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Abstract: This paper is concerned with the existence and uniqueness of solutions for a Hilfer–
Hadamard fractional differential equation, supplemented with mixed nonlocal (multi-point, frac-
tional integral multi-order and fractional derivative multi-order) boundary conditions. The existence
of a unique solution is obtained via Banach contraction mapping principle, while the existence results
are established by applying the fixed point theorems due to Krasnoselskiĭ and Schaefer and Leray–
Schauder nonlinear alternatives. We demonstrate the application of the main results by presenting
numerical examples. We also derive the existence results for the cases of convex and non-convex
multifunctions involved in the multi-valued analogue of the problem at hand.

Keywords: Hilfer–Hadamard fractional derivative; Riemann–Liouville fractional derivative; Caputo
fractional derivative; fractional differential equations; inclusions; nonlocal boundary conditions;
existence and uniqueness; fixed point

1. Introduction

Fractional calculus is regarded as the generalization of the integer-order integration
and differentiation in the sense that it deals with derivative and integral operators of
an arbitrary real or complex order. This branch of mathematical analysis gained much
importance during the last few decades owing to its widespread applications in a variety
of disciplines, such as mechanical engineering, bioengineering, biology, physics, chem-
istry, economics, viscoelasticity, acoustics, optics, robotics, control theory, electronics, etc.
The main reason for the popularity of fractional calculus is that mathematical models based
on fractional-order operators are considered to be more realistic than the ones relying on
classical calculus as such operators are nonlocal in nature and can trace the history of
the phenomena under consideration. For the theoretical development of the subject, we
refer the reader to the monographs [1–9] and the references therein. For some recent
applications of fractional calculus concerning structural mechanics and, more specifically,
nonlocal elasticity, see [10–12].

Fractional-order boundary value problems constitute an important and interesting
area of research. It reflects from the literature on the topic that a good deal of work on
fractional differential equations involve either Caputo or Riemann–Liouville fractional
derivatives. However, these derivatives are found to be inappropriate in the study of
some engineering problems. In order to tackle such inaccuracies, some new fractional-
order derivative operators such as Hadamard, Erdeyl–Kober, Katugampola, etc., were
proposed. In [13], Hilfer introduced a new derivative, which is known as the Hilfer
fractional derivative and can generalize both Riemann–Liouville and Caputo derivatives.
For some applications of this derivative, we refer the interested reader to the investiga-
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tions [14,15]. For some recent results on initial and boundary value problems involving
Hilfer fractional derivative, for instance, see [16–22] and the references cited therein.

The fractional derivative presented by Hadamard in 1892 [23] differs from the well
known Caputo derivative in two significant ways: (i) its kernel involves a logarithmic
function with an arbitrary exponent and (ii) the Hadamard derivative of a constant is not
zero. One can find applications of the Hadamard derivative and integral operators in the
paper [24] and the monograph [2]. The Hadamard calculus can be obtained by changing
d/dt → td/dt, (t − s)(·) → (loge t − loge s)(·) and ds → (1/s)ds in Riemann–Liouville
and Caputo fractional derivatives. Later, the modification of Hilfer fractional derivative
resulted in the concept of the Hilfer–Hadamard derivative.

Existence results for Hilfer–Hadamard fractional differential equations of order in
(0, 1] were studied by several researchers, for instance, see [25–27]. To the best of our
knowledge, only a few results are available in the literature concerning boundary value
problems for Hilfer–Hadamard fractional differential equations of order in (1, 2]. Recently,
in [28], the authors applied the tools of the fixed-point theory to study the existence and
uniqueness of solutions for a boundary value problem of Hilfer–Hadamard fractional
differential equations with nonlocal integro-multi-point boundary conditions:

HH Dα,β
1 x(t) = f (t, x(t)), t ∈ [1, T],

x(1) = 0,
m

∑
i=1

θix(ξi) = λ H Iδ
1 x(η),

where HH Dα,β
1 denote the Hilfer–Hadamard fractional derivative operator of order α ∈ (1, 2]

and type β ∈ [0, 1], θi, λ ∈ R and i = 1, 2, . . . , m, are given constants, f : [1, T]×R→ R is a
given continuous function and H Iδ is the Hadamard fractional integral of order δ > 0 and
η, ξi ∈ (1, T), i = 1, 2, . . . , m.

In [29], the existence of solutions for the following system of sequential fractional
differential equations involving Hilfer–Hadamard type differential operators HD

.,. of
different orders was discussed:

(HD
α1,β1
1+ + λ1HD

α1−1,β1
1+ )u(t) = f (t, u(t), v(t)), 1 < α1 ≤ 2, t ∈ [1, e],

(HD
α2,β2
1+ + λ2HD

α2−1,β2
1+ )v(t) = g(t, u(t), v(t)), 1 < α2 ≤ 2, t ∈ [1, e],

u(1) = 0, u(e) = A1, A1 ∈ R+,
v(1) = 0, v(e) = A2, A2 ∈ R+,

where λ1, λ2 ∈ R+ and f g : [1, e]×R2 → R are given continuous functions.
Motivated by the aforementioned work, our goal in this paper is to enrich the literature

on boundary value problems of Hilfer–Hadamard fractional differential equations of order
in (1, 2]. In precise terms, we introduce and study a nonlocal mixed Hilfer–Hadamard
boundary value problem of the following form:

HH Dα,β
1 x(t) = f (t, x(t)), t ∈ [1, T],

x(1) = 0, x(T) =
m

∑
j=1

ηjx(ξ j) +
n

∑
i=1

ζi
H Iφi

1 x(θi) +
r

∑
k=1

λk H Dωk
1 x(µk),

(1)

where HH Dα,β
1 denotes the Hilfer–Hadamard fractional derivative operator of order α ∈ (1, 2]

and type β ∈ [0, 1] and ηj, ζi, λk ∈ R are given constants, f : [1, T] × R → R is a given
continuous function, H Iφi is the Hadamard fractional integral operator of order φi > 0
and ξ j, θi, µk ∈ (1, T), j = 1, 2, . . . , m, i = 1, 2, . . . , n, k = 1, 2, . . . , r. We also study the
multi-valued analogue of the problem (1).

Concerning the significance of problem (1), we recall that the Hilfer fractional deriva-
tive interpolates between the Riemann–Liouville and Caputo derivatives [13]. Analogously,
the Hilfer–Hadamard type fractional derivative covers the cases of the Riemann–Liouville–
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Hadamard and Caputo–Hadamard fractional derivatives. Thus, the present study will
be useful for improving the works related to glass forming materials [14], Turbulent
Flow Model [30], etc. Furthermore, several results involving the Caputo–Hadamard
fractional derivative [31–34] can be extended to the framework of Hilfer–Hadamard
fractional derivative.

It is well known that the nonlocal condition is more appropriate than the local con-
dition (initial and/or boundary) with respect to describing certain features of applied
mathematics and physics correctly (see the survey paper [35]). More specifically, the bound-
ary conditions arising in the study of boundary value problems of nonlocal elasticity are
always nonlocal in nature. This is due to the fact that the long-range interactions within
nonlocal solids give rise to nonlocal traction (force) boundary conditions.

Here, we remark that there are only two articles [28,29] in the literature (to the best
of our knowledge) concerning boundary value problems for Hilfer–Hadamard fractional
differential equations of the order in (1, 2]. Much of the known studies in the literature deals
with initial value problems of Hilfer–Hadamard fractional differential equations of the order
in (0, 1]. The two classes of problems are entirely different. The methodology employed to
study the Hilfer–Hadamard fractional differential equations of the order in (0, 1] is different
from the one applied to such equations of the order in (1, 2]. Thus, our main objective in
this paper is to enrich the new research area on Hilfer–Hadamard fractional differential
equations of the order in (1, 2]. Moreover, the mixed boundary conditions introduced in
the present study are of a more general type and include multi-point, fractional integral
multi-order and fractional derivative multi-order contributions.

One can notice that the boundary conditions considered in problem (1) reduce to
several special cases such as (i) nonlocal multi-point boundary conditions if we choose all
ζi = 0, i = 1, 2, . . . , n and λk = 0, k = 1, 2, . . . , r; (ii) nonlocal Hadamard fractional integral
boundary conditions when all ηj = 0, j = 1, 2, . . . , m and λk = 0, k = 1, 2, . . . , r; and (iii) non-
local Hadamard fractional boundary conditions if we take all ηj = 0, j = 1, 2, . . . , m and
ζi = 0, i = 0, k = 1, 2, . . . , n. Likewise, we can consider the combination of nonlo-
cal multipoint and Hadamard fractional integral conditions when we fix all λk = 0,
k = 1, 2, . . . , r and so on. Thus, the results presented in this paper are significant as they
specialize to the ones associated with several interesting boundary conditions. Another
novelty in the present work is concerned with the derivation of the existence results for the
Hilfer–Hadamard fractional differential inclusions of the order in (1, 2] supplemented with
the mixed boundary conditions. Thus, the investigation of single-valued and multi-valued
nonlocal nonlinear Hilfer–Hadamard fractional boundary value problems of the order in
(1, 2] enhances the scope of the literature on the topic.

The remaining part of this manuscript is arranged as follows. Section 2 contains some
basic notions and known results of fractional differential calculus. In Section 3, we first
prove an auxiliary result that plays a key role in transforming the given problem into a
fixed point problem. Then, based on Banach’s contraction mapping principle, we establish
the existence of a unique solution for the problem (1). By using the fixed point theorems
due to Krasnoselskiĭ and Schaefer and nonlinear alternative of Leray–Schauder type, we
prove some existence results for problem (1). Examples illustrating the applicability of the
main results are also presented in this section. The existence results for the multi-valued
analogue of the problem (1) are obtained in Section 4. Some interesting observations are
presented in the last section of the paper.

2. Preliminaries

In this section, we recall some basic concepts.

Definition 1. (Hadamard fractional integral [2]). Let f : [a, ∞) → R. Then, the Hadamard
fractional integral of order α > 0 is defined as follows:

H Iα
a f (t) =

1
Γ(α)

∫ t

a

(
log

t
z

)α−1 f (z)
z

dz, t > a, (2)
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provided that the integral exists, where log(.) = loge(.).

Definition 2. (Hadamard fractional derivative [2]). For a function f : [a, ∞)→ R, the Hadamard
fractional derivative of order α > 0 is defined as follows:

H Dα
a f (t) = δn

(
H In−α

a f
)
(t), n = [α] + 1, (3)

where δn = (t d
dt )

n and [α] denote the integer part of the real number α.

Lemma 1. [2] If α > 0, β > 0 and 0 < a < b < ∞, then

(i)
(

H Iα
a+

(
log

t
a

)β−1)
(x) =

Γ(β)

Γ(β + α)

(
log

x
a

)β+α−1
;

(ii)
(

H Dα
a+

(
log

t
a

)β−1)
(x) =

Γ(β)

Γ(β− α)

(
log

x
a

)β−α−1
.

In particular, if β = 1, then the following is the case:

(H Dα
a+)(1) =

1
Γ(1− α)

(
log

x
a

)−α
6= 0, 0 < α < 1.

Definition 3. (Hilfer–Hadamard fractional derivative [15]). Let f ∈ L1(a, b) and n− 1 < α < n,
0 ≤ β ≤ 1. We define the Hilfer–Hadamard fractional derivative of order α and type β for f
as follows:

(HH Dα,β
a f )(t) = (H Iβ(n−α)

a δn H I(n−α)(1−β)
a f )(t)

= (H Iβ(n−α)
a δn H I(n−γ)

a f )(t)

= (H Iβ(n−α)
a H Dγ

a f )(t), γ = α + nβ− αβ,

where H I(.)a and H D(.)
a are defined by (2) and (3), respectively.

Here, we remark that the Hilfer–Hadamard fractional derivative reduces to the
Hadamard fractional derivative for β = 0 and corresponds to the Caputo–Hadamard
derivative for β = 1 given in the following equation:

C
H Dα

a f (t) =
(

H In−α
a δn f

)
(t), n = [α] + 1.

Next, we recall the following known theorem that will be used in the sequel.

Theorem 1. ([5]). Let α > 0, 0 ≤ β ≤ 1, γ = α + nβ− αβ, n = [α] + 1 and 0 < a < b < ∞.
If f ∈ L1(a, b) and (H In−γ

a f )(t) ∈ ACn
δ [a, b], then the following is the case:

H Iα
a (

HH Dα,β
a f )(t) = H Iγ

a (
HH Dγ

a f )(t)

= f (t)−
n−1

∑
j=0

(δ(n−j−1)(H In−γ
a f ))(a)

Γ(γ− j)

(
log

t
a

)γ−j−1

.

Observe that Γ(γ− j) exists for all j = 1, 2, . . . , n− 1 for γ ∈ [α, n].

3. Main Results

This section is concerned with the existence and uniqueness of solutions for the
nonlinear Hilfer–Hadamard fractional boundary value problem (1). First of all, we prove
an auxiliary lemma dealing with the linear variant of the boundary value problem (1),
which will be used to transform the problem at hand into an equivalent fixed point problem.
In the case n = [α] + 1 = 2, we have γ = α + (2− α)β.
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Lemma 2. Let h ∈ C([1, T],R) and that

Λ = (log T)γ−1 −
m

∑
j=1

ηj(log ξ j)
γ−1 −

n

∑
i=1

ζi
Γ(γ)

Γ(γ + φi)
(log θi)

γ+φi−1

−
r

∑
k=1

λk
Γ(γ)

Γ(γ−ωk)
(log µk)

γ−ωk−1 6= 0. (4)

Then, x is a solution of the following linear Hilfer–Hadamard fractional boundary value problem:
HH Dα,β

1 x(t) = h(t, ), t ∈ [1, T],

x(1) = 0, x(T) =
m

∑
j=1

ηjx(ξ j) +
n

∑
i=1

ζi
H Iφi

1 x(θi) +
r

∑
k=1

λk H Dωk
1 x(µk),

(5)

if and only if it satisfies the integral equation:

x(t) = H Iα
1 h(t) +

(log t)γ−1

Λ

{
m

∑
j=1

H Iαh(ξ j) +
n

∑
i=1

ζi
H Iα+φi h(θi)

+
r

∑
k=1

λk
H Iα−ωk h(µk)− H Iαh(T)

}
, t ∈ [1, T]. (6)

Proof. Applying the Hadamard fractional integral operator of order α from 1 to t on both
sides of Hilfer–Hadamard fractional differential equation in (5) and using Theorem 1, we
find that

x(t)−
δ(H I2−γ

1+ x)(1)
Γ(γ)

(log t)γ−1 −
(H I2−γ

1+ x)(1)
Γ(γ− 1)

(log t)γ−2 = H Iα
1 h(t), (7)

which can be rewritten as follows:

x(t) = c0(log t)γ−1 + c1(log t)γ−2 +
1

Γ(α)

∫ t

1

h(s)
s

(
log

t
s

)α−1
ds, (8)

where c0 and c1 are arbitrary constants. Using the first boundary condition (x(1) = 0) in (8)
yields c1 = 0, since γ ∈ [α, 2]. In consequence, (8) takes the following form:

x(t) = c0(log t)γ−1 +
1

Γ(α)

∫ t

1

(
log

t
s

)α−1 h(s)
s

ds. (9)

Now, inserting (9) into the second boundary condition:

x(T) =
m

∑
j=1

ηjx(ξ j) +
n

∑
i=1

ζi
H Iφi

1 x(θi) +
r

∑
k=1

λk H Dωk
1 x(µk),

and using notation (4), we obtain the following:

c0 =
1
Λ

{
m

∑
j=1

H Iαh(ξ j) +
n

∑
i=1

ζi
H Iα+φi h(θi) +

r

∑
k=1

λk
H Iα−ωk h(µk)− H Iαh(T)

}
.

Substituting the value of c0 in (9) results in Equation (6) as desired. By direct computa-
tion, one can obtain the converse of the lemma. The proof is completed.

Let X = C
(
[1, T],R

)
be the Banach space endowed with the norm

‖x‖ := max
t∈[1,T]

|x(t)|.
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In view of Lemma 2 and Definition 1, we introduce an operator F : X → X associated
with the problem (1) as follows:

F (x)(t) =
1

Γ(α)

∫ t

1

(
log

t
z

)α−1 f (z, x(z))
z

dz

+
(log t)γ−1

Λ

{
m

∑
j=1

ηj

Γ(α)

∫ ξ j

1

(
log

ξ j

z

)α−1 f (z, x(z))
z

dz

+
n

∑
i=1

ζi
Γ(α + φi)

∫ θi

1

(
log

θi
z

)α+φi−1 f (z, x(z))
z

dz

+
r

∑
k=1

λk
Γ(α−ωk)

∫ µk

1

(
log

µk
z

)α−ωk−1 f (z, x(z))
z

dz

− 1
Γ(α)

∫ T

1

(
log

T
z

)α−1 f (z, x(z))
z

dz

}
, t ∈ [1, T]. (10)

In the sequel, we use the following notation:

Ω =
(log T)α

Γ(α + 1)
+

(log T)γ−1

|Λ|

{
m

∑
i=j

|ηj|(log ξ j)
α

Γ(α + 1)
+

n

∑
i=1

|ζi|(log θi)
α+φi

Γ(α + φi + 1)

+
r

∑
k=1

|λk|(log µk)
α−ωk

Γ(α−ωk + 1)
+

(log T)α

Γ(α + 1)

}
. (11)

3.1. Uniqueness Result

Here, by applying Banach’s contraction mapping principle [36], we prove the existence
of a unique solution for problem (1).

Theorem 2. Suppose that the following condition holds:

(H1)There exists a constant l > 0 such that for all t ∈ [1, T] and ui ∈ R, i = 1, 2,.

| f (t, u1)− f (t, u2)| ≤ l|u1 − u2|.

Then, the nonlinear Hilfer–Hadamard fractional boundary value problem (1) has a unique
solution on [1, T] if lΩ < 1, where Ω is defined by (11).

Proof. We will verify that the operator F defined by (10) satisfies the hypotheses of
Banach’s contraction mapping principle. Fixing N = maxt∈[1,T] | f (t, 0)| < ∞ and using the
assumption (H1), we obtain the following:

| f (t, x(t))| ≤ l|x(t)|+ | f (t, 0)| ≤ l‖x‖+ N. (12)

The proof is divided into two steps.
Step I : We show that F (Br) ⊂ Br, where Br = {x ∈ X : ‖x‖ < r} with r ≥ NΩ/(1− lΩ).
Let x ∈ Br. Then, we have the following:
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|F (x)(t)| ≤ 1
Γ(α)

∫ t

1

(
log

t
z

)α−1 | f (z, x(z))|
z

dz

+
(log t)γ−1

Λ

{
m

∑
j=1

|ηj|
Γ(α)

∫ ξ j

1

(
log

ξ j

z

)α−1 | f (z, x(z))|
z

dz

+
n

∑
i=1

|ζi |
Γ(α + φi)

∫ θi

1

(
log

θi

z

)α+φi−1 | f (z, x(z))|
z

dz

+
r

∑
k=1

|λk |
Γ(α−ωk)

∫ µk

1

(
log

µk
z

)α−ωk−1 | f (z, x(z))|
z

dz

+
1

Γ(α)

∫ T

1

(
log

T
z

)α−1 | f (z, x(z))|
z

dz

}

≤ (log T)α

Γ(α + 1)
(l‖x‖+ N) +

(log T)γ−1

|Λ|

{
m

∑
i=j

|ηj|(log ξ j)
α

Γ(α + 1)
+

n

∑
i=1

|ζi |(log θi)
α+φi

Γ(α + φi + 1)

+
r

∑
k=1

|λk |(log µk)
α−ωk

Γ(α−ωk + 1)
+

(log T)α

Γ(α + 1)

}
(l‖x‖+ N)

≤
[
(log T)α

Γ(α + 1)
+

(log T)γ−1

|Λ|

{
m

∑
i=j

|ηj|(log ξ j)
α

Γ(α + 1)
+

n

∑
i=1

|ζi |(log θi)
α+φi

Γ(α + φi + 1)

+
r

∑
k=1

|λk |(log µk)
α−ωk

Γ(α−ωk + 1)
+

(log T)α

Γ(α + 1)

}]
(lr + N)

= Ω(lr + N) ≤ r.

Thus, the following is the case:

‖F (x)‖ = max
t∈[1,T]

|F (u)(t)| ≤ r,

which means that F (Br) ⊂ Br.
Step II: To show that the operator F is a contraction, let x1, x2 ∈ X. Then, for any t ∈ [1, T],
we have the following:

|F (x2)(z)−F (x1)(z)|

≤ 1
Γ(α)

∫ t

1

(
log

t
z

)α−1 | f (z, x2(z))− f (z, x1(z))|
z

dz

+
(log t)γ−1

|Λ|

{
m

∑
j=1

|ηj|
Γ(α)

∫ ξ j

1

(
log

ξ j

z

)α−1 | f (z, x2(z))− f (z, x1(z))|
z

dz

+
n

∑
i=1

|ζi|
Γ(α + φi)

∫ θi

1

(
log

θi
z

)α+φi−1 | f (z, x2(z))− f (z, x1(z))|
z

dz

+
r

∑
k=1

|λk|
Γ(α−ωk)

∫ µk

1

(
log

µk
z

)α−ωk−1 | f (z, x2(z))− f (z, x1(z))|
z

dz

+
1

Γ(α)

∫ T

1

(
log

t
z

)α−1 | f (z, x2(z))− f (z, x1(z))|
z

dz

}

≤
[
(log T)α

Γ(α + 1)
+

(log T)γ−1

|Λ|

{
m

∑
i=j

|ηj|(log ξ j)
α

Γ(α + 1)
+

n

∑
i=1

|ζi|(log θi)
α+φi

Γ(α + φi + 1)

+
r

∑
k=1

|λk|(log µk)
α−ωk

Γ(α−ωk + 1)
+

(log T)α

Γ(α + 1)

}]
l‖x2 − x1‖.
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Thus, the following is the case:

‖F (x2)−F (x1)‖ = max
t∈[1,T]

|F (x2)(t)−F (x1)(t)| ≤ lΩ‖x2 − x1‖,

which, in view of lΩ < 1, shows that the operator F is a contraction. Hence, the operator
F has a unique fixed point by Banach’s contraction mapping principle. Therefore, the
problem (1) has a unique solution on [1, T]. The proof is completed.

3.2. Existence Results

In this subsection, we present different criteria for the existence of solutions for the prob-
lem (1). First, we prove an existence result based on Krasnoselskiĭ’s fixed point theorem [37].

Theorem 3. Let f : [1, T]×R → R be a continuous function satisfying (H1). In addition, we
assume that the following condition is satisfied:

(H2)There exists a continuous function φ ∈ C([1, T],R+) such that

| f (t, x)| ≤ φ(t), for each (t, u) ∈ [1, T]×R.

Then, the nonlinear Hilfer–Hadamard fractional boundary value problem (1) has at least one
solution on [1, T], provided that the following condition holds:

(log T)γ−1

|Λ|

{
m

∑
i=j

|ηj|(log ξ j)
α

Γ(α + 1)
+

n

∑
i=1

|ζi|(log θi)
α+φi

Γ(α + φi + 1)

+
r

∑
k=1

|λk|(log µk)
α−ωk

Γ(α−ωk + 1)
+

(log T)α

Γ(α + 1)

}
l < 1. (13)

Proof. By assumption (H2), we can fix ρ ≥ Ω‖φ‖ and consider a closed ball Bρ = {x ∈
C([1, T],R) : ‖x‖ ≤ ρ}, where ‖φ‖ = supt∈[1,T] |φ(t)| and Ω is given by (11). We verify the
hypotheses of Krasnoselskiĭ’s fixed point theorem [37] by splitting the operator F defined
by (10) on Bρ to C([1, T],R) as F = F1 +F2, where F1 and F2 are defined by the following:

(F1x)(t) =
1

Γ(α)

∫ t

1

(
log

t
z

)α−1 f (z, x(z))
z

dz, t ∈ [1, T],

(F2x)(t) =
(log t)γ−1

Λ

{
m

∑
j=1

ηj

Γ(α)

∫ ξ j

1

(
log

ξ j

z

)α−1 f (z, x(z))
z

dz

+
n

∑
i=1

ζi
Γ(α + φi)

∫ θi

1

(
log

θi
z

)α+φi−1 f (z, x(z))
z

dz

+
r

∑
k=1

λk
Γ(α−ωk)

∫ µk

1

(
log

µk
z

)α−ωk−1 f (z, x(z))
z

dz

− 1
Γ(α)

∫ T

1

(
log

t
z

)α−1 f (z, x(z))
z

dz

}
, t ∈ [1, T].

For any x, y ∈ Bρ, we have the following:
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|(F1x)(t) + (F2y)(t)| ≤ 1
Γ(α)

∫ t

1

(
log

t
z

)α−1 | f (z, x(z))|
z

dz

+
(log t)γ−1

|Λ|

{
m

∑
j=1

|ηj|
Γ(α)

∫ ξ j

1

(
log

ξ j

z

)α−1 | f (z, x(z))|
z

dz

+
n

∑
i=1

|ζi|
Γ(α + φi)

∫ θi

1

(
log

θi
z

)α+φi−1 | f (z, x(z))|
z

dz

+
r

∑
k=1

|λk|
Γ(α−ωk)

∫ µk

1

(
log

µk
z

)α−ωk−1 | f (z, x(z))|
z

dz

+
1

Γ(α)

∫ T

1

(
log

t
z

)α−1 | f (z, x(z))|
z

dz

}

≤
[
(log T)α

Γ(α + 1)
+

(log T)γ−1

|Λ|

{
m

∑
i=j

|ηj|(log ξ j)
α

Γ(α + 1)
+

n

∑
i=1

|ζi|(log θi)
α+φi

Γ(α + φi + 1)

+
r

∑
k=1

|λk|(log µk)
α−ωk

Γ(α−ωk + 1)
+

(log T)α

Γ(α + 1)

}]
‖φ‖

= Ω‖φ‖ ≤ ρ.

Hence, ‖F1x +F2y‖ ≤ ρ, which shows that F1x +F2y ∈ Bρ. By condition (13), it is
easy to prove that the operator F2 is a contraction mapping. The operator F1 is continuous
by the continuity of f . Moreover, F1 is uniformly bounded on Bρ, since

‖F1x‖ ≤ (log T)α

Γ(α + 1)
‖φ‖.

Finally, we prove the compactness of the operator F1. For t1, t2 ∈ [1, T], t1 < t2, we have
the following case:

|F1x(t2)−F1x(t1)|

≤ 1
Γ(α)

∫ t1

1

[(
log

t2

z

)α−1

−
(

log
t1

z

)α−1
]
| f (z, x(z))|

z
dz

+
1

Γ(α)

∫ t2

t1

(
log

t2

z

)α−1 | f (z, x(z))|
z

dz

≤ ‖φ‖
Γ(α + 1)

[
2(log t2 − log t1)

α + |(log t2)
α − (log t1)

α|
]
,

which tends to zero independently of x ∈ Bρ, as t1 → t2. Thus, F1 is equicontinuous. By the
application of the Arzelá–Ascoli theorem, we deduce that operator F1 is compact on Bρ.
Thus, the hypotheses of Krasnoselskiĭ’s fixed point theorem [37] hold true. In consequence,
there exists at least one solution for the nonlinear Hilfer–Hadamard fractional boundary
value problem (1) on [1, T], which completes the proof.

Our next existence result is based on Schaefer’s fixed point theorem [38].

Theorem 4. Let f : [1, T]×R→ R be a continuous function satisfying the following assumption:

(H3)There exists a real constant M > 0 such that for all t ∈ [1, T], u ∈ R,

| f (t, u)| ≤ M.

Then, there exists at least one solution for the nonlinear Hilfer–Hadamard fractional boundary
value problem (1) on [1, T].



Fractal Fract. 2021, 5, 195 10 of 25

Proof. We will prove that the operator F , defined by (10), has a fixed point by using
Schaefer’s fixed point theorem [38]. The proof is given in two steps.
Step I. We show that the operator F : X → X is completely continuous.
Let us first establish that F is continuous. Let {xn} be a sequence such that xn → x in X.
Then, for each t ∈ [1, T], we have the following:

|F (xn)(t)−F (x)(t)|

≤ 1
Γ(α)

∫ t

1

(
log

t
z

)α−1 | f (z, xn(z))− f (z, x(z))|
z

dz

+
(log t)γ−1

|Λ|

{
m

∑
j=1

|ηj|
Γ(α)

∫ ξ j

1

(
log

ξ j

z

)α−1 | f (x, xn(z))− f (z, x(z))|
z

dz

+
n

∑
i=1

|ζi|
Γ(α + φi)

∫ θi

1

(
log

θi
z

)α+φi−1 | f (z, xn(z))− f (z, x(z))|
z

dz

+
r

∑
k=1

|λk|
Γ(α−ωk)

∫ µk

1

(
log

µk
z

)α−ωk−1 | f (z, xn(z))− f (z, x(z))|
z

dz

+
1

Γ(α)

∫ T

1

(
log

t
z

)α−1 | f (z, xn(z))− f (z, x(z))|
z

dz

}
.

Taking into account the fact that f is continuous, that is, | f (s, xn(s))− f (s, x(s))| →
0 as xn → x, we obtain from the foregoing inequality that the following is the case:

‖F (xn)−F (x)‖ → 0 as xn → x.

Hence, F is continuous.
Now we show that the operator F which maps bounded sets into bounded sets in X.

For R > 0, let BR = {x ∈ X : ‖x‖ ≤ R}. Then, for t ∈ [1, T], we have the following case:

|F (x)(t)| ≤ 1
Γ(α)

∫ t

1

(
log

t
z

)α−1 | f (z, x(z))|
z

dz

+
(log t)γ−1

|Λ|

{
m

∑
j=1

|ηj|
Γ(α)

∫ ξ j

1

(
log

ξ j

z

)α−1 | f (z, x(z))|
z

dz

+
n

∑
i=1

|ζi|
Γ(α + φi)

∫ θi

1

(
log

θi
z

)α+φi−1 | f (z, x(z))|
z

dz

+
r

∑
k=1

|λk|
Γ(α−ωk)

∫ µk

1

(
log

µk
z

)α−ωk−1 | f (z, x(z))|
z

dz

+
1

Γ(α)

∫ T

1

(
log

t
z

)α−1 | f (z, x(z))|
z

dz

}

≤ (log T)α

Γ(α + 1)
M +

(log T)γ−1

|Λ|

{
m

∑
i=j

|ηj|(log ξ j)
α

Γ(α + 1)
+

n

∑
i=1

|ζi|(log θi)
α+φi

Γ(α + φi + 1)

+
r

∑
k=1

|λk|(log µk)
α−ωk

Γ(α−ωk + 1)
+

(log T)α

Γ(α + 1)

}
M,
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which, after taking the norm for t ∈ [1, T], results in the following inequality:

‖F (x)‖ ≤ (log T)α

Γ(α + 1)
M +

(log T)γ−1

|Λ|

{
m

∑
i=j

|ηj|(log ξ j)
α

Γ(α + 1)
+

n

∑
i=1

|ζi|(log θi)
α+φi

Γ(α + φi + 1)

+
r

∑
k=1

|λk|(log µk)
α−ωk

Γ(α−ωk + 1)
+

(log T)α

Γ(α + 1)

}
M.

Next, we show that bounded sets are mapped into equicontinuous sets by F . For
t1, t2 ∈ [1, T], t1 < t2 and u ∈ BR, we obtain the following:

|F (x)(t2)−F (x)(t1)|

≤ 1
Γ(α)

∫ t1

1

[(
log

t2

z

)α−1

−
(

log
t1

z

)α−1
]
| f (z, x(z))|

z
dz

+
1

Γ(α)

∫ t2

t1

(
log

t2

z

)α−1 | f (z, x(z))|
z

dz

+
|(log t2)

γ−1 − (log t1)
γ−1|

|Λ|

{
m

∑
j=1

|ηj|
Γ(α)

∫ ξ j

1

(
log

ξ j

z

)α−1 | f (z, x(z))|
z

dz

+
n

∑
i=1

|ζi|
Γ(α + φi)

∫ θi

1

(
log

θi
z

)α+φi−1 | f (z, x(z))|
z

dz

+
r

∑
k=1

|λk|
Γ(α−ωk)

∫ µk

1

(
log

µk
z

)α−ωk−1 | f (z, x(z))|
z

dz

+
1

Γ(α)

∫ T

1

(
log

t
z

)α−1 | f (z, x(z))|
z

dz

}

≤ M
Γ(α + 1)

[
2(log t2 − log t1)

α + |(log t2)
α − (log t1)

α|
]

+
|(log t2)

γ−1 − (log t1)
γ−1|

|Λ|

{
m

∑
i=j

|ηj|(log ξ j)
α

Γ(α + 1)
+

n

∑
i=1

|ζi|(log θi)
α+φi

Γ(α + φi + 1)

+
r

∑
k=1

|λk|(log µk)
α−ωk

Γ(α−ωk + 1)
+

(log T)α

Γ(α + 1)

}
M,

which tends to zero independently of x ∈ BR, as t1 → t2. Thus, the operator F : X → X is
completely continuous by applying the Arzelá–Ascoli theorem.
Step II.: We show that the set E = {x ∈ X | x = νF (x), 0 ≤ ν ≤ 1} is bounded. Let
x ∈ E , then x = νF (x). For any t ∈ [1, T], we have x(t) = νF (x)(t). Then, in view of the
hypothesis (H3), as in Step I, we obtain

|x(t)| ≤ (log T)α

Γ(α + 1)
M +

(log T)γ−1

|Λ|

{
m

∑
i=j

|ηj|(log ξ j)
α

Γ(α + 1)
+

n

∑
i=1

|ζi|(log θi)
α+φi

Γ(α + φi + 1)

+
r

∑
k=1

|λk|(log µk)
α−ωk

Γ(α−ωk + 1)
+

(log T)α

Γ(α + 1)

}
M.
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Thus, the following is the case:

‖x‖ ≤ (log T)α

Γ(α + 1)
M +

(log T)γ−1

|Λ|

{
m

∑
i=j

|ηj|(log ξ j)
α

Γ(α + 1)
+

n

∑
i=1

|ζi|(log θi)
α+φi

Γ(α + φi + 1)

+
r

∑
k=1

|λk|(log µk)
α−ωk

Γ(α−ωk + 1)
+

(log T)α

Γ(α + 1)

}
M,

which shows that the set E is bounded. Thus, it follows by Schaefer’s fixed point theo-
rem [38] that the operator F has at least one fixed point. Therefore, there exists at least
one solution for the nonlinear Hilfer–Hadamard fractional boundary value problem (1) on
[1, T]. This completes the proof.

We apply the Leray–Schauder nonlinear alternative [39] to prove our last existence result.

Theorem 5. Let f ∈ C([1, T]×R,R). In addition, it is assumed that the following conditions
are satisfied:

(H4)There exist p ∈ C([1, T],R+) and a continuous nondecreasing function ψ : R+ → R+ such
that | f (t, u)| ≤ p(t)ψ(‖u‖) for each (t, u) ∈ [1, T]×R;

(H5)There exists a constant K > 0 such that

K
Ω‖p‖ψ(K) > 1,

where Ω is defined by (11).
Then, the nonlinear Hilfer–Hadamard fractional boundary value problem (1) has at least one

solution on [1, T].

Proof. As argued in Theorem 4, one can obtain that the operator F is completely continu-
ous. Next, we establish that we can find an open set U ⊆ C([1, T],R) with x 6= µF (x) for
µ ∈ (0, 1) and x ∈ ∂U.

Let x ∈ C([1, T],R) be such that x = µF (x) for some 0 < µ < 1. Then, for each
t ∈ [1, T], we have the following case:

|x(t)| ≤ 1
Γ(α)

∫ t

1

(
log

t
z

)α−1 | f (z, x(z))|
z

dz

+
(log t)γ−1

|Λ|

{
m

∑
j=1

|ηj|
Γ(α)

∫ ξ j

1

(
log

ξ j

z

)α−1 | f (z, x(z))|
z

dz

+
n

∑
i=1

|ζi|
Γ(α + φi)

∫ θi

1

(
log

θi
z

)α+φi−1 | f (z, x(z))|
z

dz

+
r

∑
k=1

|λk|
Γ(α−ωk)

∫ µk

1

(
log

µk
z

)α−ωk−1 | f (z, x(z))|
z

dz

+
1

Γ(α)

∫ T

1

(
log

t
z

)α−1 | f (z, x(z))|
z

dz

}

≤
[
(log T)α

Γ(α + 1)
+

(log T)γ−1

|Λ|

{
m

∑
i=j

|ηj|(log ξ j)
α

Γ(α + 1)
+

n

∑
i=1

|ζi|(log θi)
α+φi

Γ(α + φi + 1)

+
r

∑
k=1

|λk|(log µk)
α−ωk

Γ(α−ωk + 1)
+

(log T)α

Γ(α + 1)

}]
‖p‖ψ(‖x‖).
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Consequently, we obtain
‖x‖

Ω‖p‖ψ(‖x‖) ≤ 1.

In view of (H5), there is no solution x such that ‖x‖ 6= K. Let us set the following:

U = {x ∈ C([1, T],R) : ‖x‖ < K}.

The operator F : U → C([1, T],R) is continuous and completely continuous. Note
that there is no u ∈ ∂U such that x = µF (x) for some µ ∈ (0, 1), by the choice of U.
Thus, it follows by the Leray–Schauder nonlinear alternative [39] that F has a fixed point
x ∈ U which is a solution of the nonlinear Hilfer–Hadamard fractional boundary value
problem (1). This ends the proof.

3.3. Examples

Consider the following Hilfer–Hadamard fractional boundary value problem:
HH Dα,β

1 x(t) = f (t, x(t)), t ∈ [1, T],

x(1) = 0, x(T) =
m

∑
j=1

ηjx(ξ j) +
n

∑
i=1

ζi
H Iφi

1 x(θi) +
r

∑
k=1

λk H Dωk
1 x(µk),

(14)

with α = 5/3, β = 3/4, T = 5, m = 4, n = 3, r = 2, η1 = 1/15, η2 = 1/10, η3 = 2/15, η4 =
1/6, ξ1 = 5/4, ξ2 = 3/2, ξ3 = 7/4, ξ4 = 2, ζi = 1/18, ζ2 = 1/9, ζ3 = 1/6, φ1 = 1/2, φ2 =
1, φ3 = 3/2, θ1 = 5/2, θ2 = 3, θ3 = 7/2, λ1 = 1/28, λ2 = 1/14, ω1 = 1/4, ω2 = 2/3, µ1 =
4, µ2 = 9/2 and f (t, x(t)) to be fixed later. Using the given data, it is found that γ =
23/12, Λ ≈ 0.662923 (Λ is given by (4)), Ω ≈ 39.388095 (Ω is given by (11)).

(a). For illustrating Theorem 2, we take

f (t, x) =
ae−(t−1)2

15
arctan x +

sin t + 1√
t3 + 1

, t ∈ [1, 5], (15)

where a is a positive real constant. Obviously, the nonlinear function f (t, x) satisfies the
assumption (H1) with l = a/15 and the condition lΩ < 1 holds for a < 0.3808257. Thus,
the hypothesis of Theorem 2 is satisfied; hence, the problem (14) with f (t, x) given by (15)
has a unique solution on [1, 5].

(b). In order to illustrate Theorem 3, we take the following function:

f (t, x) =
|x|

[(t− 1)2 + 100](1 + |x|) + cos t, t ∈ [1, 5]. (16)

It is easy to verify that the nonlinear function f (t, x) satisfies the assumption (H1)
with l = 1/100 and that

(log T)γ−1

|Λ|

{
m

∑
i=j

|ηj|(log ξ j)
α

Γ(α + 1)
+

n

∑
i=1

|ζi|(log θi)
α+φi

Γ(α + φi + 1)

+
r

∑
k=1

|λk|(log µk)
α−ωk

Γ(α−ωk + 1)
+

(log T)α

Γ(α + 1)

}
l ≈ 0.379190 < 1.

Thus, the assumptions of Theorem 3 hold true. Therefore, by the conclusion of
Theorem 3, there exists at least one solution for the problem (14) with f (t, x) given by
(16) on [1, 5].

(c). Now, we illustrate Theorem 4 with the aid of the following nonlinear function:

f (t, x) =
e1−t

t2 + 4
cos4

(
3 + 2|x|
1 + |x|2

)
+

1
10

√
(t2 + 11), t ∈ [1, 5]. (17)
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It is easy to obtain that | f (t, x)| ≤ 4/5. Thus, by the conclusion of Theorem 4,
the problem (14) with f (t, x) given by (17) has at least one solutions on [1, 5].

(d). Finally, we demonstrate the application of Theorem 5 by considering the nonlin-
ear function:

f (t, x) =
2

[(t− 1)2 + 100]

(
|x| cos(5 + 2|x|) + 1

2

)
, t ∈ [1, 5]. (18)

Note that | f (t, x)| ≤ p(t)ψ(‖x‖), where p(t) = 2[(t − 1)2 + 100]−1 (‖p‖ = 1/50)
and ψ(‖x‖) = ‖x||+ 1/2. By the condition (H5), we find that K > 1.85584. Thus, all the
assumptions of Theorem 5 hold true; hence, its conclusion ensures the existence of at least
one solution for the problem (14) with f (t, x) given by (18) on [1, 5].

4. Multi-Valued Case

This section is devoted to the study of the multi-valued case of the boundary value
problem (1) given as follows:

HH Dα,β
1 x(t) ∈ F(t, x(t)), t ∈ [1, T],

x(1) = 0, x(T) =
m

∑
j=1

ηjx(ξ j) +
n

∑
i=1

ζi
H Iφi

1 x(θi) +
r

∑
k=1

λk H Dωk
1 x(µk),

(19)

where the symbols are the same as defined in problem (1) and F : J × R → P(R) is a
multi-valued map. By P(R), we denote the family of all nonempty subsets of R.

Next, we define

Pp = {Y ∈ P(X) : Y 6= ∅ and has the property p},

where (X, ‖ · ‖) is a normed space. Thus, Pcl , Pb, Pcp and Pcp,c respectively, denote the
classes of all closed, bounded, compact and compact and convex sets in X.

Define the set of selections of F for each ω ∈ C([1, T],R) as

SF,ω := {z ∈ L1([1, T],R) : z(t) ∈ F(t, ω(t)) for a.e. t ∈ [1, T]}.

4.1. Existence Results for the Problem (19)

Let us first define the solution for Hilfer–Hadamard inclusions fractional boundary
value problem (19).

Definition 4. A function x ∈ C([1, T],R) is called a solution of the multi-valued problem (19) if
we can find a function v ∈ L1([1, T],R) with v(t) ∈ F(t, x) almost everywhere on [1, T] such that

x(t) =
1

Γ(α)

∫ t

1

(
log

t
z

)α−1 v(z)
z

dz +
(log t)γ−1

Λ

{
m

∑
j=1

ηj

Γ(α)

∫ ξ j

1

(
log

ξ j

z

)α−1 v(z)
z

dz

+
n

∑
i=1

ζi
Γ(α + φi)

∫ θi

1

(
log

θi
z

)α+φi−1 v(z)
z

dz

+
r

∑
k=1

λk
Γ(α−ωk)

∫ µk

1

(
log

µk
z

)α−ωk−1 v(z)
z

dz

− 1
Γ(α)

∫ T

1

(
log

T
z

)α−1 v(z)
z

dz

}
,

where Λ is given by (4).
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4.1.1. Case 1: Convex-Valued Multifunctions

In the first theorem, dealing with convex-valued multifunctions, we assume that
the multifunction F is L1-Carathéodory and apply the nonlinear alternative for Kakutani
maps [39] and closed graph operator theorem [40] to prove it.

Theorem 6. Assume that the following conditions are satisfied:

(A1)The multifunction F : [1, T]×R→ Pcp,c(R) is L1-Carathéodory;
(A2)There exist a nondecreasing function χ ∈ C([0, ∞)(0, ∞)) and a continuous function q :

[1, T]→ R+ such that
‖F(t, ω)‖P := sup{|z| : z ∈ F(t, ω)} ≤ q(t)χ(‖ω‖) for each (t, ω) ∈ [1, T]×R;

(A3)There exists M > 0 satisfying the following inequality:

M
χ(M)‖q‖Ω > 1,

where Ω is given by (11).
Then, there exists at least one solution for the inclusions problem (19) on [1, T].

Proof. Associated with the Hilfer–Hadamard fractional inclusions boundary value prob-
lem (19), we introduce a multi-valued operator, N : C([1, T],R) → P(C([1, T],R)),
as follows:

N(x) =



h ∈ C([1, T],R) :

h(t) =



1
Γ(α)

∫ t

1

(
log

t
z

)α−1 v(z)
z

dz

+
(log t)γ−1

Λ

{
m

∑
j=1

ηj

Γ(α)

∫ ξ j

1

(
log

ξ j

z

)α−1 v(z)
z

dz

+
n

∑
i=1

ζi
Γ(α + φi)

∫ θi

1

(
log

θi
z

)α+φi−1 v(z)
z

dz

+
r

∑
k=1

λk
Γ(α−ωk)

∫ µk

1

(
log

µk
z

)α−ωk−1 v(z)
z

dz

− 1
Γ(α)

∫ T

1

(
log

T
z

)α−1 v(z)
z

dz

}
, v ∈ SF,x.


In what follows, we will prove in several steps that the operator N satisfies the

hypotheses of the Leray–Schauder nonlinear alternative for Kakutani maps [39].
Step 1. N is bounded on bounded sets of C([1, T],R).
For a fixed r > 0, let Br = {x ∈ C[1, T],R) : ‖x‖ ≤ r} be a bounded set in C([1, T],R).

For each h ∈ N(x) and x ∈ Br, there exists v ∈ SF,x such that

h(t) =
1

Γ(α)

∫ t

1

(
log

t
z

)α−1 v(z)
z

dz +
(log t)γ−1

Λ

{
m

∑
j=1

ηj

Γ(α)

∫ ξ j

1

(
log

ξ j

z

)α−1 v(z)
z

dz

+
n

∑
i=1

ζi
Γ(α + φi)

∫ θi

1

(
log

θi
z

)α+φi−1 v(z)
z

dz

+
r

∑
k=1

λk
Γ(α−ωk)

∫ µk

1

(
log

µk
z

)α−ωk−1 v(z)
z

dz

− 1
Γ(α)

∫ T

1

(
log

T
z

)α−1 v(z)
z

dz

}
, t ∈ [1, T].
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For t ∈ [1, T], using the assumption (A2), we obtain the following inequality:

|h(t)| ≤ 1
Γ(α)

∫ t

1

(
log

t
z

)α−1 |v(z)|
z

dz

+
(log t)γ−1

Λ

{
m

∑
j=1

|ηj|
Γ(α)

∫ ξ j

1

(
log

ξ j

z

)α−1 |v(z)|
z

dz

+
n

∑
i=1

|ζi |
Γ(α + φi)

∫ θi

1

(
log

θi

z

)α+φi−1 |v(z)|
z

dz

+
r

∑
k=1

|λk |
Γ(α−ωk)

∫ µk

1

(
log

µk
z

)α−ωk−1 |v(z)|
z

dz

+
1

Γ(α)

∫ T

1

(
log

t
z

)α−1 |v(z)|
z

dz

}

≤
[
(log T)α

Γ(α + 1)
+

(log T)γ−1

|Λ|

{
m

∑
i=j

|ηj|(log ξ j)
α

Γ(α + 1)
+

n

∑
i=1

|ζi |(log θi)
α+φi

Γ(α + φi + 1)

+
r

∑
k=1

|λk |(log µk)
α−ωk

Γ(α−ωk + 1)
+

(log T)α

Γ(α + 1)

}]
‖p‖χ(‖x‖),

which yields
‖h‖ ≤ ‖p‖χ(r)Ω.

Step 2. Bounded sets are mapped by N into equicontinuous sets of C([1, T],R).
Let x ∈ Br and h ∈ N(x). Then, there exists v ∈ SF,x such that

h(t) =
1

Γ(α)

∫ t

1

(
log

t
z

)α−1 v(z)
z

dz +
(log t)γ−1

Λ

{
m

∑
j=1

ηj

Γ(α)

∫ ξ j

1

(
log

ξ j

z

)α−1 v(z)
z

dz

+
n

∑
i=1

ζi

Γ(α + φi)

∫ θi

1

(
log

θi

z

)α+φi−1 v(z)
z

dz

+
r

∑
k=1

λk
Γ(α−ωk)

∫ µk

1

(
log

µk
z

)α−ωk−1 v(z)
z

dz

− 1
Γ(α)

∫ T

1

(
log

T
z

)α−1 v(z)
z

dz

}
, t ∈ [1, T].

Let t1, t2 ∈ [1, T], t1 < t2. Then, we obtain

|F (x)(t2)−F (x)(t1)|

≤ 1
Γ(α)

∫ t1

1

[(
log

t2

z

)α−1

−
(

log
t1

z

)α−1
]
| f (z, x(z))|

z
dz

+
1

Γ(α)

∫ t2

t1

(
log

t2

z

)α−1 |v(z)|
z

dz

+
|(log t2)

γ−1 − (log t1)
γ−1|

|Λ|

{
m

∑
j=1

|ηj|
Γ(α)

∫ ξ j

1

(
log

ξ j

z

)α−1 |v(z)|
z

dz

+
n

∑
i=1

|ζi |
Γ(α + φi)

∫ θi

1

(
log

θi

z

)α+φi−1 |v(z)|
z

dz

+
r

∑
k=1

|λk |
Γ(α−ωk)

∫ µk

1

(
log

µk
z

)α−ωk−1 |v(z)|
z

dz

+
1

Γ(α)

∫ T

1

(
log

t
z

)α−1 |v(z)|
z

dz

}

≤ ‖p‖χ(r)
Γ(α + 1)

[
2(log t2 − log t1)

α + |(log t2)
α − (log t1)

α|
]

+
|(log t2)

γ−1 − (log t1)
γ−1|

|Λ|

{
m

∑
i=j

|ηj|(log ξ j)
α

Γ(α + 1)
+

n

∑
i=1

|ζi |(log θi)
α+φi

Γ(α + φi + 1)

+
r

∑
k=1

|λk |(log µk)
α−ωk

Γ(α−ωk + 1)
+

(log T)α

Γ(α + 1)

}
‖p‖χ(r)→ 0,
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as t1 → t2 independently of x ∈ Br. Hence, N : C([1, T],R)→ P(C[1, T],R)) is completely
continuous by Arzelá–Ascoli theorem.

Step 3. For each x ∈ C([1, T],R), N(x) is convex.

For h1, h2 ∈ N(x), there exist v1, v2 ∈ SF,x such that, for each t ∈ [1, T], we have

hv(t) =
1

Γ(α)

∫ t

1

(
log

t
z

)α−1 vv(z)
z

dz

+
(log t)γ−1

Λ

{
m

∑
j=1

ηj

Γ(α)

∫ ξ j

1

(
log

ξ j

z

)α−1 vv(z)
z

dz

+
n

∑
i=1

ζi
Γ(α + φi)

∫ θi

1

(
log

θi
z

)α+φi−1 vv(z)
z

dz

+
r

∑
k=1

λk
Γ(α−ωk)

∫ µk

1

(
log

µk
z

)α−ωk−1 vv(z)
z

dz

− 1
Γ(α)

∫ T

1

(
log

T
z

)α−1 vv(z)
z

dz

}
, v = 1, 2.

Let 0 ≤ σ ≤ 1. Then, for each t ∈ [1, T], we have the following:

[σh1 + (1− σ)h2](t)

=
1

Γ(α)

∫ t

1

(
log

t
z

)α−1 [σv1(z) + (1− σ)v2(z)]
z

dz

+
(log t)γ−1

Λ

{
m

∑
j=1

ηj

Γ(α)

∫ ξ j

1

(
log

ξ j

z

)α−1 [σv1(z) + (1− σ)v2(z)]
z

dz

+
n

∑
i=1

ζi
Γ(α + φi)

∫ σi

1

(
log

σi
z

)α+φi−1 [σv1(z) + (1− σ)v2(z)]
z

dz

+
r

∑
k=1

λk
Γ(α−ωk)

∫ µk

1

(
log

µk
z

)α−ωk−1 [σv1(z) + (1− σ)v2(z)]
z

dz

− 1
Γ(α)

∫ T

1

(
log

T
z

)α−1 [σv1(z) + (1− σ)v2(z)]
z

dz

}
.

Since SF,x is convex (F has convex values), σh1 + (1− σ)h2 ∈ N(x). In consequence,
N is convex-valued.

Next, it will be shown that the operator N is upper semicontinuous. By using the fact
that a completely continuous operator, which has a closed graph, is upper semicontinu-
ous ([41] (Proposition 1.2)), it is enough to prove that the operator N has a closed graph.
This will be established in the following step.

Step 4. The graph of N is closed.

Let xn → x∗, hn ∈ N(xn) and hn → h∗. Then, we show that h∗ ∈ N(x∗). Observe that
hn ∈ N(xn) implies that there exists vn ∈ SF,xn such that, for each t ∈ [1, T], we have
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hn(t) =
1

Γ(α)

∫ t

1

(
log

t
z

)α−1 vn(z)
z

dz

+
(log t)γ−1

Λ

{
m

∑
j=1

ηj

Γ(α)

∫ ξ j

1

(
log

ξ j

z

)α−1 vn(z)
z

dz

+
n

∑
i=1

ζi
Γ(α + φi)

∫ θi

1

(
log

θi
z

)α+φi−1 vn(z)
z

dz

+
r

∑
k=1

λk
Γ(α−ωk)

∫ µk

1

(
log

µk
z

)α−ωk−1 vn(z)
z

dz

− 1
Γ(α)

∫ T

1

(
log

T
z

)α−1 vn(z)
z

dz

}
.

For each t ∈ [1, T], we must have v∗ ∈ SF,x∗ and the following expression:

h∗(t) =
1

Γ(α)

∫ t

1

(
log

t
z

)α−1 v∗(z)
z

dz

+
(log t)γ−1

Λ

{
m

∑
j=1

ηj

Γ(α)

∫ ξ j

1

(
log

ξ j

z

)α−1 v∗(z)
z

dz

+
n

∑
i=1

ζi
Γ(α + φi)

∫ θi

1

(
log

θi
z

)α+φi−1 v∗(z)
z

dz

+
r

∑
k=1

λk
Γ(α−ωk)

∫ µk

1

(
log

µk
z

)α−ωk−1 v∗(z)
z

dz

− 1
Γ(α)

∫ T

1

(
log

T
z

)α−1 v∗(z)
z

dz

}
.

Consider the continuous linear operator Φ : L1([1, T],R) → C([1, T],R) defined
as follows:

v→ Φ(v)(t) =
1

Γ(α)

∫ t

1

(
log

t
z

)α−1 v(z)
z

dz

+
(log t)γ−1

Λ

{
m

∑
j=1

ηj

Γ(α)

∫ ξ j

1

(
log

ξ j

z

)α−1 v(z)
z

dz

+
n

∑
i=1

ζi
Γ(α + φi)

∫ θi

1

(
log

θi
z

)α+φi−1 v(z)
z

dz

+
r

∑
k=1

λk
Γ(α−ωk)

∫ µk

1

(
log

µk
z

)α−ωk−1 v(z)
z

dz

− 1
Γ(α)

∫ T

1

(
log

T
z

)α−1 v(z)
z

dz

}
.
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Clearly ‖hn − h∗‖ → 0 as n → ∞, and consequently, by the closed graph operator
theorem [40], Φ ◦ SF,x is a closed graph operator. Moreover, we have hn ∈ Φ(SF,xn) and
the following:

h∗(t) =
1

Γ(α)

∫ t

1

(
log

t
z

)α−1 v∗(z)
z

dz

+
(log t)γ−1

Λ

{
m

∑
j=1

ηj

Γ(α)

∫ ξ j

1

(
log

ξ j

z

)α−1 v∗(z)
z

dz

+
n

∑
i=1

ζi
Γ(α + φi)

∫ θi

1

(
log

θi
z

)α+φi−1 v∗(z)
z

dz

+
r

∑
k=1

λk
Γ(α−ωk)

∫ µk

1

(
log

µk
z

)α−ωk−1 v∗(z)
z

dz

− 1
Γ(α)

∫ T

1

(
log

T
z

)α−1 v∗(z)
z

dz

}
,

for some v∗ ∈ SF,x∗ . Thus, N has a closed graph, which implies that the operator N is
upper semicontinuous.

Step 5. There exists an open set U ⊆ C([1, T],R) such that, for any k ∈ (0, 1) and all
x ∈ ∂U, x /∈ kN(x).

Let x ∈ kN(x), k ∈ (0, 1). Then, there exists v ∈ L1([1, T],R) with v ∈ SF,x such that,
for t ∈ [1, T], we have the following case.

x(t) = k
1

Γ(α)

∫ t

1

(
log

t
z

)α−1 v(z)
z

dz

+k
(log t)γ−1

Λ

{
m

∑
j=1

ηj

Γ(α)

∫ ξ j

1

(
log

ξ j

z

)α−1 v(z)
z

dz

+
n

∑
i=1

ζi
Γ(α + φi)

∫ θi

1

(
log

θi
z

)α+φi−1 v(z)
z

dz

+
r

∑
k=1

λk
Γ(α−ωk)

∫ µk

1

(
log

µk
z

)α−ωk−1 v(z)
z

dz

− 1
Γ(α)

∫ T

1

(
log

T
z

)α−1 v(z)
z

dz

}
.

Following the computation as in Step 2, for each t ∈ [1, T], we have the follow-
ing inequality:

|x(t)| ≤
[
(log T)α

Γ(α + 1)
+

(log T)γ−1

|Λ|

{
m

∑
i=j

|ηj|(log ξ j)
α

Γ(α + 1)
+

n

∑
i=1

|ζi|(log θi)
α+φi

Γ(α + φi + 1)

+
r

∑
k=1

|λk|(log µk)
α−ωk

Γ(α−ωk + 1)
+

(log T)α

Γ(α + 1)

}]
‖p‖χ(‖x‖)

= ‖p‖χ(‖x‖)Ω.

In consequence, we obtain

‖x‖
χ(‖x‖)‖p‖Ω ≤ 1.
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By assumption (A3), we can find M such that ‖x‖ 6= M. Let us set the following:

U = {x ∈ C([1, T],R) : ‖x‖ < M}.

Notice that N : U → P(C([1, T], R)) is a compact multi-valued map with convex
closed values, which is upper semicontinuous; moreover, from the choice of U, there is no
x ∈ ∂U such that x ∈ kN(x) for some k ∈ (0, 1). Hence, we deduce by the Leray–Schauder
nonlinear alternative for Kakutani maps [39] that N has a fixed point x ∈ U. This implies
the existence of at least one solution for the inclusions problem (19) on [1, T]. The proof
is complete.

4.1.2. Case 2: Nonconvex Valued Multifunctions

Here, we prove an existence result for the Hilfer–Hadamard fractional inclusions
boundary value problem (19) with a non-convex valued multi-valued map via a fixed point
theorem for multivalued maps due to Covitz and Nadler [42].

Definition 5. ([43]) Let (X, d) be a metric space induced from the normed space (X; ‖ · ‖) and
Hd : P(X)×P(X)→ R∪ {∞} be defined as follows:

Hd(A, B) = max{sup
a∈A

d(a, B), sup
b∈B

d(A, b)},

where d(A, b) = infa∈A d(a, b) and d(a, B) = infb∈B d(a, b).

Theorem 7. Let the following conditions hold:

(B1) F : [1, T] × R → Pcp(R) is such that F(·, x) : [1, T] → Pcp(R) is measurable for each
x ∈ R;

(B2) Hd(F(t, x), F(t, x̄)) ≤ $(t)|x − x̄| for almost all t ∈ [1, T] and x, x̄ ∈ R with $ ∈
C([1, T],R+) and d(0, F(t, 0)) ≤ $(t) for almost all t ∈ [1, T].

Then, the Hilfer–Hadamard inclusions fractional boundary value problem (19) has at least one
solution on [1, T] if

Ω‖$‖ < 1,

where Ω is given by (11).

Proof. We verify that the operator N : C([1, T],R) → P(C([1, T],R)), defined at the
beginning of the proof of Theorem 6, satisfies the hypotheses of the fixed point theorem for
multivalued maps due to Covitz and Nadler [42].

Step I. N is nonempty and closed for every v ∈ SF,x.
It follows by the measurable selection theorem ([44], (Theorem III.6) that the set-valued

map F(·, x(·)) is measurable; hence, it admits a measurable selection v : [1, T]→ R. In view
of the assumption (B2), we obtain |v(t)| ≤ $(t)(1 + |x(t)|), that is, v ∈ L1([1, T],R); hence,
F is integrably bounded. In consequence, we deduce that SF,x 6= ∅.

Now, we show that N(x) ∈ Pcl(C([1, T], R)) for each x ∈ C([1, T],R). For that, let
{un}n≥0 ∈ N(x) with un → u (n→ ∞) in C([1, T],R). Then, u ∈ C([1, T],R), and we can
find vn ∈ SF,xn satisfying the following equation:
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un(t) =
1

Γ(α)

∫ t

1

(
log

t
z

)α−1 vn(z)
z

dz

+
(log t)γ−1

Λ

{
m

∑
j=1

ηj

Γ(α)

∫ ξ j

1

(
log

ξ j

z

)α−1 vn(z)
z

dz

+
n

∑
i=1

ζi
Γ(α + φi)

∫ θi

1

(
log

θi
z

)α+φi−1 vn(z)
z

dz

+
r

∑
k=1

λk
Γ(α−ωk)

∫ µk

1

(
log

µk
z

)α−ωk−1 vn(z)
z

dz

− 1
Γ(α)

∫ T

1

(
log

T
z

)α−1 vn(z)
z

dz

}
,

for each t ∈ [1, T]. Then, we can obtain a sub-sequence (if necessary) vn converging to v
in L1([1, T],R), as F has compact values. Thus, v ∈ SF,x and for each t ∈ [1, T], we have
the following:

un(t)→ v(t) =
1

Γ(α)

∫ t

1

(
log

t
z

)α−1 v(z)
z

dz

+
(log t)γ−1

Λ

{
m

∑
j=1

ηj

Γ(α)

∫ ξ j

1

(
log

ξ j

z

)α−1 v(z)
z

dz

+
n

∑
i=1

ζi
Γ(α + φi)

∫ θi

1

(
log

θi
z

)α+φi−1 v(z)
z

dz

+
r

∑
k=1

λk
Γ(α−ωk)

∫ µk

1

(
log

µk
z

)α−ωk−1 v(z)
z

dz

− 1
Γ(α)

∫ T

1

(
log

T
z

)α−1 v(z)
z

dz

}
.

Thus, u ∈ N(x).
Step II. In this step, it will be shown that there exists 0 < m0 < 1 (m0 = Ω‖$‖) such

that the following is the case.

Hd(N(x), N(x̄)) ≤ m0‖x− x̄‖ for each x, x̄ ∈ C([1, T],R).

Let x, x̄ ∈ C([1, T],R) and h1 ∈ N(x). Then, there exists v1(t) ∈ F(t, x(t)) such that,
for each t ∈ [1, T], we have

h1(t) =
1

Γ(α)

∫ t

1

(
log

t
z

)α−1 v1(z)
z

dz

+
(log t)γ−1

Λ

{
m

∑
j=1

ηj

Γ(α)

∫ ξ j

1

(
log

ξ j

z

)α−1 v1(z)
z

dz

+
n

∑
i=1

ζi
Γ(α + φi)

∫ θi

1

(
log

θi
z

)α+φi−1 v1(z)
z

dz

+
r

∑
k=1

λk
Γ(α−ωk)

∫ µk

1

(
log

µk
z

)α−ωk−1 v1(z)
z

dz

− 1
Γ(α)

∫ T

1

(
log

T
z

)α−1 v1(z)
z

dz

}
.
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By (B2), we have

Hd(F(t, x), F(t, x̄)) ≤ $(t)|x(t)− x̄(t)|.

Thus, there exists ϑ(t) ∈ F(t, x̄(t)) such that

|v1(t)− ϑ| ≤ $(t)|x(t)− x̄(t)|, t ∈ [1, T].

Let us define V : [1, T]→ P(R) by

V(t) = {ϑ ∈ R : |v1(t)− ϑ| ≤ $(t)|x(t)− x̄(t)|}.

Then, there exists a function v2(t) that is a measurable selection of V , since the mul-
tivalued operator V(t) ∩ F(t, x̄(t)) is measurable (Proposition III.4 [44]). Hence, v2(t) ∈
F(t, x̄(t)) and for each t ∈ [1, T], we have |v1(t)− v2(t)| ≤ $(t)|x(t)− x̄(t)|. Thus, for each
t ∈ [1, T], we have

h2(t) =
1

Γ(α)

∫ t

1

(
log

t
z

)α−1 v2(z)
z

dz

+
(log t)γ−1

Λ

{
m

∑
j=1

ηj

Γ(α)

∫ ξ j

1

(
log

ξ j

z

)α−1 v2(z)
z

dz

+
n

∑
i=1

ζi
Γ(α + φi)

∫ θi

1

(
log

θi
z

)α+φi−1 v2(z)
z

dz

+
r

∑
k=1

λk
Γ(α−ωk)

∫ µk

1

(
log

µk
z

)α−ωk−1 v2(z)
z

dz

− 1
Γ(α)

∫ T

1

(
log

T
z

)α−1 v2(z)
z

dz

}
.

Hence, we have the following:

|h1(t)− h2(t)| ≤
1

Γ(α)

∫ t

1

(
log

t
z

)α−1 |v2(z)− v1(z)|)
z

dz

+
(log t)γ−1

Λ

{
m

∑
j=1

ηj

Γ(α)

∫ ξ j

1

(
log

ξ j

z

)α−1 |v2(z)− v1(z)|
z

dz

+
n

∑
i=1

ζi
Γ(α + φi)

∫ θi

1

(
log

θi
z

)α+φi−1 |v2(z)− v1(z)|
z

dz

+
r

∑
k=1

λk
Γ(α−ωk)

∫ µk

1

(
log

µk
z

)α−ωk−1 |v2(z)− v1(z)|
z

dz

− 1
Γ(α)

∫ T

1

(
log

T
z

)α−1 |v2(z)− v1(z)|
z

dz

}

≤
[
(log T)α

Γ(α + 1)
+

(log T)γ−1

|Λ|

{
m

∑
i=j

|ηj|(log ξ j)
α

Γ(α + 1)
+

n

∑
i=1

|ζi|(log θi)
α+φi

Γ(α + φi + 1)

+
r

∑
k=1

|λk|(log µk)
α−ωk

Γ(α−ωk + 1)
+

(log T)α

Γ(α + 1)

}]
‖$‖‖x− x̄‖,

which yields
‖h1 − h2‖ ≤ Ω‖$‖‖x− x̄‖.
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On switching the roles of x and x̄, we obtain the following case:

Hd(N(x), N(x̄)) ≤ Ω‖$‖‖x− x̄‖,

which shows that N is a contraction. Consequently, the conclusion of the fixed point
theorem for multivalued maps due to Covitz and Nadler [42] applies; hence, the operator
N has a fixed point x which corresponds to a solution of the Hilfer–Hadamard inclusions
fractional boundary value problem (19). The proof is complete.

4.2. Examples

Let us consider the Hilfer–Hadamard fractional inclusions boundary value problem:
HH Dα,β

1 x(t) ∈ F(t, x(t)), t ∈ [1, T],

x(1) = 0, x(T) =
m

∑
j=1

ηjx(ξ j) +
n

∑
i=1

ζi
H Iφi

1 x(θi) +
r

∑
k=1

λk H Dωk
1 x(µk),

(20)

with the values of the parameters taken in the problem (14), while the multi-valued map
F : J ×R→ P(R) will be defined below.

We first illustrate Theorem 6 by taking the following multi-valued map:

F(t, x(t)) =
[ e−(1−t)2√

(1− t)4 + 75)

( |x|2
(1 + |x|) +

1
5

)
,

1
100

(
x +

cos x
9

)]
. (21)

It is easy to check that ‖F(t, x)‖P ≤ q(t)χ(‖x‖), where q(t) and χ(‖x‖) are given
as follows:

q(t) =
e−(1−t)2√

(1− t)4 + 75)
, χ(‖x‖) = ‖x‖+ 1

5
.

Using the values ‖q‖ = 1/75, χ(‖x‖) = ‖x‖+ 1
5 and Ω ≈ 39.388095 (see Section 3.3)

in the condition (A3), that is,
M

χ(M)‖q‖Ω > 1, we find that M > 0.221207. Thus, all the

assumptions of Theorem 6 are satisfied; hence, its conclusion implies that problem (20)
with F(t, x(t)) given by (21) has a solution on [1, 5].

Next, we demonstrate the application of Theorem 7 by choosing the following multi-
valued map:

F(t, x(t)) =

[
1 + arctan x
(20 + t)2 ,

(√
t2 + 11
360

)(
1 + 5|x|
1 + 4|x|

)]
. (22)

Clearly, F is measurable for all x ∈ R, satisfying the following inequality:

Hd(F(t, x), F(t, x̄)) ≤
(√

t2 + 11
360

)
|x− x̄|, x, x̄ ∈ R, t ∈ [1, 5].

Fixing $(t) =
√

t2 + 11/360, we have ‖$‖ = 1/60 and d(0,F (t, 0)) ≤ $(t), t ∈ [1, 5].
Furthermore, ‖$‖Ω ≈ 0.656468 < 1. Clearly, the hypothesis of Theorem 7 holds true;
consequently, we deduce by its conclusion that there exists a solution for the problem (20)
with F(t, x(t)) given by (22) on [1, 5].

5. Conclusions

In this paper, we have presented the existence and uniqueness criteria for the solu-
tions of a Hilfer–Hadamard fractional differential equation complemented with mixed
nonlocal (multi-point, fractional integral multi-order and fractional derivative multi-order)
boundary conditions. Firstly, we have converted the given nonlinear problem into a fixed
point problem. Once the fixed point operator is available, we can make use of the Banach
contraction mapping principle to obtain the uniqueness result. The first two existence
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results are proved by applying the fixed point theorems due to Schaefer and Krasnoselskiĭ,
while the third existence result is based on Leray–Schauder nonlinear alternative. Next,
we present the existence results for the corresponding inclusions problem. The first result
for the inclusions problem deals with the convex-valued multivalued map and is obtained
by applying the Leray–Schauder alternative for multivalued maps, while the non-convex
valued multivalued map case relies on the Covitz–Nadler fixed point theorem for contrac-
tive multivalued maps. All the results obtained for single and multivalued maps are well
illustrated by numerical examples. It is imperative to mention that our results are new in
the given configuration and enrich the literature on boundary value problems involving
Hilfer–Hadamard fractional differential equations and inclusions of order in (1, 2].
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