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Abstract: In this paper, we study the exact asymptotic separation rate of two distinct solutions of
Caputo stochastic multi-term differential equations (Caputo SMTDEs). Our goal in this paper is
to establish results of the global existence and uniqueness and continuity dependence of the initial
values of the solutions to Caputo SMTDEs with non-permutable matrices of order α ∈ ( 1

2 , 1) and
β ∈ (0, 1) whose coefficients satisfy a standard Lipschitz condition. For this class of systems, we then
show the asymptotic separation property between two different solutions of Caputo SMTDEs with a
more general condition based on λ. Furthermore, the asymptotic separation rate for the two distinct
mild solutions reveals that our asymptotic results are general.

Keywords: asymptotic separation; Caputo stochastic multi-term differential equations; existence and
uniqueness; continuous dependence on initial conditions; non-permutable matrices

1. Introduction

Over the years, many results on the theory and applications of stochastic differen-
tial equations (SDEs) have been studied [1,2]. In physics, SDEs have wide applicability
ranging from molecular dynamics to neurodynamics and to the dynamics of astrophysical
objects [3]. More specifically, SDEs describe all dynamical systems, in which quantum
effects are either unimportant or can be taken into account as perturbations. SDEs can
be viewed as a generalization of the dynamical systems theory to models with noise.
This is an important generalization because real systems cannot be completely isolated
from their environments and for this reason always experience external stochastic influ-
ence [4]. SDEs are also used to model various phenomena such as unstable stock prices
or physical systems subject to thermal fluctuations [5]. In particular, fractional stochastic
differential equations (FSDEs), which are a generalisation of differential equations using
fractional and stochastic calculus, are becoming more popular due to their applications in
modeling and financial mathematics. The nonlinear systems of FDEs have been studied
from various points of view: applications to population dynamics, optimal pricing in
economics, and recent COVID-19 epidemics. Recently, FSDEs have been extensively used
for modeling mathematical problems in finance [6,7], dynamics of complex systems in
engineering [8] and other areas [9,10]. Most results on fractional stochastic dynamical
systems are limited to proving the existence and uniqueness of mild solutions using the
fixed point theorem. For instance, the authors in [11] studied existence and uniqueness
results for a class of fractional stochastic neutral differential equations using fixed point
approach and Carathéodory conditions. Rodkina [12] proved existence and uniqueness
of solution of stochastic differential equations with heredity. Existence and uniqueness
and asymptotic behavior of mild solutions to stochastic functional differential equations in
Hilbert spaces have been considered by Taniguchi et al. [13], and local and global existence
for mild solutions of stochastic differential equations was studied by Barbu [14]. One can
refer different types of stability studies for FSDEs, e.g., asymptotic stability of impulsive
stochastic partial differential equations with infinite delays in [15], controllability and
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stability of fractional stochastic functional systems driven by Rosenblatt process in [16], an
exponential stability of SDEs in [17].

Using fractional derivatives instead of integer-order derivatives allows for the mod-
elling of a wider variety of behaviours. Fractional stochastic Langevin equations (FSLEs)
is an untreated topic in the present literature, and worthy of investigation because many
of the stochastic problems in fluctuating media can be described by the Langevin Equa-
tion [18,19]. However, sometimes, SDEs involving one fractional order of differentiation
are not sufficient to describe physical processes. Therefore, recently, several authors have
studied more general types of fractional-order stochastic models, such as multi-term equa-
tions to obtain analytical and numerical approximation results. For instance, the authors
in [20] have studied Euler–Maruyama scheme for fractional stochastic Langevin multi-term
equations and introduced a general form of FSLEs together with strong convergence rate
of a numerical mild solution.

Among the many scientific articles on asymptotic behaviour and asymptotic separa-
tion of fractional stochastic differential equations, we will mention only a few that motivate
this work:

• A few works on asymptotic separation of two distinct solutions to fractional stochastic
differential equations which can also be found in [21]. Similar work on an exact
asymptotic separation rate of two distinct solutions of doubly singular stochastic
Volterra integral equations (SVIEs) with two different initial values was discussed
in [22].

• Results on the asymptotic behavior of solutions of fractional differential equations
with fractional time derivative of Caputo type are relatively rare in the literature.
In [23], Cong et al. studied the asymptotic behavior of solutions of the perturbed
linear fractional differential system. Cong et al. [24] proved the theorem of linearized
asymptotic stability for fractional differential equations.

• The authors in [25] studied the existence and asymptotic stability at the p-th moment
of a mild solution for a class of nonlinear fractional neutral stochastic differential
equations. The results are obtained with the help of the theory of fractional differential
equations, some properties of Mittag–Leffler functions and its asymptotic analysis
under the assumption that the corresponding fractional stochastic neutral dynamical
system is asymptotically stable. The similar asymptotic stability result at the p-th
moment of a mild solution of nonlinear impulsive stochastic differential equations
was discussed in [26,27].

While there are several papers on applications of deterministic fractional multi-term
differential equations (FMTDEs) with constant and variable coefficients (see [28–31]), there
are few papers dealing with stochastic Caputo stochastic multi-term differential equations
(Caputo SMTDEs) involving non-permutable matrices. The lack of asymptotic separation
of the solutions of this class of Caputo SMTDEs motivates us to develop new results on
asymptotic analysis. The main contributions of our work are described in detail below:

1. We study asymptotic separation between two distinct mild solutions rather than
integral equations. This is a lucky consequence which forms an interesting result in
its own right.

2. We consider more general Caputo-FSDEs with non-permutable matrices under the
weaker condition λ > α, which is true even in the special case when β = 0 and A, B
are equal to zero matrices, than the condition represented in [21]. With respect to this
condition, the asymptotic distance between solutions is greater than t−α−ε as t→ ∞
for any ε > 0.

3. We obtain a bound for the leading coefficient of the asymptotic separation rate for the
two distinct solutions which reveals that our asymptotic results are general.

4. As a consequence, the mean square Lyapunov exponent of an arbitrary non-trivial
solution of a bounded linear Caputo fractional stochastic differential equation is
always non-negative.
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Hence, the plan of this paper is systematized as follows: Section 2 is an introductory
section in which we recall the main definitions, results from fractional calculus, and
necessary lemmas from fractional differential equations, and in Section 3 we review the
framework for the main results of the theory. Section 4 is devoted to proving global
existence and uniqueness and continuity dependence on the initial values of the solutions
of Caputo SMTDEs of orders α ∈ ( 1

2 , 1) and β ∈ (0, 1) with α > β involving non-permutable
matrices. In Section 5, we investigate new results on the asymptotic behavior of solutions of
the Caputo SMTDE by studying an asymptotic separation between two different solutions.
In Section 6, we present an example to verify the results proved in Sections 4 and 5.
Section 7 is for the conclusion.

2. Mathematical Preliminaries

We embark on this section by briefly introducing the essential structure of fractional
calculus and fractional differential operators. For the more salient details on these matters,
see the textbooks [32–36]. Note that none of the results in this section are new, except
Definition 2.3 and 2.4 (they are recently defined in [37,38], respectively) at the end, which
we place in this section since the Mittag–Leffler type function will be used later in the paper
as a representation of solutions.

Definition 1 ([32,34]). The Riemann–Liouville integral operator of fractional order α > 0 is
defined by

Iα
0+g(t) =

1
Γ(α)

∫ t

0
(t− r)α−1g(r)dr, for t > 0. (1)

The Riemann–Liouville derivative operator of fractional order α > 0 is defined by

Dα
0+g(t) =

dn

dtn

(
In−α
0+ g(t)

)
, where n− 1 < α ≤ n. (2)

Definition 2 ([32]). Suppose that α > 0, t > 0. The Caputo derivative operator of fractional order
α is defined by:

CDα
0+g(t) = In−α

0+

(
dn

dtn g(t)
)

, where n− 1 < α ≤ n.

In particular, for α ∈ (0, 1)

Iα
0+

CDα
0+ f (t) = f (t)− f (0).

The Riemann–Liouville fractional derivatives have a singularity at zero. That is why
differential equations involving these derivatives require initial conditions of special form
lacking clear physical interpretation. These shortcomings do not occur with the regularized
fractional derivative in the sense of Caputo [33]. For this reason, we consider our main
results in the sense of Caputo fractional derivative.

The Riemann–Liouville fractional integral operator and the Caputo fractional deriva-
tive have the following property for α ≥ 0 [32,34]:

Iα
0+(

CDα
0+g(t)) = g(t)−

n−1

∑
k=0

tkg(k)(0)
Γ(k + 1)

. (3)

The relationship between the Riemann–Liouville and Caputo fractional derivatives is
as follows:

CDα
0+g(t) = Dα

0+g(t)−
n−1

∑
k=0

tk−αg(k)(0)
Γ(k− α + 1)

, α ≥ 0. (4)
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Definition 3 ([37]). We define a new Mittag–Leffler type function EA,B
α,β,γ(·) : R→ R generated

by nonpermutable matrices A, B ∈ Rn×n as follows:

EA,B
α,β,δ(t) =

∞

∑
k=0

∞

∑
m=0
QA,B

k,m
tkα+mβ

Γ(kα + mβ + δ)
, α, β > 0, δ ∈ R, (5)

where QA,B
k,m ∈ Rn×n, k, m ∈ N0 := N∪ {0} is given by

QA,B
k,m =

k

∑
l=0

Ak−l BQA,B
l,m−1, k, m ∈ N, QA,B

k,0 = Ak, k ∈ N0, QA,B
0,m = Bm, m ∈ N0. (6)

An explicit representation of QA,B
k,m can be found in Table 1 in [37]. In the case of

permutable matrices, i.e., AB = BA, we have QA,B
k,m = (k+m

m )AkBm, k, m ∈ N0.

Definition 4 ([38]). We consider the Mittag–Leffler type function involving permutable matrices

tδ−1Eα,β,δ(Btα, Atβ) =
∞

∑
k=0

∞

∑
m=0

(
k + m

m

)
AkBm

Γ(kα + mβ + δ)
tmα+kβ+δ−1. (7)

The following results are often used to compute estimations in Sections 4 and 5.

Lemma 1. For all ω, t > 0, and α ∈ ( 1
2 , 1) the following inequality holds:

ω

Γ(2α− 1)

∫ t

0
(t− r)2α−2E2α−1(ωr2α−1)dr ≤ E2α−1(ωt2α−1).

Proof. Applying the series representation of Mittag–Leffler function and definition of beta
function, then by swapping summation and integration, we obtain the desired result.

The following lemma plays a necessary role on proofs of main results in Sections 4 and 5.

Lemma 2 (Hölder’s inequality). Suppose that α1,α2 > 1 and 1
α1

+ 1
α2

= 1. If | f (t)|α1 ,
|g(t)|α2 ∈ L1(Ω), then | f (t)g(t)| ∈ L1(Ω) and

∫
Ω
| f (t)g(t)|dt ≤

(∫
Ω
| f (t)|α1dt

) 1
α1
(∫

Ω
|g(t)|α2dt

) 1
α2

,

where L1(Ω) represents the Banach space of all Lebesgue measurable functions f : Ω→ R with∫
Ω | f (t)|dt < ∞. In particular, when α1 = α2 = 2, the Hölder’s inequality reduces to the

Cauchy-Schwartz inequality(∫
Ω
| f (t)g(t)|dt

)2
≤
∫

Ω
| f (t)|2dt

∫
Ω
|g(t)|2dt. (8)

Lemma 3 (Jensen’s inequality). Let n ∈ N, q > 1 and xi ∈ R+, i = 1, 2, . . . , n. Then, the
following inequality holds true:

‖
n

∑
i=1

xi‖q ≤ nq−1
n

∑
i=1
‖xi‖q.

In particular, we consider the following inequality with q = 2 within the estimations on
this paper:

‖
n

∑
i=1

xi‖2 ≤ n
n

∑
i=1
‖xi‖2. (9)
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3. Formulation of Main Problem

In this section, we resort main assumptions which will be used in throughout Section 4.
We consider a Caputo stochastic multi-term differential equation of order α ∈ ( 1

2 , 1) and
β ∈ (0, 1) with α > β involving non-permutable matrices has the following form{(

CDα
0+X

)
(t)− A

(
CDβ

0+X
)
(t)− BX(t) = b(t, X(t)) + σ(t, X(t))dW(t)

dt ,

X(0) = η.
(10)

The coefficients b, σ : [0, T] × Rn → Rn are measurable and bounded functions.
A, B ∈ Rn×n are non-permutable matrices. We introduce the norm of the matrix which
are used throughout this paper. For any matrix A = ( aij) n×n ∈ Rn×n, the norm of the
matrix A, according to the maximum norm on Rn is ‖A‖ = max1≤i≤n ∑n

j=1 |aij|. Moreover,
let (Wt)t≥0 denote a standard scalar Brownian motion on a complete probability space
(Ω, F,F,P) with filtration F = {Ft}t∈[0,T]. The initial condition η is an F0-measurable
H-random variable. For each t ∈ [0, T], let ΞT = L2(Ω, FT ,P) denote the space of all FT
measurable, mean square integrable functions f = ( f1, f2, . . . , fn)t : Ω→ Rn with

‖ f ‖2
ms = E(‖ f ‖2).

Let H2([0, T],Rn) be well-endowed with the weighted maximum norm ‖ · ‖ω as

‖ξ‖2
ω = sup

t∈[0,T]

E‖ξ(t)‖2

E2α−1(ωt2α−1)
, for all ξ ∈ H2([0, T],Rn), ω > 0. (11)

Let Rn be endowed with the standard Euclidean norm and H2([0, T],Rn) denote the
space of all FT-measurable processes ξ satisfying

‖ξ‖2
H2 = sup

t∈[0,T]
E‖ξ(t)‖2 < ∞.

Obviously, (H2([0, T],Rn), ‖ · ‖H2) is a Banach space. Since two norms ‖ · ‖H2 and ‖ ·
‖ω are equivalent, (H2([0, T],Rn), ‖ · ‖ω) is also Banach space. Therefore, the set H2

η([0, T],Rn)
is complete with respect to the norm ‖ · ‖ω and b, σ : [0, T]×Rn → Rn are measurable and
bounded functions satisfying the following conditions:

Assumption 1. The drift b and diffusion σ terms satisfy global Lipschitz continuity: there exists
Lb, Lσ > 0 such that for all x, y ∈ Rn , t ∈ [0, T],

‖b(t, x)− b(t, y)‖ ≤ Lb‖x− y‖, ‖σ(t, x)− σ(t, y)‖ ≤ Lσ‖x− y‖.

Assumption 2. b(·, 0) is L2 integrable, i.e.∫ T

0
‖b(r, 0)‖2dr < ∞,

and σ(·, 0) is essentially bounded, i.e.

ess sup
r∈[0,T]

‖σ(r, 0)‖ < ∞.

Definition 5. A stochastic process {X(t), t ∈ [0, T]} is called a mild solution of Equation (10) if

• X(t) is adapted to {Ft}t≥0 with
∫ t

0 ‖X(t)‖2
H2dt < ∞ almost everywhere;

• X(t) ∈ H2([0, T],Rn) has continuous path on t ∈ [0, T] a.s. and satisfies Volterra integral
equation of second kind on t ∈ [0, T]:
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X(t) = η − Atα−β

Γ(α−β+1)η + A
Γ(α−β)

∫ t
0 (t− r)α−β−1X(r)dr

+ B
Γ(α)

∫ t
0 (t− r)α−1X(r)dr

+ 1
Γ(α)

∫ t
0 (t− r)α−1b(r, X(r))dr

+ 1
Γ(α)

∫ t
0 (t− r)α−1σ(r, X(r))dW(r).

(12)

To define above integral equation, we apply Riemann–Liouville integral operator Iα
0+

to the both side of Equation (10), we define

Iα
0+

CDα
0+X(t)− AIα

0+
CDβ

0+X(t)− BIα
0+X(t) = Iα

0+b(t, X(t)) + Iα
0+σ(t, X(t))

dW(t)
dt

Then we use the relationship between Riemann–Liouville integral and Caputo frac-
tional differential operators Equation (3) for 1

2 < α ≤ 1, and 0 < β ≤ 1, we obtain

X(t) = η +
A

Γ(α)

∫ t

0
(t− r)α−1 CDβ

0+X(r)dr +
B

Γ(α)

∫ t

0
(t− r)α−1X(r)dr

+
1

Γ(α)

∫ t

0
(t− r)α−1b(r, X(r))dr +

1
Γ(α)

∫ t

0
(t− r)α−1σ(r, X(r))dW(r),

where

A
Γ(α)

∫ t

0
(t− r)α−1 CDβ

0+X(r)dr =
A

Γ(α− β + 1)

∫ t

0
(t− u)α−βX′(u)du. (13)

Then, we apply integration by parts formula for Equation (13) to obtain Equation (12).
Now we can represent our mild solution of Equation (10) involving non-permutable matrices.

Lemma 4. Let A, B ∈ Rn×n with non-zero commutator, i.e., [A, B] = AB− BA 6= 0. For each
initial value η ∈ Ξ0, the mild solution X(·) ∈ Rn of the Cauchy problem Equation (10) can be
represented in terms of Mittag–Leffler type functions involving non-permutable matrices as below:

X(t) =

(
I +

∞

∑
k=0

∞

∑
m=0
QA,B

k,m B
tk(α−β)+mα+α

Γ(k(α− β) + mα + α + 1)

)
η

+

t∫
0

∞

∑
k=0

∞

∑
m=0
QA,B

k,m
(t− r)k(α−β)+mα+α−1

Γ(k(α− β) + mα + α)
b(r, X(r))dr

+

t∫
0

∞

∑
k=0

∞

∑
m=0
QA,B

k,m
(t− r)k(α−β)+mα+α−1

Γ(k(α− β) + mα + α)
σ(r, X(r))dW(r) (14)

=
(

I + tαEA,B
α−β,α,α+1(t)B

)
η +

t∫
0

(t− r)α−1EA,B
α−β,α,α(t− r)b(r, X(r))dr

+

t∫
0

(t− r)α−1EA,B
α−β,α,α(t− r)σ(r, X(r))dW(r), t > 0.

Lemma 5. As a special case, for each initial value η ∈ Ξ0 the system Equation (10) has a unique
mild solution in terms of Mittag–Leffler type functions Equation (7) with permutable matrices on
[0, T] as below:
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X(t) = η + ηtαBEα,α−β,α+1(Btα, Atα−β)

+
∫ t

0
(t− r)α−1Eα,α−β,α(B(t− r)α, A(t− r)α−β)b(r, X(r))dr (15)

+
∫ t

0
(t− r)α−1Eα,α−β,α(B(t− r)α, A(t− r)α−β)σ(r, X(r))dW(r).

These solutions can be derived with the help of variation of constants formula. Then
the coincidence between the notion of mild solution and integral equation of Equation (10)
with permutable and non-permutable matrices can be proved in a similar way shown
in [11]. Therefore, we omit those proofs here.

4. Existence and Uniqueness Results and Continuity Dependence on Initial Conditions

In Section 5, we will look at the behavior of solutions to multi-order systems as the
independent variable goes to infinity. For this purpose, it is important to have an existence
and uniqueness result. Therefore, our first aim in this research article is to show the
global existence and uniqueness of solution of Equation (10). Moreover, we also prove the
continuity dependence of solutions on the initial values.

Theorem 1 (Global existence and uniqueness and continuity dependence on the initial
values of solutions of Caputo SMTDE). Suppose that Assumptions 1 and 2 hold. Then

(i) for any η ∈ Ξ0, the Cauchy problem Equation (10) with initial condition X(0) = η has a
unique global solution on the whole interval [0, T] denoted by ϕ(·, η);

(ii) on any bounded time interval [0, T] with T > 0, the solution ϕ(·, η) depends continuously
on η, i.e.,

lim
η→γ

sup
t∈[0,T]

‖ϕ(t, η)− ϕ(t, γ)‖2
ms = 0.

For any η ∈ Ξ0, we define an operator Tη : H2
η([0, T],Rn)→ H2

η([0, T],Rn) by

TηY =
(

I + tαEA,B
α−β,α,α+1(t)B

)
η +

t∫
0
(t− r)α−1EA,B

α−β,α,α(t− r)b(r, Y(r))dr

+
t∫

0
(t− r)α−1EA,B

α−β,α,α(t− r)σ(r, Y(r))dW(r), t > 0.
(16)

The following lemma is devoted to showing that Tη is well-defined.

Lemma 6. For η ∈ Ξ0, the operator Tη is well-defined.

Proof. Let Y ∈ H2
η([0, T],Rn) be arbitrary. From the definition of TηY as in Equation (16)

and the Jensen’s inequality Equation (9) for n = 4, we have for all t ∈ [0, T]:

‖(TηY)(t)‖2
ms ≤ 3‖η‖2

ms‖I + tαEA,B
α−β,α,α+1(t)B‖2

+ 3E

∥∥∥∥∥∥
t∫

0

(t− r)α−1EA,B
α−β,α,α(t− r)b(r, Y(r))dr

∥∥∥∥∥∥
2

(17)

+ 3E

∥∥∥∥∥∥
t∫

0

(t− r)α−1EA,B
α−β,α,α(t− r)σ(r, Y(r))dW(r)

∥∥∥∥∥∥
2

.
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Considering M = sup
t∈[0,T]

‖EA,B
α−β,α,α(t)‖ and using Cauchy-Schwarz inequality, we ob-

tain the following results:

E
∥∥∥∫ t

0 (t− r)α−1EA,B
α−β,α,α(t− r)b(r, Y(r))dr

∥∥∥2
≤ M2 ∫ t

0 (t− r)2α−2drE
∫ t

0 ‖b(r, Y(r))‖2dr

= M2 T2α−1

2α−1 E
∫ t

0 ‖b(r, Y(r))‖2dr.
(18)

From Assumption 1, we derive

‖b(r, Y(r))‖2 ≤ 2‖b(r, Y(r))− b(r, 0)‖2 + 2‖b(r, 0)‖2

≤ 2L2
b‖Y(r)‖

2 + 2‖b(r, 0)‖2.

Therefore, we obtain

E
∫ t

0
‖b(r, Y(r))‖2dr ≤ 2L2

bE
∫ t

0
‖Y(r)‖2dr + 2

∫ t

0
‖b(r, 0)‖2dr

≤ 2L2
bT sup

r∈[0,T]
E‖Y(r)‖2 + 2

∫ T

0
‖b(r, 0)‖2dr,

which together with Equation (18) implies that

E
∥∥∥∫ t

0 (t− r)α−1EA,B
α−β,α,α(t− r)b(r, Y(r))dr

∥∥∥2
≤ 2M2 L2

bT2α

2α−1 ‖Y‖2
H2

+2M2 T2α−1

2α−1

∫ T
0 ‖b(r, 0)‖2dr.

(19)

Now using the Itô’s isometry, we attain

E
∥∥∥∥∫ t

0
(t− r)α−1EA,B

α−β,α,α(t− r)σ(r, Y(r))dW(r)
∥∥∥∥2

=
d

∑
i=1

E
(∫ t

0
(t− r)α−1EA,B

α−β,α,α(t− r)σi(r, Y(r))dWr

)2

= M2
d

∑
i=1

E
(∫ t

0
(t− r)2α−2|σi(r, Y(r))|2dr

)
= M2E

∫ t

0
(t− r)2α−2‖σ(r, Y(r))‖2dr

≤ M2T2α−2E
∫ t

0
‖σ(r, Y(r))‖2dr.

From Assumption 1, we also have,

‖σ(r, Y(r))‖2 ≤ 2‖σ(r, Y(r))− σ(r, 0)‖2 + 2‖σ(r, 0)‖2

≤ 2L2
σ‖Y(r)‖2 + 2‖σ(r, 0)‖2.

Therefore, for all t ∈ [0, T], we have

E
∥∥∥∥∫ t

0
(t− r)α−1EA,B

α−β,α,α(t− r)σ(r, Y(r))dW(r)
∥∥∥∥2
≤ 2M2T2α−2L2

σE
∫ t

0
‖Y(r)‖2dr

+ 2M2T2α−2
∫ t

0
‖σ(r, 0)‖2dr

≤ 2M2L2
σT2α−1‖Y(r)‖2

H2

+ 2M2T2α−2
∫ T

0
‖σ(r, 0)‖2dr.
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This together with Equations (17)–(19) yields that ‖TηY‖2
H2 < ∞. Hence, the map Tη

is well-defined.

To prove global existence and uniqueness of solutions, we will show that the operator
Tη is contractive with respect to the weighted maximum norm Equation (11). Now, we are
in a position to prove Theorem 1.

Proof of Theorem 1. Let T > 0 be an arbitrary. Choose and fix a positive constant ω
such that

ω > 3Γ(2α− 1)M2
(

L2
bT + L2

σ

)
. (20)

(i) Choose and fix η ∈ Ξ0. By virtue of Lemma 6, the operator Tη is well-defined. We
will prove that the map Tη is a contraction with respect to the norm ‖ · ‖ω.

For this purpose, let X, Y ∈ H2([0, T],Rn) be arbitrary. From Equation (16) and the
inequality Equation (9) with n = 3, we derive the following estimations for all t ∈ [0, T]:

E‖(Tη X)(t)− (TηY)(t)‖2 ≤ 2E

∥∥∥∥∥∥
t∫

0

(t− r)α−1EA,B
α−β,α,α(t− r)(b(r, X(r))− b(r, Y(r)))dr

∥∥∥∥∥∥
2

+ 2E

∥∥∥∥∥∥
t∫

0

(t− r)α−1EA,B
α−β,α,α(t− r)(σ(r, X(r))− σ(r, Y(r)))dW(r)

∥∥∥∥∥∥
2

.

Using Cauchy-Schwarz’s inequality and Assumption 1, we obtain

E

∥∥∥∥∥∥
t∫

0

(t− r)α−1EA,B
α−β,α,α(t− r)(b(r, X(r))− b(r, Y(r)))dr

∥∥∥∥∥∥
2

≤ M2L2
bT
∫ t

0
(t− r)2α−2E‖X(r)−Y(r)‖2dr.

Moreover, by Itô’s isometry and Assumption 1, we also have

E

∥∥∥∥∥∥
t∫

0

(t− r)α−1EA,B
α−β,α,α(t− r)(σ(r, X(r))− σ(r, Y(r)))dW(r)

∥∥∥∥∥∥
2

≤ M2L2
σ

∫ t

0
(t− r)2α−2E‖X(r)−Y(r)‖2dr.

Then for all t ∈ [0, T], we acquire

E‖(TηX)(t)− (TηY)(t)‖2 ≤ 2M2
(

L2
bT + L2

σ

) ∫ t

0
(t− r)2α−2E‖X(r)−Y(r)‖2dr,

which together with the definition of ‖ · ‖ω as in Equation (11) implies that

E‖(TηX)(t)− (TηY)(t)‖2

E2α−1(ωt2α−1)
≤ 2M2

(
L2

bT + L2
σ

) 1
E2α−1(ωt2α−1)

×
∫ t

0
(t− r)2α−2E2α−1(ωr2α−1)

E‖X(r)−Y(r)‖2

E2α−1(ωr2α−1)
dr.

By virtue of Lemma 1, we have for all t ∈ [0, T]:

E‖(TηX)(t)− (TηY)(t)‖2

E2α−1(ωt2α−1)
≤ 2Γ(2α− 1)

ω
M2
(

L2
bT + L2

σ

)
‖X−Y‖2

ω.
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As a consequence,

‖TηX− TηY‖2
ω ≤ ζ‖X−Y‖2

ω,

where

ζ =
2Γ(2α− 1)

ω
M2
(

L2
bT + L2

σ

)
.

By Equation (20), we have ζ < 1 and the operator Tη is a contractive mapping on
H2([0, T], ‖ · ‖ω). Using the Banach’s fixed point theorem, there exists a unique fixed point
of this map in H2([0, T],Rn). This fixed point is also a unique solution of Equation (10)
with initial conditions X(0) = η. The proof of (i) is complete.

(ii) Choose and fix T > 0 and η, γ ∈ Ξ0. Since ϕ(·, η) and ϕ(·, γ) are solution of
Equation (10), it follows that

ϕ(t, η)− ϕ(t, γ) = (η − γ)
(

I + tαEA,B
α−β,α,α+1(t)B

)
+

t∫
0

(t− r)α−1EA,B
α−β,α,α(t− r)(b(r, ϕ(r, η))− b(r, ϕ(r, γ)))dr

+

t∫
0

(t− r)α−1EA,B
α−β,α,α(t− r)(σ(r, ϕ(r, η))− σ(r, ϕ(r, γ)))dW(r).

Hence, using the Jensen’s inequality Equation (9) for n = 3, Assumption 1 and 2, the
Cauchy-Schwarz inequality and Itô’s isometry, we obtain

E‖ϕ(t, η)− ϕ(t, γ)‖2 ≤ 3CE‖η − γ‖2

+ 3
Γ(2α− 1)

ω
M2
(

L2
bT + L2

σ

) ∫ t

0
(t− r)2α−2E‖ϕ(r, η)− ϕ(r, γ)‖2dr,

where C := ‖I + tαEA,B
α−β,α,α+1(t)B‖2 .

By virtue of Lemma 1 and the definition of ‖ · ‖ω, we have

E‖ϕ(t, η)− ϕ(t, γ)‖2

E2α−1(ωt2α−1)
≤ 3C‖η − γ‖2

ms + ζ‖ϕ(t, η)− ϕ(t, γ)‖2
ω.

Thus, by Equation (20), we have(
1− ζ

)
‖ϕ(t, η)− ϕ(t, γ)‖2

ω ≤ 3C‖η − γ‖2
ms.

Hence,

lim
η→γ

sup
t∈[0,T]

‖ϕ(t, η)− ϕ(t, γ)‖2
ms = 0.

The proof is complete.

5. Asymptotic Separation between Mild Solutions of Equation (10)

Theorem 2. Let η, γ ∈ Ξ0 such that η 6= γ. Then for any ε > 0

lim sup
t→∞

tα+ε‖ϕ(t, η)− ϕ(t, γ)‖ms = ∞.

Proof. Assume the contrary, i.e., there exists a positive constant λ > α such that

lim sup
t→∞

tλ‖ϕ(t, η)− ϕ(t, γ)‖ms < ∞,
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for some η, γ ∈ Ξ0, η 6= γ. There exists constants T > 0 and κ > 0 such that

‖ϕ(t, η)− ϕ(t, γ)‖2
ms ≤ κt−2λ for all t ≥ T. (21)

From Equation (12) and the inequality Equation (9), we have

‖η − γ‖2 ≤ 1
3C ‖ϕ(t, η)− ϕ(t, γ)‖2

+
1
C

∥∥∥∥∥∥
t∫

0

(t− r)α−1EA,B
α−β,α,α(t− r)(b(r, ϕ(r, η))− b(r, ϕ(r, γ)))dr

∥∥∥∥∥∥
2

+
1
C

∥∥∥∥∥∥
t∫

0

(t− r)α−1EA,B
α−β,α,α(t− r)(σ(r, ϕ(r, η))− σ(r, ϕ(r, γ)))dW(r)

∥∥∥∥∥∥
2

.

Taking expectation of both sides and using Assumption 1, we obtain

‖η − γ‖2
ms ≤

1
3C E‖ϕ(t, η)− ϕ(t, γ)‖2

+
1
C E

 t∫
0

(t− r)α−1‖EA,B
α−β,α,α(t− r)‖Lb‖ϕ(r, η)− ϕ(r, γ)‖dr

2

+
1
C E

 t∫
0

(t− r)α−1‖EA,B
α−β,α,α(t− r)‖Lσ‖ϕ(r, η)− ϕ(r, γ)‖dW(r)

2

.

From Equation (21), we derive that limt→∞ E‖ϕ(r, η)− ϕ(r, γ)‖2 = 0. Thus, to derive
contradiction it is enough to show that

lim
t→∞
I1(t) = 0, where I1(t) = E

 t∫
0

(t− r)α−1‖EA,B
α−β,α,α(t− r)‖Lb‖ϕ(r, η)− ϕ(r, γ)‖dr

2

(22)

and

lim
t→∞
I2(t) = 0, where I2(t) = M2L2

σ

∫ t

0
(t− r)2α−2‖ϕ(r, η)− ϕ(r, γ)‖2

msdr. (23)

To show Equation (22), choose and fix δ ∈ ( α
λ , 1− α). Please note that the existence

of such a δ comes from the fact that α
λ < 1 − α that is equivalent to the assumption

λ > α
1−α . For t > max

{
T1/δ, 1

}
, using Cauchy-Schwarz’s inequality and the inequality

Equation (21), we have

I1(t) ≤ 2E

 tδ∫
0

(t− r)α−1‖EA,B
α−β,α,α(t− r)‖Lb‖ϕ(r, η)− ϕ(r, γ)‖dr


2

,

+ 2E

 t∫
tδ

(t− r)α−1‖EA,B
α−β,α,α(t− r)‖Lb‖ϕ(r, η)− ϕ(r, γ)‖dr

2

,

≤ 2M2L2
b

∫ tδ

0
(t− r)2α−2dr

∫ tδ

0
‖ϕ(r, η)− ϕ(r, γ)‖2

msdr

+ 2M2L2
b

∫ t

tδ
(t− r)2α−2dr

∫ t

tδ
‖ϕ(r, η)− ϕ(r, γ)‖2

msdr.
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Since ∫ tδ

0
(t− r)2α−2dr =

tδ

(t− tδ)2−2α
,

∫ t

tδ
(t− r)2α−2dr =

(t− tδ)2α−1

2α− 1
,

it yields together with Equation (21) that

I1(t) ≤
2M2L2

bt2δ

(t−tδ)2−2α supr∈[0,T] ‖ϕ(r, η)− ϕ(r, γ)‖2
ms + 2κM2L2

b
(t−tδ)2α−1

2α−1

∫ t
tδ r−2λdr

≤ 2M2L2
bt2δ

(t−tδ)2−2α supr∈[0,T] ‖ϕ(r, η)− ϕ(r, γ)‖2
ms +

2M2L2
bκ(t−tδ)2α

(2α−1)t2δλ .
(24)

By definition of δ, we have 2δ < 2− 2α and 2α < 2δλ. Hence, letting t → ∞ in the
expression Equation (24) yields lim

t→∞
I1(t) = 0. Therefore, Equation (22) is proved.

Concerning the assertion Equation (23), let t ≥ T be arbitrary. By Equation (21),
we have

I2(t) ≤ M2L2
σ

∫ T

0
(t− r)2α−2‖ϕ(r, η)− ϕ(r, γ)‖2

msdr + κM2L2
σ

∫ t

T
(t− r)2α−2r−2λdr

≤ M2L2
σ

T
(t− T)2−2α

sup
r∈[0,T]

‖ϕ(r, η)− ϕ(r, γ)‖2
ms + κM2L2

σ

∫ t

T
(t− r)2α−2r−2λdr.

Therefore,

lim sup
t→∞

I2(t) ≤ κM2L2
σ lim sup

t→∞

∫ t

T
(t− r)2α−2r−2λdr. (25)

Please note that for t ≥ 2T, we have∫ t

T
(t− r)2α−2r−2λdr =

∫ t/2

T
(t− r)2α−2r−2λdr +

∫ t

t/2
(t− r)2α−2r−2λdr

≤ 22−2α

t2−2α

∫ t/2

T
r−2λdr +

(
t
2

)−2λ ∫ t

t/2
(t− r)2α−2dr

≤ 22−2αT−2λ+1

(2λ− 1)t2−2α
+

1
2α− 1

(
t
2

)2α−2λ−1
,

which together with Equation (25) and the fact that α ∈ ( 1
2 , 1) and λ > α

1−α > α, implies that
limt→∞ I2(t) = 0. Thus, Equation (23) is proved and therefore the proof is complete.

As a consequence, we give an application of the main results concerning the mean
square Lyapunov exponent on non-trivial solutions to a bounded bilinear Caputo FSDE.
To formulate this result, we consider the following equation:{(

CDα
0+X

)
(t)− λ

(
CDβ

0+X
)
(t)− µX(t) = A(t)X(t) + B(t)X(t)dW(t)

dt ,

X(0) = η,
(26)

where A(·), B(·) ∈ [0, ∞)→ Rn×n are measurable and essentially bounded, i.e.,

t∈[0,∞)‖A(t)‖ < ∞, t∈[0,∞)‖B(t)‖ < ∞.

By virtue of Theorem 1, for any η ∈ Ξ0 \ {0}, there exists a unique solution of
Equation (26), denoted by Ψ(·, η) satisfying initial condition. The mean square Lyapunov
exponent of Ψ(·, η) is defined by (see [39,40])

Λms(Ψ(·, η)) := lim sup
t→∞

1
t

ln ‖Ψ(·, η)‖ms. (27)
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In the following corollary, we show the non-negativity of the mean square Lyapunov
exponent of an arbitrary non-trivial solution.

Corollary 1. The mean square Lyapunov exponent of a nontrivial solution of Equation (26) is
always non-negative, i.e.,

Λms(Ψ(·, η)) ≥ 0, ∀η ∈ Ξ0 \ {0}.

Proof. Let η ∈ Ξ0 \ {0} be arbitrary. Using Theorem 2, we attain

lim sup
t→∞

tα+ε‖Ψ(t, η)‖ms = ∞, ε > 0.

Hence, there exists T > 0 such that

‖Ψ(t, η)‖ms ≥ t−α−ε, ∀t ≥ T,

which together with Equation (27) implies that

Λms(Ψ(·, η)) ≥ lim sup
t→∞

1
t

ln(t−(α+ε)) = 0.

Remark 1. In special case, β = 0 and A, B = Θ are zero matrices, the system Equation (10) can
be reduced to the following Caputo fractional stochastic differential Equation (Caputo FSDE):{(

CDα
0+X

)
(t) = b(t, X(t)) + σ(t, X(t))dW(t)

dt ,

X(0) = η,
(28)

in which asymptotic separation between solutions of above Caputo FSDE has been discussed with
the help of Theorem 2 in [21]. The main point in [21] is that λ is chosen as λ > 2α

1−α . We study
asymptotic separation between mild solutions rather than integral equations. Moreover, unlike
Cong et al. [21], we consider more general Caputo FSDEs with non-permutable matrices under
weaker condition λ > α than [21]. With regards to this condition, the asymptotic separation
between the solutions is greater than t−α−ε as t→ ∞ for any ε > 0.

Remark 2. It is worthy pointing out that some changes can be made to extend the results for
Riemann–Liouville type SMTDEs. Therefore, we consider the following form of RL type SMTDEs
of fractional orders α ∈ ( 1

2 , 1) and β ∈ (0, 1) involving non-permutable matrices:{(
Dα

0+X
)
(t)− A

(
Dβ

0+X
)
(t)− BX(t) = b(t, X(t)) + σ(t, X(t))dW(t)

dt ,

I1−α
0+ X(t) |t=0= η.

(29)

Then the solution of Equation (29) will become as follows:

X(t) = tα−1EA,B
α−β,α,α(t)η +

t∫
0
(t− r)α−1EA,B

α−β,α,α(t− r)b(r, X(r))dr

+
t∫

0
(t− r)α−1EA,B

α−β,α,α(t− r)σ(r, X(r))dW(r), t > 0.
(30)
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Analogously, to show existence and uniqueness results and continuity dependence
on initial conditions we consider the following corresponding weighted maximum norm
instead of Equation (11) in order to avoid singularity:

‖ξ‖2
ω = sup

t∈[0,T]

t1−αE‖ξ(t)‖2

E2α−1(ωt2α−1)
, for all ξ ∈ H2([0, T],Rn), ω > 0. (31)

Therefore, the asymptotic separation property between two distinct solutions of
Equation (29) agrees with the same condition, i.e., λ > α as stated in Theorem 2.

6. Example

Now we provide examples to support the theory developed in the previous sections.
We consider the nonlinear fractional stochastic equation system with α = 3

4 and β = 1
4

(
CD3/4

0+ X
)
(t)−

(
0.1 0.2
0.3 0.4

)(
CD1/4

0+ X
)
(t)−

(
0.4 0.1
0.2 0.3

)
X(t)

=

[
sin X1

X2 + 5

]
+

[
X1 + 5
cos X2

]
dW(t)

dt , t ∈ [0, 1],

X(0) =

[
3
5

]
,

(32)

where X(t) = (X1(t), X2(t))T and W(t) is a Wiener process. By comparison with Equa-
tion (10) we have

A =

(
0.1 0.2
0.3 0.4

)
, B =

(
0.4 0.1
0.2 0.3

)
, (33)

b(t, X(t)) =
[

sin X1
X2 + 5

]
, σ(t, X(t)) =

[
X1 + 5
cos X2

]
. (34)

It is obvious that AB 6= BA. Then, the unique mild solution of Equation (32) involving
non-permutable matrices is given by

X(t) =
(

I + t
3
4 EA,B

1
2 , 3

4 , 7
4
(t)B

)
X(0) +

t∫
0

(t− r)−
1
4 EA,B

1
2 , 3

4 , 3
4
(t− r)b(r, X(r))dr

+

t∫
0

(t− r)−
1
4 EA,B

1
2 , 3

4 , 3
4
(t− r)σ(r, X(r))dW(r).

It is clear that b(t, X(t)), σ(t, X(t)) satisfy Assumptions 1 and 2. Then all the hy-
potheses of Theorem 1 are so verified and hence, Equation (32) has a mild solution
on H2

η([0, 1],Rn). We can then validate asymptotic separation property between two
distinct mild solutions of Caputo SMTDEs Equation (32) according to Theorem 2, i.e.,
lim sup

t→∞
t

3
4+ε‖ϕ(t, η)− ϕ(t, γ)‖ms = ∞ for any ε > 0 and η 6= γ, η, γ ∈ Ξ0.

7. Conclusions

In this paper, we studied Caputo SMTDEs with matrix coefficients that are not per-
mutable. The fractional orders of differentiation α and β are also assumed to be ( 1

2 , 1) and
(0, 1), respectively. However, they are completely independent of each other.

The core of this paper is to study asymptotic separation of two mild solutions involving
non-permutable matrices of fractional stochastic multi-term differential equations and to
provide a proof of the existence and uniqueness of Equation (10) under some natural
assumptions on the coefficients. Moreover, we also determine the asymptotic separation
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between two different solutions of Equation (10), where the asymptotic distance ∞ is as
t→ ∞ when λ > α, implying that λ does not depend on β.

As a consequence of the main theorems constructing solution functions to Caputo
SMTDE systems, by comparing these results with some existing results in the literature
proved from the constant coefficients point of view, we were able to find a more general
condition based on λ which is valid for a class of fractional stochastic differential equations
with a single derivative of fractional order. This is a lucky consequence which forms an
interesting result in its own right.

Although the asymptotic separation of two distinct mild solutions have now been
constructed, there remain many other interesting open problems to be considered regarding
asymptotics of the solution functions which may be studied by methods analogous to those
used for computing asymptotics of Mittag–Leffler type functions in the univariate case.

Other related research directions may include the various relevant function spaces
that may be useful in the qualitative theory of fractional stochastic differential equations
associated with these operators, e.g., well-posedness and regularity theory [41].
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