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Abstract: In the present note, a new modification of the Adomian decomposition method is devel-
oped for the solution of fractional-order diffusion-wave equations with initial and boundary value
Problems. The derivatives are described in the Caputo sense. The generalized formulation of the
present technique is discussed to provide an easy way of understanding. In this context, some nu-
merical examples of fractional-order diffusion-wave equations are solved by the suggested technique.
It is investigated that the solution of fractional-order diffusion-wave equations can easily be handled
by using the present technique. Moreover, a graphical representation was made for the solution
of three illustrative examples. The solution-graphs are presented for integer and fractional order
problems. It was found that the derived and exact results are in good agreement of integer-order
problems. The convergence of fractional-order solution is the focus point of the present research
work. The discussed technique is considered to be the best tool for the solution of fractional-order
initial-boundary value problems in science and engineering.

Keywords: Adomian decomposition method; Caputo derivative; initial-boundary value problems;
fractional diffusion-wave equations

1. Introduction

The extension of the classical calculus is known as Fractional Calculus (FC). Many
physical phenomena are described more accurately by FC. The dynamics of real world
complicated problems are mostly related with FC. Due to the non-local nature of fractional
operators several natural phenomena are described in a systematic and better way by them.
In this regard, FC plays a very important role to model the frequency dependent damping
behavior of many viscoelastic material, substrates and interfaces between nanoparticles.
The subject of FC has also an important contribution in other branches of applied sciences,
such as electromagnetic, cosmology, electrochemistry, edge detection, material science,
signal processing, viscoelasticity, traffic system, telecommunication, genetics algorithm,
robotic technology, acoustics, economy and physics [1,2].

Fractional-order partial differential equations (FPDEs) are the generalization of the
classical integer order partial differential equations (PDEs). Fractional approach is now
considered to be the most powerful tool for modeling and applied in wave propagation,
anomalous diffusion tools, turbulence and mechanics [1,3,4]. There are many applications
of FPDES in biomedical engineering, finance, probability theory and hydrology. Recently,
FPDES are used as an effective tool for modeling of various natural processes such as, elec-
trochemistry, computational biology, physics, fluid mechanics and many other fields [5–9].
FPDEs are applied as a major tool for the description of natural processes and are more
appropriate than the ordinary (PDEs) in many ways, some of them are quasi chaotic dy-
namical system, the dynamic of complex material and random walk with memory [10–13].

Fractal Fract. 2021, 5, 206. https://doi.org/10.3390/fractalfract5040206 https://www.mdpi.com/journal/fractalfract

https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0002-0584-1445
https://orcid.org/0000-0003-4306-8489
https://doi.org/10.3390/fractalfract5040206
https://doi.org/10.3390/fractalfract5040206
https://doi.org/10.3390/fractalfract5040206
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/fractalfract5040206
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract5040206?type=check_update&version=1


Fractal Fract. 2021, 5, 206 2 of 18

In addition, superdiffusion and subdiffusion are the processes described more effectively
by FPDEs [14]. Most of the important phenomena including fluid dynamics, polariza-
tion, electrical processes, economics, colored noise, electrochemical processes, statistical
mechanics and traffic flow are accurately described by FPDEs [8,14–18].

The numerical and analytical solutions of FPDEs are considered to be a hard area
of research and therefore the researchers have given full attention to develop strong and
novel techniques to solve FPDEs. Some of the novel applied methods are generalized dif-
ferential transform method [19], Chebyshev wavelet method [20], meshless method [21,22],
finite volume method [23,24], fractional difference method [25,26], homotopy analysis
method [27], reduced differential transform method [28], spectral method [29], the frac-
tional sub-equation method [30], the exponential function method [31] and analytical
solution in term of Mittag–Leffler function [32].

The fractional-order diffusion-wave equations (FDWEs) are the most important type
of anomalous diffusion equations deduced from the classical diffusion-wave equations [33].
The fractional-diffusion equations (FDEs) were introduced by Nigmatullin [34] in physics to
describe the special type of porous media. He discovered that some of the electromagnetic,
mechanical and acoustic can be modeled more properly with the help of FDWEs. The FDEs
are solved by Mark M. Meerschaert et al. in [35]. Agarwal [36] applied the method of
separation of variables to the FDWEs to identify the eigenfunctions. Gorenflo et al. [37]
described the scale invariant solution for FDWEs. Agarwal has modified this procedure
to the DWEs containing fourth-order derivative term [38]. The mean-square solution
containing Green function and spectral representation of FDWEs are given by Anh and
Leonenko [39]. Luckho [40–42] has discussed the solution of FDWEs within time and space
variable. Kenichi Sakamoto et al. solved FDWEs in [43]. For the existence and uniqueness
of the solutions see [44].

In this paper we will work on the solution of FDWEs by applying a new technique
of Adomian decomposition method (ADM). ADM along with its modifications are used
to solve initial and boundary value problems. The proposed technique gives the solu-
tion in a finite series form, which is easily computable. Several modifications to ADM
are done by many researchers to increase the accuracy of the method [45–48]. Other
modifications can be seen in [49–55]. Momani used ADM to solve Navier’s stoke equa-
tions of one-dimension [56]. The ADM has been used to solve FPDEs [57,58], integral-
differential equations [59,60], differential-difference equations [61,62], differential algebraic
equations [63,64] and vice versa.

In our work, we will use a new technique of ADM for the solution of FDWEs along
with initial and boundary conditions, as used by Elaf Jaafer Ali in [65]. He also applied
the same procedure for the fourth order parabolic PDEs in combination with variation
iteration method in [66,67]. The same procedure is applied to the problems in [68] with the
homotopy perturbation method by Elaf Jaafer Ali and the results are excellent. The one
thing is common in his work that he used the procedure for initial-boundary problems.
The applied procedure provides better accuracy, because of using new initial approximation
in each iteration. For justification some examples are discussed in this paper.

2. Preliminaries

In this section, a few definitions related to our work take into consideration.

Definition 1. The integral operator of Reimann-Liouville (RL) having arbitrary order α(α ≥ 0) of
a function u(t) is given by [69]

jαu(t) =
1

Γ(α)

∫ t

0
(t− δ)α−1u(δ)dδ, (1)
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where, Γ(α) =
∫ ∞

0 tα−1e−tdt is the gamma function which provides the converges of Equation (1)
on (0, ∞) point wise. The following relations are satisfied by the RL integral operator.

jα jqu(t) = jq jαu(t),
jα jqu(t) = jα+qu(t),

jαtq = Γ(q+1)
Γ(q+α+1) tα+q.

Definition 2. For a function u(t) Caputo operator of fractional order α is given as,

Dαu(t) =
1

Γ(n− α)

∫ t

0

u(n)(t)
(t− τ)α+1−n dτ n− 1 < α < n, n = [α] + 1, (2)

such that Equation (2) satisfies the following properties.

Dαtv =

{
0, v ∈ N, v < [α],
Γ(v+1)
1+v−α tv−α.

Definition 3. The Mittag-Leffler function ([69]) is

Eα(z) =
∞

∑
n=0

(
zn

Γ(nα + 1)

)
, α > 0, z ∈ C.

3. ADM Implementation

This method was discovered by Adomian in (1994) to solve differential and integro-
differential equations. The present method can be explained by using the following
procedure. Let

F(u(x)) = g(x), (3)

where, g(x) is the known function, F is differential operator, which can be decomposed
as follows.

F(u) = Lu + Ru + Nu, (4)

where L is the invertible operator of highest derivative and R and N are linear and non-
linear terms, respectively. Then Equation (3) has the representation as follows

Lu + Ru + Nu = g. (5)

Taking L−1 of Equation (5), we get

u = η + L−1(g)− L−1(Ru)− L−1(Nu),

where, η is the constant of integration. The ADM solution can be represented in the form
of infinite series as,

u =
∞

∑
n=0

un.

The non-linear term Nu is denoted by An and is defined as,

Nu =
∞

∑
n=0

An, (6)

with the help of the following formula, we can calculate An as,

An =
1
n!

dn

dλn N

(
∞

∑
k=0

(λkuk)

)
, n = 0, 1, . . .
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The following relation is obtained to represent the solution of Equation (3),{
u0 = η + L−1(g), n = 0,
un+1 = L−1(Run)− L−1(An). n ≥ 0

4. New Idea Based on ADM

To understand the present procedure, the following one dimensional equation is
considered with initial and boundary conditions.

Dα(u(ξ, τ)) = Dξξ u(ξ, τ) + R(ξ, τ), 0 < ξ < 1, τ > 0, 1 < α ≤ 2, (7)

with the following initial and boundary conditions as,{
u(ξ, τ) = f0(ξ),

∂u(ξ,0)
∂τ = f1(ξ), 0 ≤ ξ ≤ 1,

u(0, τ) = g0(τ), u(1, τ) = g1(τ), τ > 0.

where, R(ξ, τ) is the source term. The new solution (u∗n) is then calculated for using the
new proposed technique.

u∗n = un(ξ, τ) + (1− ξ)[g0(τ)− un(0, τ)] + ξ[g1(τ)− un(1, τ)],

using ADM the operator form of Equation (21) is

Lu = Dξξu(ξ, τ) + R(ξ, τ), (8)

where L is defined as,

L =
∂α

∂τα
, 1 < α ≤ 2.

Hence L−1 is defined as,
L−1(.) = Iα(.)dτ, (9)

Applying L−1 to Equation (8), we have

u(ξ, τ) = +L−1(Dξξu(ξ, τ) + R(ξ, τ)
)
, (10)

using ADM the initial approximation becomes

u0(ξ, τ) = u(ξ, 0) + τ(∂tu(ξ, 0)) + L−1(R(ξ, τ)).

And use new technique of ADM the iteration formula becomes

un+1(ξ, τ) =
(

Dξξu∗n
)
. n = 0, 1, . . .

It is obvious that new solution u∗n of Equation (21) satisfy both the initial and bound-
ary conditions,

at τ = 0, u∗n(ξ, 0) = un(ξ, 0),

ξ = 0, u∗n(0, τ) = g0(τ),

ξ = 1, u∗n(1, τ) = g1(τ).

It is shown that the proposed technique works effectively for the solution of FPDEs
with initial and boundary conditions.

5. Numerical Results

In this section, we will present the solution of some illustrative examples by using the
new technique based on ADM.
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5.1. Example 1

Consider FDWE of the form [70]

Dα
τu(ξ, τ) = uξξ(ξ, τ) + sin(πξ), 0 < ξ < 1, 1 < α ≤ 2, (11)

with the following initial and boundary conditions,

u(ξ, 0) = 0, ∂tu(ξ, 0) = 0, 0 ≤ ξ ≤ 1,

u(0, τ) = u(1, τ) = 0, 0 ≤ τ ≤ 1.

The problem has the exact solution at α = 2 as,

u(ξ, τ) =
1

π2

[
1− Eα(−π2τα)

]
sin(πξ),

where

Eα =
∞

∑
k=0

zk

Γ(αk + 1)
,

is an one-parameter Mittag–Leffler function.
Applying the new technique based on ADM to Equation (11), we get the following result.

u∗n(ξ, τ) = un(ξ, τ) + (1− ξ)[0− un(0, τ)] + ξ[0− un(1, τ)], (12)

where n = 0, 1, . . . Equation (11) can be written as,

Lu = uξξ(ξ, τ) + sin(πξ), (13)

where
L = Dα

τ , 1 < α ≤ 2. (14)

Using L−1 Equation (13) can be written as,

u(ξ, τ) = u(ξ, 0) + τ(∂tu(ξ, 0)) + L−1(uξξ(ξ, τ) + sin(πξ)
)
.

Using ADM procedure, the initial approximation becomes,

u0(ξ, τ) = u(ξ, 0) + τ(∂tu(ξ, 0)) + L−1(sin(πξ)),

= 0 + 0 +
ταsin(πξ)

Γ(α + 1)
,

u0(ξ, τ) =
ταsin(πξ)

Γ(α + 1)
.

And use the new technique of initial approximation u∗n the iteration formula becomes

un+1(ξ, τ) = L−1
(

∂2u∗n
∂ξ2

)
. (15)

By putting initial and boundary conditions in Equation (12), for n = 0

u∗0(ξ, τ) = u0(ξ, τ) + (1− ξ)[0− u0(0, τ)] + ξ[0− u0(1, τ)],

=
τα

Γ(α + 1)
(sin(πξ)) + (1− ξ)[0− 0] + ξ[0− 0],

u∗0(ξ, τ) =
ταsin(πξ)

Γ(α + 1)
.
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From Equation (15), we have

u1(ξ, τ) = L−1

(
∂2u∗0
∂ξ2

)
= L−1

(
−ταπ2sin(πξ)

Γ(α + 1)

)

u1(ξ, τ) =
−τ2απ2sin(πξ)

Γ(α + 1)
.

For n = 1 Equation (12) becomes,

u∗1(ξ, τ) = u1(ξ, τ) + (1− ξ)[0− u1(0, τ)] + ξ[0− u1(1, τ)],

=
−τ2δπ2sin(πξ)

Γ(2α + 1)
+ (1− ξ)[0− 0] + ξ[0− 0],

u∗1(ξ, τ) =
−τ2απ2sin(πξ)

Γ(2α + 1)
.

From Equation (15), we have

u2(ξ, τ) = L−1

(
∂2u∗1
∂ξ2

)
= L−1

(
τ2απ4sin(πξ)

Γ(2α + 1)

)

u2(ξ, τ) =
τ3απ4sin(πξ)

Γ(3α + 1)
.

For n = 2 Equation (12), becomes

u∗2(ξ, τ) = u2(ξ, τ) + (1− ξ)[0− u2(0, τ)] + ξ[0− u2(1, τ)],

=
τ3απ4sin(πξ)

Γ(3α + 1)
+ (1− ξ)[0− 0] + ξ[0− 0],

u∗2(ξ, τ) =
τ3απ4sin(πξ)

Γ(3α + 1)
.

From Equation (15), we have

u3(ξ, τ) = L−1

(
∂2u∗2
∂ξ2

)
= L−1

(
−τ3απ6sin(πξ)

Γ(3α + 1)

)
,

u3(ξ, τ) =
−τ4απ6sin(πξ)

Γ(4α + 1)
.

...

Thus the ADM solution in the series form is,

u(ξ, τ) = u0(ξ, τ) + u1(ξ, τ) + u2(ξ, τ) + u3(ξ, τ) + . . .

=
ταsin(πξ)

Γ(α + 1)
− τ2απ2sin(πξ)

Γ(2α + 1)
+

τ3απ4sin(πξ)

Γ(3α + 1)
− τ4απ6sin(πξ)

Γ(4α + 1)
+ . . .

In Figure 1a,b, the obtained solutions of Example 1 are plotted at various fractional-
orders of the derivatives, Figure 1a,b provides the 2D and 3D, ADM solutions graphs and
confirmed the closed contact with the exact solution of Example 1. Similarly, in Figure 2,
the closed contact between the exact and obtained solutions of Example 1 at integer order
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of the derivative is investigated. From the graphs, it is confirmed that the exact and derived
results are in closed contact with each other. Thus the proposed method has provided an
accurate solution for Example 1.

Figure 1. ADM solution plots (a) 2D and (b) 3D of Example 1 at different α.

Figure 2. Exact and ADM solution 3D plots of Example 1 at α = 2.

Figure 3 is plotted to confirm the closed contact between the exact and derived solution
of Example 1 in 2D-space. Figure 3 represents the Exact and ADM solutions, respectively,
at α = 2.

Figure 3. Exact and ADM solution 2D plots of Example 1 at α = 2.
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5.2. Example 2

Consider the FWDE of the form [70]

Dα
τu(ξ, τ) = uξξ(ξ, τ) + eξ [Γ(1 + α)− τα − τ − 1], 0 < ξ < 1, 0 < τ ≤ 1. (16)

With the following initial and boundary conditions,

u(ξ, 0) = eξ , ∂tu(ξ, 0) = eξ 0 < ξ < 1,

u(0, τ) = τα + τ + 1, u(1, τ) = e1[τα + τ + 1], 0 < τ ≤ 1.

The problem has the Exact solution at α = 2 as follows,

u(ξ, τ) = eξ [τα + τ + 1].

Applying the new technique based on ADM to Equation (16), we get the following result.

u∗n(ξ, τ) = un(ξ, τ) + (1− ξ)[0− un(0, τ)] + ξ[0− un(1, τ)]. (17)

where n = 0, 1, . . .
Equation (16), can be written as,

Lu = uξξ(ξ, τ) + eξ [Γ(1 + α)− τα − τ − 1], (18)

where L = Dα
τ and L−1 is defined as,

L−1(.) = Iα(.)dτ.

Taking Equation L−1 on both sides of Equation (18), we get,

u(ξ, τ) = u(ξ, 0) + τ(∂tu(ξ, 0)) + L−1
(

uξξ(ξ, τ) + eξ [Γ(1 + α)− τα − τ − 1]
)

.

Using ADM solution, the initial approximation becomes,

u0(ξ, τ) = u(ξ, 0) + τ(∂tu(ξ, 0)) + L−1
(

eξ [Γ(1 + α)− τα − τ − 1]
)

,

u0(ξ, τ) = eξ + τ(eξ) + eξ

(
τα − τ2αΓ(α + 1)

Γ(2α + 1)
− τα+1

Γ(α + 2)
− τα

Γ(α + 1)

)
,

and use the new technique of initial approximation u∗n the iteration formula becomes

un+1(ξ, τ) = L−1
(

∂2u∗n
∂ξ2

)
. (19)

By putting the initial and boundary condition in Equation (17), for n = 0

u∗0(ξ, τ) = u0(ξ, τ) + (1− ξ)[0− u0(0, τ)] + ξ[0− u0(1, τ)], (20)

Let

u0(ξ, τ) = eξ + τ(eξ) + eξ

(
τα − τ2αΓ(α + 1)

Γ(2α + 1)
− τα+1

Γ(α + 2)
− τα

Γ(α + 1)

)
(21)

(1− ξ)[0− u0(0, τ)] = (1− ξ)[τα + τ + 1− 1− τ − τα +
τ2αΓ(α + 1)
Γ(2α + 1)

+
τα+1

Γ(α + 2)
+

τα

Γ(α + 1)
] (22)

ξ[0− u0(1, τ)] = ξ

[
e(τα + τ + 1)− e

(
τ + 1 + τα − τ2αΓ(α + 1)

Γ(2α + 1)
− τα+1

Γ(α + 2)
− τα

Γ(α + 1)

)]
(23)
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By putting Equations (21)–(23) in Equation (20) and simplifying, we get

u∗0(ξ, τ) = eξ

(
1 + τ + τα − τ2αΓ(α + 1)

Γ(2α + 1)
− τα+1

Γ(α + 2)
− τα

Γ(α + 1)

)
+ (1− ξ + eξ)

(
τ2αΓ(α + 1)
Γ(2α + 1)

+
τα+1

Γ(α + 2)
+

τα

Γ(α + 1)

)
.

From Equation (19), we have

u1(ξ, τ) = L−1

(
∂2u∗0
∂ξ2

)
,

= L−1
(

eξ

(
1 + τ + τα − τ2αΓ(α + 1)

Γ(2α + 1)
− τα+1

Γ(α + 2)
− τα

Γ(α + 1)

))
,

u1(ξ, τ) = eξ

(
τα

Γ(α + 1)
+

τα+1

Γ(α + 2)
+

τ2αΓ(α + 1)
Γ(2α + 1)

− τ3αΓ(α + 1)
Γ(3α + 1)

− τ2α+1

Γ(2α + 2)
− τ2α

Γ(2α + 1)

)
.

For n = 1, Equation (17), we have

u∗1(ξ, τ) = u1(ξ, τ) + (1− ξ)[0− u1(0, τ)] + ξ[0− u1(1, τ)], (24)

Let

u1(ξ, τ) = eξ

(
τα

Γ(α + 1)
+

τα+1

Γ(α + 2)
+

τ2αΓ(α + 1)
Γ(2α + 1)

− τ3αΓ(α + 1)
Γ(3α + 1)

− τ2α+1

Γ(2α + 2)
− τ2α

Γ(2α + 1)

)
(25)

(1− ξ)[0− u1(0, τ)] =(1− ξ)

[
τα + τ + 1− τα

Γ(α + 1)
− τα+1

Γ(α + 2)
− τ2αΓ(α + 1)

Γ(2α + 1)

+
τ3αΓ(α + 1)
Γ(3α + 1)

+
τ2α+1

Γ(2α + 2)
+

τ2α

Γ(2α + 1)

]
,

(26)

ξ[0− u1(1, τ)] = ξ
[
e
(

τα + τ + 1− τα

Γ(α + 1) −
τα+1

Γ(α + 2) −
τ2αΓ(α+1)
Γ(2α + 1) + τ3αΓ(α+1)

Γ(3α + 1) + τ2α+1

Γ(2α + 2) +
τ2α

Γ(2α + 1)

)]
, (27)

By putting Equations (25)–(27) in Equation (24) and simplifying, we get

u∗1(ξ, τ) = eξ

(
τα

Γ(α + 1)
+

τα+1

Γ(α + 2)
+

τ2αΓ(α + 1)
Γ(2α + 1)

− τ3αΓ(α + 1)
Γ(3α + 1)

− τ2α+1

Γ(2α + 2)
− τ2α

Γ(2α + 1)

)
+ (1− ξ + eξ)

[
τα + τ + 1− τα

Γ(α + 1)
− τα+1

Γ(α + 2)
− τ2αΓ(α + 1)

Γ(2α + 1)
+

τ3αΓ(α + 1)
Γ(3α + 1)

+
τ2α+1

Γ(2α + 2)
+

τ2α

Γ(2α + 1)

]
.

From Equation (19), we have

u2(ξ, τ) = L−1

(
∂2u∗1
∂ξ2

)
,

= L−1
(

eξ

(
τα

Γ(α + 1)
+

τα+1

Γ(α + 2)
+

τ2αΓ(α + 1)
Γ(2α + 1)

− τ3αΓ(α + 1)
Γ(3α + 1)

− τ2α+1

Γ(2α + 2)
− τ2α

Γ(2α + 1)

))
,

u2(ξ, τ) = eξ

(
τ2α+1

Γ(2α + 2)
+

τ2α

Γ(2α + 1)
+

τ3αΓ(α + 1)
Γ(3α + 1)

− τ4αΓ(α + 1)
Γ(4α + 1)

− τ3α+1

Γ(3α + 2)
− τ3α

Γ(3α + 1)

)
.

For n = 2, Equation (17) becomes,

u∗2(ξ, τ) = u2(ξ, τ) + (1− ξ)[0− u2(0, τ)] + ξ[0− u2(1, τ)], (28)

Let
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u2(ξ, τ) = eξ

(
τ2α+1

Γ(2α + 2)
+

τ2α

Γ(2α + 1)
+

τ3αΓ(α + 1)
Γ(3α + 1)

− τ4αΓ(α + 1)
Γ(4α + 1)

− τ3α+1

Γ(3α + 2)
− τ3α

Γ(3α + 1)

)
, (29)

(1− ξ)[0− u2(0, τ)] =(1− ξ)

[
τα + τ + 1− τ2α+1

Γ(2α + 2)
− τ2α

Γ(2α + 1)
− τ3αΓ(α + 1)

Γ(3α + 1)
+

τ4αΓ(α + 1)
Γ(4α + 1)

+
τ3α+1

Γ(3α + 2)
+

τ3α

Γ(3α + 1)

]
,

(30)

ξ[0− u2(1, τ)] = ξ
[
e
(

τα + τ + 1− τ2α+1

Γ(2α + 2) −
τ2α

Γ(2α + 1) −
τ3αΓ(α+1)
Γ(3α + 1) + τ4αΓ(α+1)

Γ(4α + 1) + τ3α+1

Γ(3α + 2) +
τ3α

Γ(3α + 1)

)]
, (31)

By putting Equations (29)–(31) in Equation (28) and simplifying ,we get

u∗2(ξ, τ) = eξ

(
τ2α+1

Γ(2α + 2)
+

τ2α

Γ(2α + 1)
+

τ3αΓ(α + 1)
Γ(3α + 1)

− τ4αΓ(α + 1)
Γ(4α + 1)

− τ3α+1

Γ(3α + 2)
− τ3α

Γ(3α + 1)

)
+ (1− ξ + eξ)

(
τα + τ + 1− τ2α+1

Γ(2α + 2)
− τ2α

Γ(2α + 1)
− τ3αΓ(α + 1)

Γ(3α + 1)
+

τ4αΓ(α + 1)
Γ(4α + 1)

+
τ3α+1

Γ(3α + 2)
+

τ3α

Γ(3α + 1)

)
.

From Equation (19), we have

u3(ξ, τ) = L−1

(
∂2u∗2
∂ξ2

)
,

= L−1
(

eξ

(
τ2α+1

Γ(2α + 2)
+

τ2α

Γ(2α + 1)
+

τ3αΓ(α + 1)
Γ(3α + 1)

− τ4αΓ(α + 1)
Γ(4α + 1)

− τ3α+1

Γ(3α + 2)
− τ3α

Γ(3α + 1)

))
,

u3(ξ, τ) = eξ

(
τ3α+1

Γ(3α + 2)
+

τ3α

Γ(3α + 1)
+

τ4αΓ(α + 1)
Γ(4α + 1)

− τ5αΓ(α + 1)
Γ(5α + 1)

− τ4α+1

Γ(4α + 2)
− τ4α

Γ(4α + 1)

)
.

...

Thus the ADM solution in the series form is,

u(ξ, τ) = u0(ξ, τ) + u1(ξ, τ) + u2(ξ, τ) + u3(ξ, τ) + . . .

= eξ + τ(eξ) + eξ

(
τα − τ2αΓ(α + 1)

Γ(2α + 1)
− τα+1

Γ(α + 2)
− τα

Γ(α + 1)

)
+ eξ

(
τα

Γ(α + 1)
+

τα+1

Γ(α + 2)
+

τ2αΓ(α + 1)
Γ(2α + 1)

− τ3αΓ(α + 1)
Γ(3α + 1)

− τ2α+1

Γ(2α + 2)
− τ2α

Γ(2α + 1)

)
+ eξ

(
τ2α+1

Γ(2α + 2)
+

τ2α

Γ(2α + 1)
+

τ3αΓ(α + 1)
Γ(3α + 1)

− τ4αΓ(α + 1)
Γ(4α + 1)

− τ3α+1

Γ(3α + 2)
− τ3α

Γ(3α + 1)

)
+ eξ

(
τ3α+1

Γ(3α + 2)
+

τ3α

Γ(3α + 1)
+

τ4αΓ(α + 1)
Γ(4α + 1)

− τ5αΓ(α + 1)
Γ(5α + 1)

− τ4α+1

Γ(4α + 2)
− τ4α

Γ(4α + 1)

)
+ . . .

In Figure 4a,b, the ADM-solutions of Example 2 are presented for different fractional
order in 3D and 2D mode, respectively. The plots have shown the various dynamics of the
physical phenomena represented by Example 2 for different values of α.



Fractal Fract. 2021, 5, 206 11 of 18

Figure 4. ADM solution plots of Example 2 (a) 3D and (b) 2D at different α.

Figure 5 have shown the 3D Exact and ADM solutions of Example 2, respectively, at
α = 2. It is observed that the exact and ADM solutions are in closed contact. Similarly,
in Figure 6 the 2D exact and obtained results of Example 2 are plotted at α = 2. The Graphs
have shown that the exact and obtained results are very closed and confirmed the validity
of the present method.

Figure 5. 3D solution plots (a) Exact and (b) ADM of Example 2 at α = 2.

Figure 6. 2D Exact and ADM solution plot of Example 2 at α = 2.
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5.3. Example 3

Consider the FDWE of the form [70]

Dα
τu(ξ, τ) = uξξ(ξ, τ) + sin(ξ)

[
Γ(2 + α)τ + τ1+α

]
, 0 < ξ < π, 0 < τ ≤ 1. (32)

With the following initial and boundary conditions,

u(ξ, 0) = 0, ∂tu(ξ, 0) = 0, 0 < ξ < 1,

u(0, τ) = 0, u(π, τ) = 0, 0 < τ ≤ 1.

The problem has the Exact solution at α = 2 as follows,

u(ξ, τ) = sin(ξ)τ1+α.

Applying the new technique based on ADM to Equation (32), we get the following result.

u∗n(ξ, τ) = un(ξ, τ) + (1− ξ)[0− un(0, τ)] + ξ[0− un(π, τ)]. (33)

where n = 0, 1, . . .
Equation (32) can be written as,

Lu = uξξ(ξ, τ) + sin(ξ)
[
Γ(2 + α)τ + τ1+α

]
, (34)

where L = Dα
τ and L−1 is defined as,

L−1(.) = Iα(.)dτ.

Taking L−1 on both sides of Equation (34), we get,

u(ξ, τ) = u(ξ, 0) + τ(∂tu(ξ, 0)) + L−1
(

uξξ(ξ, τ) + sin(ξ)
[
Γ(2 + α)τ + τ1+α

])
.

Using ADM solution, the initial approximation becomes,

u0(ξ, τ) = u(ξ, 0) + τ(∂tu(ξ, 0)) + L−1
(

sin(ξ)
[
Γ(2 + α)τ + τ1+α

])
,

= sin(ξ)
[

τα+1 +
τ1+2α

Γ(2 + 2α)

]
,

u0(ξ, τ) = sin(ξ)τα+1 + sin(ξ)
[

τ1+2α

Γ(2 + 2α)

]
. (35)

and use the new technique of initial approximation u∗n the iteration formula becomes

un+1(ξ, τ) = L−1
(

∂2u∗n
∂ξ2

)
. (36)

By putting the initial and boundary condition in Equation (33), for n = 0

u∗0(ξ, τ) = u0(ξ, τ) + (1− ξ)[0− u0(0, τ)] + ξ[0− u0(π, τ)],

= sin(ξ)
[

τα+1 +
τ1+2α

Γ(2 + 2α)

]
+ (1− ξ)[0− 0] + ξ[0− 0],

= u∗0(ξ, τ) = sin(ξ)
[

τα+1 +
τ1+2α

Γ(2 + 2α)

]
.
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From Equation (36), we have

u1(ξ, τ) = L−1

(
∂2u∗0
∂ξ2

)
,

= L−1
(
−sin(ξ)

[
τα+1 +

τ1+2α

Γ(2 + 2α)

])
,

= −sin(ξ)
[

τ2α+1

Γ(2α + 2)
+

τ1+3α

Γ(2 + 3α)

]
,

u1(ξ, τ) = −sin(ξ)
[

τ2α+1

Γ(2α + 2)

]
− sin(ξ)

[
τ1+3α

Γ(2 + 3α)

]
.

For n = 1 Equation (33), we have

u∗1(ξ, τ) = u1(ξ, τ) + (1− ξ)[0− u1(0, τ)] + ξ[0− u1(π, τ)],

= −sin(ξ)
[

τ2α+1

Γ(2α + 2)
+

τ1+3α

Γ(2 + 3α)

]
+ (1− ξ)[0− 0] + ξ[0− 0],

u∗1(ξ, τ) = −sin(ξ)
[

τ2α+1

Γ(2α + 2)
+

τ1+3α

Γ(2 + 3α)

]
. (37)

From Equation (36), we have

u2(ξ, τ) = L−1

(
∂2u∗1
∂ξ2

)
,

= L−1
(

sin(ξ)
[

τ2α+1

Γ(2α + 2)
+

τ1+3α

Γ(2 + 3α)

])
,

= sin(ξ)
[

τ3α+1

Γ(3α + 2)
+

τ1+4α

Γ(2 + 4α)

]
,

u2(ξ, τ) = sin(ξ)
[

τ3α+1

Γ(3α + 2)

]
+ sin(ξ)

[
τ1+4α

Γ(2 + 4α)

]
.

For n = 2, Equation (33) becomes,

u∗2(ξ, τ) = u2(ξ, τ) + (1− ξ)[0− u2(0, τ)] + ξ[0− u2(π, τ)], (38)

= sin(ξ)
[

τ3α+1

Γ(3α + 2)
+

τ1+4α

Γ(2 + 4α)

]
+ (1− ξ)[0− 0] + ξ[0− 0],

=

(
sin(ξ)

[
τ3α+1

Γ(3α + 2)
+

τ1+4α

Γ(2 + 4α)

])
.

u∗2(ξ, τ) = sin(ξ)
[

τ3α+1

Γ(3α + 2)
+

τ1+4α

Γ(2 + 4α)

]
,

From Equation (36), we have

u3(ξ, τ) = L−1

(
∂2u∗2
∂ξ2

)
,

= L−1
(
−sin(ξ)

[
τ3α+1

Γ(3α + 2)
+

τ1+4α

Γ(2 + 4α)

])
,
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= −sin(ξ)
[

τ4α+1

Γ(4α + 2)
+

τ1+5α

Γ(2 + 5α)

]
,

u3(ξ, τ) = −sin(ξ)
[

τ4α+1

Γ(4α + 2)

]
− sin(ξ)

[
τ1+5α

Γ(2 + 5α)

]
.

...

Thus the ADM solution in the series form is,

u(ξ, τ) = u0(ξ, τ) + u1(ξ, τ) + u2(ξ, τ) + u3(ξ, τ) + . . .

= sin(ξ)
[
τα+1

]
+ sin(ξ)

[
τ1+2α

Γ(2 + 2α)

]
− sin(ξ)

[
τ2α+1

Γ(2α + 2)

]
− sin(ξ)

[
τ1+3α

Γ(2 + 3α)

]
+ sin(ξ)

[
τ3α+1

Γ(3α + 2)

]
+ sin(ξ)

[
τ1+4α

Γ(2 + 4α)

]
− sin(ξ)

[
τ4α+1

Γ(4α + 2)

]
+ sin(ξ)

[
τ1+5α

Γ(2 + 5α)

]
+ . . .

Figure 7 represents the fractional order solutions of Example 3 with 2D and 3D geome-
try, respectively. The fractional order solutions confirm the validity of the proposed method
to solve fractional initial and boundary value problems. The results are sophisticated and
closely related to the exact solutions of the problems. Similarly, the plots given in Figure 8
indicates the 3D graphs of exact and obtained results of Example 3, respectively.

Figure 7. ADM solution plots (a) 2D and (b) 3D of Example 3 at different α.

Figure 8. 3D solution plots (a) Exact and (b) ADM of Example 3 at α = 2.
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In Figure 9, the exact and ADM solution at α = 2 are plotted in 2D plots of example 3.
It is observed that the exact and derived results are in good contact and confirm the high
accuracy of the proposed method.

Figure 9. 2D Exact and ADM solution plots of Example 3 at α = 2.

In Table 1, the solutions of Example 2 at α = 1.3, 1.5 and 1.8 are calculated by using
the new technique based on ADM. The derived results and accuracy of the method are
listed in Table 1. It is confirmed that the accuracy of the proposed technique increases as α
converges towards the integer order of the problem.

Table 1. Absolute error for the Example 2 at t = 0.8.

|Exact− ADM| |Exact− ADM| |Exact− ADM|
ξ α = 1.3 α = 1.5 α = 1.8

0.1 2.469772 × 10−3 4.68002 × 10−4 3.2855 × 10−5

0.2 2.729520 × 10−3 5.17222 × 10−4 3.6311 × 10−5

0.3 3.016585 × 10−3 5.71619 × 10−4 4.0129 × 10−5

0.4 3.333843 × 10−3 6.31737 × 10−4 4.4351 × 10−5

0.5 3.684465 × 10−3 6.98177 × 10−4 4.9015 × 10−5

0.6 4.071964 × 10−3 7.71604 × 10−4 5.4170 × 10−5

0.7 4.500216 × 10−3 8.52755 × 10−4 5.9866 × 10−5

0.8 4.973509 × 10−3 9.42440 × 10−4 6.6163 × 10−5

0.9 5.496578 × 10−3 1.041558 × 10−3 7.3121 × 10−5

1 6.074659 × 10−3 1.151100 × 10−3 8.0812 × 10−5

6. Conclusions

In this research article, fractional-order diffusion-wave equations with initial and
boundary conditions are investigated analytically. A unique approach based on ADM
is proposed for the solution of targeted problems in a very simple and effective man-
ner. Fractional derivatives are defined in the Caputo sense for every example. Three
examples of FDWEs are presented to confirm the validity of the suggested method. First,
the modified ADM scheme is derived for general FPDEs and then implemented for some
numerical examples of FDWEs. The solutions Graphs and Table are presented to show the
best applicability of the current technique. The Graphs have confirmed that the present
procedure is an effective tool for the solution of both integer and fractional order prob-
lems. The fractional solutions are handled in a very simple and sophisticated manner.
Therefore the technique has a unique tendency to solve fractional PDEs with initial and
boundary conditions and therefore it can be modified for the solution of other fractional
initial-boundary value problems. According to our results, it is concluded that the present
technique is good for FPDEs having both initial and boundary conditions, therefore the
technique can be applied to other linear and non-linear FPDEs in future.
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