≤ (

n

∏
k=1

Nk) max
(i1,...,in)∈∏n

k=1 ΣNk

|αi1 ...in |
∏n

k=1 |ak,ik |m+σ
[CDl(g) + CDl(b)]‖X−Y‖σ,

which shows that Tf

(
Cm,σ

f (Ω)
)
⊆ Cm,σ

f (Ω).

A similar computation reveals also that the map Tf : Cm,σ
f (Ω)→ Cm,σ

f (Ω) is a contrac-
tion map, completing the proof.

Corollary 1. Let f : Ω → R be a Hölder continuous function with exponent σ. Assume that a
scaling vector α is so chosen that

max
(i1,...,in)∈∏n

k=1 ΣNk

{ |αi1 ...in |
∏n

k=1 |ak,ik |σ
}
< 1

and the parameter map b is a Hölder continuous function with exponent σ and b(X) = f (X) for all
X ∈ ∂Ω. Then the Hausdorff dimension of the graph of the corresponding self-referential function
f α
∆,b satisfies

n ≤ dimH
(
Gr( f α

∆,b)
)
≤ n + 1− σ.
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Proof. With the stated hypotheses on α and b, it follows from the previous theorem (with
m = 0) that the self-referential counterpart f α

∆,b of f is a Hölder continuous function with
exponent σ. Define a map A : Gr( f α

∆,b)→ Ω by

A
(
x, f α

∆,b(x)
)
= x,

where we endow Gr( f α
∆,b) ⊆ Rn+1 and Ω ⊆ Rn with the usual Euclidean norm. It is plain

to see that A is a surjective Lipschitz map. From fundamental properties of the Hausdorff
dimension given in ([38], Theorem 2, Items (5), (8)) we have

n = dimH(Ω) = dimH

(
A
(
Gr( f α

∆,b
)))
≤ dimH

(
Gr( f α

∆,b)
)
.

For the desired upper bound, let us recall that the Hausdorff dimension of the graph
of a Hölder continuous function with Hölder exponent s ∈ (0, 1] whose domain is a
compact subset of Rn with the Hausdorff dimension equal to d is less than or equal to
min{d + 1− s, d

s }([39], Chapter 10). Therefore,

dimH
(
Gr( f α

∆,b)
)
≤ n + 1− σ,

completing the proof.

Theorem 3. Let f ∈ Lp(Ω) for 0 < p ≤ ∞. Suppose the scaling vector α is so chosen that
[

∑Nn
in=1 . . . ∑N1

i1=1(∏
n
k=1 |ak,ik |)|αi1 ...in |p

]1/p
< 1, for 1 ≤ p < ∞.

‖α‖∞ < 1, for p = ∞.[
∑Nn

in=1 . . . ∑N1
i1=1(∏

n
k=1 |ak,ik |)|αi1 ...in |p

]
< 1, for 0 < p < 1.

(8)

Then Tf defined in (5) maps Lp(Ω) to Lp(Ω). Further, Tf is a contraction map and hence by
the Banach fixed point theorem, there exists a unique f α

∆,b ∈ L
p(Ω) such that

f α
∆,b(X) = f (X) + αi1 ...in( f α

∆,b − b)
(
u−1

i1 ...in(X)
)
,

for X ∈ ∏n
k=1 Ik,ik , and (i1, . . . , in) ∈ ∏n

k=1 ΣNk .

Proof. Using the stated hypotheses, it is easy to verify that the operator Tf : Lp(Ω) →
Lp(Ω) is well-defined. What remains is to show that Tf is a contraction map. To this end,
let g, h ∈ Lp(Ω), 1 ≤ p < ∞. We have

‖Tf (g)− Tf (h)‖
p
p =

∫
Ω
|(Tf (g)− Tf (h))(X)|pdX

=
Nn

∑
in=1

. . .
N1

∑
i1=1

∫
X∈∏n

k=1 Ik,ik

∣∣∣αi1 ...in(g− h)
(
u−1

i1 ...in(X)
)∣∣∣pdX

=
Nn

∑
in=1

. . .
N1

∑
i1=1

(
n

∏
k=1
|ak,ik |)|αi1 ...in |

p
∫

Ω
|(g− h)(X̃)|pdX̃

=
[ Nn

∑
in=1

. . .
N1

∑
i1=1

(
n

∏
k=1
|ak,ik |)|αi1 ...in |

p
]
‖g− h‖p

p

Thus,

∥∥Tf (g)− Tf (h)
∥∥

p =
[ Nn

∑
in=1

. . .
N1

∑
i1=1

(
n

∏
k=1
|ak,ik |)|αi1 ...in |

p
]1/p
‖g− h‖p,
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proving the claim for the case 1 ≤ p < ∞. The other cases can be dealt similarly.

Next, let us construct self-referential functions associated with a function f ∈ Wm,p(Ω).
First, let us recall the following result, popularly known as the Leibniz theorem.

If f ∈ Wm,p(Ω) and φ is infinitely differentiable on Ω, then φ f ∈ Wm,p(Ω) and

Dl(φ f ) =
l

∑
q=0

(
l
p

)
Dp(φ)Dl−q( f ), ∀ |l| ≤ m.

Theorem 4. Let f ∈ Wm,p(Ω) for 1 ≤ p ≤ ∞. Suppose that the base function b ∈ Wm,p(Ω)
and the scaling vector is chosen so that

[
∑Nn

in=1 . . . ∑N1
i1=1

|αi1...in |p

∏n
k=1 |ak,ik

|mp−1

]1/p
< 1, for 1 ≤ p < ∞.

max{ |αi1...in |
∏n

k=1 |ak,ik
|m : (i1, . . . , in) ∈ ∏n

k=1 ΣNk} < 1, for p = ∞.
(9)

Then the RB operator Tf given in (5) is a contraction map onWm,p(Ω). Consequently, Tf
has a unique fixed point f α

∆,b.

Proof. A routine computation yields that the RB operator is well-defined and it maps the
spaceWm,p(Ω) into itself. We shall just show that it is a contraction onWm,p(Ω). To this
end, let 1 ≤ p < ∞ and l be a multi-index with |l| ≤ m. We note that∥∥∥Dl[Tf (g)− Tf (h)

]∥∥∥p

p

=
∫

Ω

∣∣Dl [Tf (g)− Tf (h)](X)
∣∣pdX

=
∫

Ω

∣∣Dl [Tf (g)− Tf (h)](X)
∣∣pdX

=
Nn

∑
in=1

. . .
N1

∑
i1=1

∫
∏n

k=1 Ik,ik

∣∣Dl [Tf (g)− Tf (h)](X)
∣∣pdX

=
Nn

∑
in=1

. . .
N1

∑
i1=1

∫
∏n

k=1 Ik,ik

∣∣∣Dl
[
αi1 ...in(g− h)(u−1

i1 ...in(X))
]∣∣∣pdX

=
Nn

∑
in=1

. . .
N1

∑
i1=1
|αi1 ...in |

p
∫

∏n
k=1 Ik,ik

∣∣∣[ 1

∏n
k=1 alk

k,ik

Dl(g− h)(u−1
i1 ...in(X))

]∣∣∣pdX

=
Nn

∑
in=1

. . .
N1

∑
i1=1

|αi1 ...in |p

∏n
k=1 |ak,ik |plk−1

∫
Ω

∣∣∣Dl(g− h)(X′)
∣∣∣pdX′

=

(
Nn

∑
in=1

. . .
N1

∑
i1=1

|αi1 ...in |p

∏n
k=1 |ak,ik |plk−1

)
‖Dl(g− h)‖p

p.

Thus, for a multi-index l with |l| ≤ m we have

∥∥∥Dl [Tf (g)− Tf (h)]
∥∥∥

p
=

(
Nn

∑
in=1

. . .
N1

∑
i1=1

|αi1 ...in |p

∏n
k=1 |ak,ik |plk−1

) 1
p ∥∥Dl(g− h)

∥∥
p.
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Hence,

∥∥Tf (g)− Tf (h)
∥∥
Wm,p(Ω)

= ∑
|l|≤m

(
Nn

∑
in=1

. . .
N1

∑
i1=1

|αi1 ...in |p

∏n
k=1 |ak,ik |plk−1

) 1
p ∥∥Dl(g− h)

∥∥
p

≤
(

Nn

∑
in=1

. . .
N1

∑
i1=1

|αi1 ...in |p

∏n
k=1 |ak,ik |pm−1

) 1
p

∑
|l|≤m

∥∥Dl(g− h)
∥∥

p

≤
(

Nn

∑
in=1

. . .
N1

∑
i1=1

|αi1 ...in |p

∏n
k=1 |ak,ik |pm−1

) 1
p ∥∥g− h

∥∥
Wm,p(Ω)

The rest of the theorem follows from the Banach fixed point theorem and the assump-
tion on the scale vector. The case p = ∞ can be worked out similarly.

4. Fractal Operator on Function Spaces

Let f ∈ X, where X is a fixed function space from the list{
Cm(Ω),Lp(Ω),Wm,p(Ω), Cm,σ(Ω)

}
.

The results established in the previous section provide a self-referential counterpart
to each f ∈ X, and consequently provide an operator. That is, for a prescribed set of
parameters such as the partition, scale vector and the base function, there exists a fractal
operator F α

∆,b : X → X defined by F α
∆,b( f ) = f α

∆,b. This section intends to record a few
elementary properties of the operator F α

∆,b : X → X, what we call a multivariate self-
referential operator (fractal operator); see also [1]. We shall provide the details only for
X = Wm,p(Ω), as the other spaces can be similarly dealt with. For future reference, we
introduce the notation

Kα,m,p =


[ Nn

∑
in=1

. . .
N1

∑
i1=1

|αi1 ...in |p

∏n
k=1 |ak,ik |mp−1

]1/p
, for 1 ≤ p < ∞.

max
{ |αi1...in |

∏n
k=1 |ak,ik

|m : ik ∈ ΣNk , k ∈ Σn
}

, for p = ∞.

Proposition 1. (Perturbation Error) Let f ∈ Wm,p(Ω). Suppose that a partition ∆ of the
hyperrectangle Ω, base function b ∈ Wm,p(Ω), and scale vector α be chosen as in Theorem 4. Then

‖ f α
∆,b − f ‖Wm,p(Ω) ≤ Kα,m,p‖ f α

∆,b − b‖Wm,p(Ω). (10)

Proof. Let us recall the self-referential equations satisfied by the fractal counterpart f α
∆,b ∈

Wm,p(Ω) and its derivatives

Dl( f α
∆,b)(X) = Dl( f )(X) +

αi1 ...in

∏n
k=1 alk

k,ik

Dl( f α
∆,b − b)(u−1

i1 ...in(X)), (11)

for all X ∈ ∏n
k=1 Ik,ik , (i1, . . . , in) ∈ ∏n

k=1 ΣNk and multi-index l with |l| ≤ m. Assume that
1 ≤ p < ∞. By simple calculations

∥∥∥Dl( f α
∆,b − f

)∥∥∥
p
=

(
Nn

∑
in=1

. . .
N1

∑
i1=1

|αi1 ...in |p

∏n
k=1 |ak,ik |plk−1

) 1
p ∥∥Dl( f α

∆,b − b)
∥∥

p.
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Therefore,

‖ f α
∆,b − f ‖Wm,p(Ω) =

(
∑
|l|≤m

‖Dl( f α
∆,b − f )‖p

p

) 1
p

≤
[ Nn

∑
in=1

. . .
N1

∑
i1=1

|αi1 ...in |p

∏n
k=1 |ak,ik |mp−1

]1/p
‖ f α

∆,b − b‖Wm,p(Ω).

Similar analysis for p = ∞.

Now, let us take the multivariate base function b : Ω→ R used in the construction of
the self-referential function f α

∆,b through a suitable operator L : X → X. That is, we take
b = L( f ) so that the conditions required for b are satisfied. In this case, the multivariate
fractal operator will be denoted by F α

∆,L : X → X. In what follows, we intend to record
some elementary properties of the multivariate fractal operator F α

∆,L.
The following proposition provides a counterpart to the linearity property of the fractal

operator well explored in the setting of univariate α-fractal functions on various function
spaces; see, for instance, [11]. The proof follows almost verbatim, and hence omitted.

Proposition 2. Let X = Wm.p(Ω) and L : X → X be a linear operator. Choose the base
function b in the construction of fractal function f α

∆,b via this operator L so that b = L( f ).
Then the corresponding fractal operator, which shall be denoted by F α

∆,L : X → X, defined by
F α

∆,L( f ) = f α
∆,L( f ) is linear.

Let X be a Banach space and A : X → X be a bounded linear operator such that
‖I − A‖ < 1, where I is the identity operator on X. Then, it is well-known that A is
bijective and A−1 is bounded; see, for instance, [40]. The following result available in [41]
is a generalization of the aforementioned Neumann’s lemma.

Lemma 1. ([41], Lemma 1) Let A : X → X be a linear operator on a Banach space X such that

‖A(x)− x‖ ≤ λ1‖x‖+ λ2‖A(x)‖ ∀ x ∈ X,

for some λ1 and λ2 ∈ [0, 1). Then A is a topological automorphism (a bounded, invertible map that
possesses a bounded inverse). Furthermore,

1− λ1

1 + λ2
‖x‖ ≤ ‖A(x)‖ ≤ 1 + λ1

1− λ2
‖x‖,

1− λ2

1 + λ1
‖x‖ ≤ ‖A−1(x)‖ ≤ 1 + λ2

1− λ1
‖x‖, ∀ x ∈ X.

Proposition 3. Let L :Wm,p(Ω)→Wm,p(Ω) be a bounded linear operator and the scale vector α
be chosen such that max

{
Kα,m,p, ‖L‖Kα,m,p

}
< 1. Then the linear operator F α

∆,L :Wm,p(Ω)→
Wm,p(Ω) is a topological automorphism.

Proof. Recall that here the base function b = L( f ) so that by Proposition 1 we have∥∥F α
∆,L( f )− f

∥∥
Wm,p(Ω)

=‖ f α
∆,L( f ) − f ‖Wm,p(Ω)

≤ Kα,m,p‖ f α
∆,L( f ) − L( f )‖Wm,p(Ω)

≤ Kα,m,p‖ f α
∆,L( f )‖Wm,p(Ω) + Kα,m,p‖L‖‖ f ‖Wm,p(Ω)

= Kα,m,p‖F α
∆,L( f )‖Wm,p(Ω) + Kα,m,p‖L‖‖ f ‖Wm,p(Ω).

The assertion is now immediate from the previous proposition.
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The existence of Schauder bases consisting of appropriate functions for the Sobolev
spaces is quite desirable in analysis of PDEs, for instance, for demonstrating the existence
of solutions of various non-linear boundary value problems. We have the following
result giving a Schauder basis consisting of self-referential functions for the Sobolev space
Wm,p(Ω). The heart of the matter is an elementary result in the theory of bases, which
states that a topological isomorphism preserves Schauder bases; see, for instance, [37].

Corollary 2. The Banach space Wm,p(Ω) has a Schauder basis consisting of multivariate self-
referential functions.

Proof. Let { fm}m∈N be a Schauder basis ofWm,p(Ω) whose existence is established and
reported, for instance, in [42–44]. Choose the scale function α and operator L as in the
previous proposition so that the fractal operator F α

∆,L is a topological automorphism. As an
isomorphism, in particular, an automorphism, preserves Schauder bases, we conclude that
{( fm)α

∆,L}m∈N, where ( fm)α
∆,L = F α

∆,L( fm) is a Schauder basis consisting of self-referential
functions for the Banach spaceWm,p(Ω).

5. Fractional Integral of Continuous Multivariate α-Fractal Function

As mentioned in the introductory section, exploration of interconnection between
fractional calculus and fractal geometry has always been of interest. Our purpose in
this section is limited; we shall observe that the Riemann–Liouville fractional integral of
the continuous multivariate α-fractal function is also a fractal function. A similar result
regarding univariate FIF can be found in [28].

Definition 1. [45] Let f be a continuous function on the closed and bounded hyperrectangle Ω in
Rn. The left-hand-sided mixed Riemann–Liouville fractional integral of f of order γ is defined as

Iγ
a f (X) =

1
∏n

k=1 Γ(γk)

∫ x1

a1

. . .
∫ xn

an
(x1 − s1)

γ1−1 . . . (xn − sn)
γn−1

. f (s1, s2, . . . , sn) ds1ds2 . . . dsn,

where a = (a1, . . . , an) is a fixed point, X = (x1, x2 . . . , xn) and γ = (γ1, . . . , γn) with ak ≤ xk,
γk > 0 for each k ∈ Σn.

Let f ∈ C(Ω). We write f (X) = f (x1, x2, . . . , xn). From Theorem 1 it follows that by
choosing b ∈ C f (Ω) and scaling vector α such that

‖α‖∞ := max
(i1,...,in)∈∏n

k=1 ΣNk

|αi1 ...in | < 1,

the fractal counterpart f α
∆,b of f belongs to C(Ω). Furthermore, since f α

∆,b is the fixed point
of the RB operator Tf : C(Ω)→ C(Ω) defined by

Tf (g)(X) = f (X) + αi1 ...in(g− b)(u−1
i1 ...in(X)),

for all X ∈ ∏n
k=1 Ik,ik , (i1, . . . , in) ∈ ∏n

k=1 ΣNk . Consequently, f α
∆,b satisfies the functional

equation
f α
∆,b(ui1 ...in(X)) = f (ui1 ...in(X)) + αi1 ...in( f α

∆,b − b)(X)

= αi1 ...in f α
∆,b(X) + f (ui1 ...in(X))− αi1 ...in b(X).

Let us define
qi1 ...in(X) = f

(
ui1 ...in(X)

)
− αi1 ...in b(X)

so that the self-referential equation for f α
∆,b becomes

f α
∆,b
(
ui1 ...in(X)

)
= αi1 ...in f α

∆,b(X) + qi1 ...in(X).
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Since the multivariate fractal function f α
∆,b is continuous, we can talk about its Riemann–

Liouville fractional integral. In what follows, we establish that the Riemann–Liouville
fractional integral of f α

∆,b is again a fractal function.
For the sake of convenience, we shall deal with the uniform scaling factor, that is,

αi1 ...in = α for all (i1, . . . , in) ∈ ∏n
k=1 ΣNk . Then, with a slight abuse of notation, the above

equation reduces to
f α
∆,b
(
ui1 ...in(X)

)
= α f α

∆,b(X) + qi1 ...in(X). (12)

Theorem 5. Let ∆ be a partition of the hyperrectangle Ω in Rn and f ∈ C(Ω). Assume that
b : Ω→ R is continuous and b(X) = f (X) for all X ∈ ∂Ω, the boundary of Ω. Choose a scaling
vector α such that ‖α‖∞ < 1. Then Iγ

a f α
∆,b, the left-hand-sided mixed Riemann–Liouville fractional

integral of order γ of the self-referential function f α
∆,b, satisfies the following equation:

Iγ
a f α

∆,b
(
ui1 ...in(X)

)
=
(

α
n

∏
k=1

aγk
k,ik

)
Iγ

a f α
∆,b(X) + q̂i1 ...in(X),

where

q̂i1 ...,in(X)

=
1

∏n
k=1 Γ(γk)

n−1

∑
k=0

( k

∏
j=0

a
γn−j
n−j,in−j

) ∫ u1,i1
(x1)

a1

. . .
∫ un−k,in−k

(xn−k)

an−k

∫ xn−k+1

an−k+1

. . .
∫ xn

an(
u1,i1(x1)− s1

)γ1−1 . . .
(
un−k,in−k

(xn−k)− sn−k
)γn−k−1

(xn−k+1 − sn−k+1)
γn−k+1−1

. . . (xn − sn)
γn−1 f α

∆,b
(
s1, . . . , sn−k, un−k+1,in−k+1

(sn−k+1), . . . , un,in(sn)
)
ds1 . . . dsn+( n

∏
k=1

aγk
k,ik

)
Iγ

a qi1 ...in(X).

Proof. According toTheorem 1, it follows that f α
∆,b is continuous on Ω and satisfies the

equation
f α
∆,b
(
ui1 ...in(X)

)
= α f α

∆,b(X) + qi1 ...in(X), ∀ X ∈ Ω.

Hence,

Iγ
a f α

∆,b
(
ui1 ...in(X)

)
=

1
∏n

k=1 Γ(γk)

∫ u1,i1
(x1)

a1

. . .
∫ un,in (xn)

an

(
u1,i1(x1)− s1

)γ1−1

. . .
(
un,in(xn)− sn

)γn−1 f α
∆,b(s1, . . . , sn)ds1 . . . dsn

=
1

∏n
k=1 Γ(γk)

∫ u1,i1
(x1)

a1

. . .
∫ un,in (an)

an
(u1,i1(x1)− s1)

γ1−1

. . . (un,in(xn)− sn)
γn−1 f α

∆,b(s1, . . . , sn)ds1 . . . dsn

+
1

∏n
k=1 Γ(γk)

∫ u1,i1
(x1)

a1

. . .
∫ un,in (xn)

un,in (an)

(
u1,i1(x1)− s1

)γ1−1

. . .
(
un,in(xn)− sn

)γn−1 f α
∆,b(s1, . . . , sn)ds1 . . . dsn.

Let us write

E0 =
1

∏n
k=1 Γ(γk)

∫ u1,i1
(x1)

a1

. . .
∫ un,in (an)

an

(
u1,i1(x1)− s1

)γ1−1

. . .
(
un,in(xn)− sn

)γn−1 f α
∆,b(s1, . . . , sn)ds1 . . . dsn,

J1 =
1

∏n
k=1 Γ(γk)

∫ u1,i1
(x1)

a1

. . .
∫ un,in (xn)

un,in (an)

(
u1,i1(x1)− s1

)γ1−1

. . .
(
un,in(xn)− sn

)γn−1 f α
∆,b(s1, . . . , sn)ds1 . . . dsn.
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so that
Iγ

a f α
∆,b
(
ui1 ...in(X)

)
= E0 + J1.

Turning our attention to J1, let us change the variable sn using the transformation
sn = un,in(tn). We have

J1 =
aγn

n,in
∏n

k=1 Γ(γk)

∫ u1,i1
(x1)

a1

. . .
∫ xn

an

(
u1,i1(x1)− s1

)γ1−1

. . . (xn − tn)
γn−1 f α

∆,b
(
s1, . . . , un,in(tn)

)
ds1 . . . dtn

=
aγn

n,in
∏n

k=1 Γ(γk)

∫ u1,i1
(x1)

a1

. . .
∫ un−1,in−1

(xn−1)

an−1

∫ xn

an

(
u1,i1(x1)− s1

)γ1−1

. . . (xn − sn)
γn−1 f α

∆,b
(
s1, . . . , un,in(sn)

)
ds1 . . . dsn.

Applying similar process to the variable sn−1 we get

J1 =
aγn

n,in
∏n

k=1 Γ(γk)

∫ u1,i1
(x1)

a1

. . .
∫ un−1,in−1

(an−1)

an−1

∫ xn

an
(u1,i1(x1)− s1)

γ1−1

. . . (xn − sn)
γn−1 f α

∆,b
(
s1, . . . , un,in(sn)

)
ds1 . . . dsn

+
aγn

n,in
∏n

k=1 Γ(γk)

∫ u1,i1
(x1)

a1

. . .
∫ un−1,in−1

(xn−1)

un−1,in−1
(an−1)

∫ xn

an
(u1,i1(x1)− s1)

γ1−1

. . . (xn − sn)
γn−1 f α

∆,b
(
s1, . . . , un,in(sn)

)
ds1 . . . dsn

=: E1 + J2.

In J2, let us perform a change of variable using sn−1 = un−1,in−1(tn−1) so that

J2 =
aγn−1

n−1,in−1
aγn

n,in

∏n
k=1 Γ(γk)

∫ u1,i1
(x1)

a1

. . .
∫ xn−1

an−1

∫ xn

an
(u1,i1(x1)− s1)

γ1−1

. . . (xn−1 − sn−1)
γn−1−1(xn − sn)

γn−1 f α
∆,b
(
s1, . . . , un−1,in−1(sn−1), un,in(sn)

)
ds1 . . . dsn.

Consequently,
Iγ

a f α
∆,b
(
ui1 ...in(X)

)
= E0 + E1 + J2.

Proceeding in the same fashion, at the nth step we get

Iγ
a f α

∆,b
(
ui1 ...in(X)

)
=

n−1

∑
k=0

Ek +
∏n

k=1 aγk
k,ik

∏n
k=1 Γ(γk)

∫ x1

a1

. . .
∫ xn−1

an−1

∫ xn

an
(x1 − s1)

γ1−1

. . . (xn−1 − sn−1)
γn−1−1(xn − sn)

γn−1 f α
∆,b
(
ui1 ...in(S)

)
ds1 . . . dsn,

where

Ek =
∏k

j=0 a
γn−j
n−j,in−j

∏n
k=1 Γ(γk)

∫ u1,i1
(x1)

a1

. . .
∫ un−k,in−k

(xn−k)

an−k

∫ xn−k+1

an−k+1

. . .
∫ xn

an(
u1,i1(x1)− s1

)γ1−1 . . .
(
un−k,in−k

(xn−k)− sn−k
)γn−k−1

(xn−k+1 − sn−k+1)
γn−k+1−1

. . . (xn − sn)
γn−1 f α

∆,b
(
s1, . . . , sn−k, un−k+1,in−k+1

(sn−k+1), . . . , un,in(sn)
)
ds1 . . . dsn

for k = 0, 1, . . . , n− 1, with the assumption that ∏0
j=0 a

γn−j
n−j,in−j

= 1.
Finally, using the functional equation

f α
∆,b
(
ui1 ...in(S)

)
= α f α

∆,b(S) + qi1 ...in(S),
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for all S ∈ Ω, we get

Iγ
a f α

∆,b
(
ui1 ...in(X)

)
=

n−1

∑
k=0

Ek +
∏n

k=1 aγk
k,ik

∏n
k=1 Γ(γk)

∫ x1

a1

. . .
∫ xn−1

an−1

∫ xn

an
(x1 − s1)

γ1−1

. . . (xn−1 − sn−1)
γn−1−1(xn − sn)

γn−1
(

α f α
∆,b(S) + qi1 ...in(S)

)
ds1 . . . dsn

=
α ∏n

k=1 aγk
k,ik

∏n
k=1 Γ(γk)

∫ x1

a1

. . .
∫ xn−1

an−1

∫ xn

an
(x1 − s1)

γ1−1

. . . (xn−1 − sn−1)
γn−1−1(xn − sn)

γn−1 f α
∆,b(S)ds1 . . . dsn

+

(
n−1

∑
k=0

Ek +
∏n

k=1 aγk
k,ik

∏n
k=1 Γ(γk)

∫ x1

a1

. . .
∫ xn−1

an−1

∫ xn

an
(x1 − s1)

γ1−1

. . . (xn−1 − sn−1)
γn−1−1(xn − sn)

γn−1qi1 ...in(S)ds1 . . . dsn

)

=
(

α
n

∏
k=1

aγk
k,ik

)
Iγ

a f α
∆,b(X) + q̂i1 ...in(X),

as desired.

6. Conclusions

The α-fractal formalism of fractal interpolation function is proved to be beneficial
in expanding the applications of univariate fractal approximation theory. Through the
construction of multivariate α-fractal functions on a few complete function spaces which are
ubiquitous in the theory of partial differential equations and harmonic analysis, the present
work intends to be a step forward in the theory of multivariate fractal approximation. The
construction of self-referential analogue for each germ function in a complete function
space under consideration leads naturally to an operator, referred to as the multivariate
fractal operator. We have studied a few elementary properties of the fractal operator. The
multivariate fractal operator introduced and studied here enabled us, in particular, to
construct Schauder bases consisting of self-referential functions for the function spaces.
Further, taking a slight detour from the main theme, it is shown that the Riemann–Liouville
fractional integral of a self-referential counterpart of the given multivariate germ function
will also be a self-referential function under some suitable conditions.
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