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Abstract: We first consider the damped wave inequality ∂2u
∂t2 − ∂2u

∂x2 + ∂u
∂t ≥ xσ|u|p, t > 0,

x ∈ (0,L), where L > 0, σ ∈ R, and p > 1, under the Dirichlet boundary conditions
(u(t, 0), u(t, L))= ( f (t), g(t)), t > 0. We establish sufficient conditions depending on σ, p, the
initial conditions, and the boundary conditions, under which the considered problem admits no
global solution. Two cases of boundary conditions are investigated: g ≡ 0 and g(t) = tγ, γ > −1.
Next, we extend our study to the time-fractional analogue of the above problem, namely, the time-
fractional damped wave inequality ∂αu

∂tα − ∂2u
∂x2 + ∂βu

∂tβ ≥ xσ|u|p, t > 0, x ∈ (0, L), where α ∈ (1, 2),
β ∈ (0, 1), and ∂τ

∂tτ is the time-Caputo fractional derivative of order τ, τ ∈ {α, β}. Our approach
is based on the test function method. Namely, a judicious choice of test functions is made, taking
in consideration the boundedness of the domain and the boundary conditions. Comparing with
previous existing results in the literature, our results hold without assuming that the initial values
are large with respect to a certain norm.

Keywords: time-fractional damped wave inequalities; bounded domain; singularity; nonexistence

MSC: 35B44; 35B33; 26A33

1. Introduction

In this paper, we first consider the damped wave inequality

∂2u
∂t2 −

∂2u
∂x2 +

∂u
∂t
≥ xσ|u|p, t > 0, x ∈ (0, L),

(u(t, 0), u(t, L)) = ( f (t), g(t)), t > 0,(
u(0, x),

∂u
∂t

(0, x)
)
= (u0(x), u1(x)), x ∈ (0, L),

(1)

where L > 0, σ ∈ R, and p > 1. It is supposed that u0, u1 ∈ L1([0, L]), f ∈ L1
loc([0, ∞)),

and g(t) = Cgtγ, where Cg ≥ 0 and γ > −1, are constants. Namely, we establish sufficient
conditions depending on the initial values, the boundary conditions, p, and σ, under which
(1) admits no global weak solution, in a sense that will be specified later.

Next, we study the time-fractional analogue of (1), namely the time-fractional damped
wave inequality
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∂αu
∂tα
− ∂2u

∂x2 +
∂βu
∂tβ
≥ xσ|u|p, t > 0, x ∈ (0, L),

(u(t, 0), u(t, L)) = ( f (t), g(t)), t > 0,(
u(0, x),

∂u
∂t

(0, x)
)
= (u0(x), u1(x)), x ∈ (0, L),

(2)

where α ∈ (1, 2), β ∈ (0, 1), and ∂τ

∂tτ , τ ∈ {α, β}, is the time-Caputo fractional derivative of
order τ.

The investigation of the question of blow-up of solutions to initial boundary value
problems for semilinear wave equations started in the 1970s. For example, Tsutsumi [1]
considered the nonlinear damped wave equation

∂2u
∂t2 − ∆u + b

∂u
∂t

= F(u),

under homogeneous Dirichlet boundary conditions, where b ≥ 0 and

F(s)s− 2(2κ + 1)
∫ s

0
F(τ) dτ ≥ d0|s|ρ+2, s ∈ R,

for some κ > 0 and ρ > 0. By means of the energy method, the author established
sufficient conditions for the blow-up of solutions. In [2], using a concavity argument,
Levine established sufficient conditions for the blow-up of solutions to an abstract Cauchy
problem in a Hilbert space, of the form

P
∂2u
∂t2 + Au + Q

∂u
∂t

= F(u),

where P and A are positive symmetric operators and F is a nonlinear operator satisfying
certain conditions. Later, the concavity method was used and developed by many authors
in order to study more general problems. For further blow-up results for nonlinear wave
equations, obtained by means of the energy/concavity method, see e.g., [3–11] and the
references therein.

Fractional operators arise in various applications, such as chemistry, biology, continuum
mechanics, anomalous diffusion, and materials science, see for instance [12–16]. Conse-
quently, many mathematicians dealt with the study of fractional differential equations in both
theoretical and numerical aspects, see e.g., [17–21].

In [22], Kirane and Tatar considered the time-fractional damped wave equation

∂2u
∂t2 − ∆u +

∂1+αu
∂t1+α

= a|u|p−1u, t > 0, x ∈ Ω,

u(t, x) = 0, t > 0, x ∈ ∂Ω,(
u(0, x),

∂u
∂t

(0, x)
)
= (u0(x), u1(x)), x ∈ Ω,

(3)

where p > 1, α ∈ (−1, 1), and Ω is a bounded domain of RN . Using some arguments based
on Fourier transforms and the Hardy–Littlewood inequality, it was shown that the energy
grows exponentially for sufficiently large initial data.

By combining an argument due to Georgiev and Todorova [23] with the techniques
used in [22], Tatar [24] proved that the solutions to (3) blow up in finite-time for sufficiently
large initial data.

In all the above cited references, the blow-up results were obtained for sufficiently
large initial data. In this paper, we use a different approach than those used in the above
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mentioned references. Namely, our approach is based on the test function method intro-
duced by Mitidieri and Pohozaev [25]. Taking into consideration the boundedness of the
domain as well as the boundary conditions, adequate test functions are used to obtain
sufficient conditions for the nonexistence of global weak solutions to problems (1) and (2).
Notice that our results hold without assuming that the initial values are large with respect
to a certain norm.

Let us mention also that recently, methods for the numerical diagnostics of the solu-
tion’s blow-up have been actively developing (see e.g., [26–28]), which make it possible to
refine the theoretical estimates.

The rest of the paper is organized as follows: In Section 2, we provide some preliminar-
ies on fractional calculus, and some useful lemmas. We state our main results in Section 3.
The proofs are presented in Section 4.

2. Preliminaries on Fractional Calculus

For the reader’s convenience, we recall below some notions from fractional calculus,
see e.g., [17,20].

Let T > 0 be fixed. Given ρ > 0 and v ∈ L1([0, T]), the left-sided and right-sided
Riemann–Liouville fractional integrals of order ρ of v, are defined, respectively, by

(Iρ
0 v)(t) =

1
Γ(ρ)

∫ t

0
(t− s)ρ−1v(s) ds and (Iρ

Tv)(t) =
1

Γ(ρ)

∫ T

t
(s− t)ρ−1v(s) ds,

for almost everywhere t ∈ [0, T], where Γ denotes the Gamma function. It can be easily
seen that, if v ∈ C([0, T]), then

lim
t→0+

(Iρ
0 v)(t) = lim

t→T−
(Iρ

Tv)(t) = 0.

In this case, we may consider Iρ
0 v and Iρ

Tv as continuous functions in [0, T], by taking

(Iρ
0 v)(0) = (Iρ

Tv)(T) = 0.

Given a positive integer n, τ ∈ (n− 1, n), and v ∈ Cn([0, T]), the (left-sided) Caputo
fractional derivative of order τ of v, is defined by

dτv
dtτ

(t) =
(

In−τ
0

dnv
dtn

)
(t) =

1
Γ(n− τ)

∫ t

0
(t− s)n−τ−1 dnv

dtn (s) ds,

for all t ∈ [0, L].
We have the following integration by parts rule.

Lemma 1 (see the Corollary in [17], p. 67). Let ρ > 0, q, r ≥ 1, and 1
q + 1

r ≤ 1 + ρ (q 6= 1,

r 6= 1, in the case 1
q +

1
r = 1 + ρ). If (v, w) ∈ Lq([0, T])× Lr([0, T]), then

∫ T

0
(Iρ

0 v)(t)w(t) dt =
∫ T

0
v(t)(Iρ

Tw)(t) dt.

Lemma 2. For sufficiently large λ, let

η(t) = T−λ(T − t)λ, 0 ≤ t ≤ T. (4)
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Let ρ ∈ (0, 1). Then

(Iρ
Tη)(t) =

Γ(λ + 1)
Γ(ρ + λ + 1)

T−λ(T − t)ρ+λ, (5)

(Iρ
Tη)′(t) = −Γ(λ + 1)

Γ(ρ + λ)
T−λ(T − t)ρ+λ−1, (6)

(Iρ
Tη)′′(t) =

Γ(λ + 1)
Γ(ρ + λ− 1)

T−λ(T − t)ρ+λ−2. (7)

Proof. We have

(Iρ
Tη)(t) =

1
Γ(ρ)

∫ T

t
(s− t)ρ−1η(s) ds

=
T−λ

Γ(ρ)

∫ T

t
(s− t)ρ−1(T − s)λ ds

=
T−λ

Γ(ρ)

∫ T

t
(s− t)ρ−1((T − t)− (s− t))λ ds

=
T−λ(T − t)λ

Γ(ρ)

∫ T

t
(s− t)ρ−1

(
1− s− t

T − t

)λ

ds.

Using the change of variable z = s−t
T−t , we obtain

(Iρ
Tη)(t) =

T−λ(T − t)λ+ρ

Γ(ρ)

∫ 1

0
zρ−1(1− z)λ dz

=
T−λ(T − t)λ+ρ

Γ(ρ)
B(ρ, λ + 1),

where B denotes the Beta function. Using the property (see e.g., [20])

B(a, b) =
Γ(a)Γ(b)
Γ(a + b)

, a, b > 0,

we obtain

(Iρ
Tη)(t) =

T−λ(T − t)λ+ρ

Γ(ρ)
Γ(ρ)Γ(λ + 1)
Γ(ρ + λ + 1)

=
Γ(λ + 1)

Γ(ρ + λ + 1)
T−λ(T − t)ρ+λ,

which proves (5).
Next, calculating the derivative of Iρ

Tη, we obtain

(Iρ
Tη)′(t) = − (ρ + λ)Γ(λ + 1)

Γ(ρ + λ + 1)
T−λ(T − t)ρ+λ−1.

On the other hand, by the property (see e.g., [20])

Γ(a + 1) = aΓ(a), a > 0, (8)

we obtain
Γ(ρ + λ + 1) = (ρ + λ)Γ(ρ + λ).

Hence, we deduce that

(Iρ
Tη)′(t) = −Γ(λ + 1)

Γ(ρ + λ)
T−λ(T − t)ρ+λ−1,
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which proves (6).
Differentiating (Iρ

Tη)′ and using (8), we obtain

(Iρ
Tη)′′(t) =

(ρ + λ− 1)Γ(λ + 1)
Γ(ρ + λ)

T−λ(T − t)ρ+λ−2

=
(ρ + λ− 1)Γ(λ + 1)

(ρ + λ− 1)Γ(ρ + λ− 1)
T−λ(T − t)ρ+λ−2

=
Γ(λ + 1)

Γ(ρ + λ− 1)
T−λ(T − t)ρ+λ−2,

which proves (7).

The following inequality will be useful later.

Lemma 3 (Young’s Inequality with Epsilon, see [29], p. 36). Let ε > 0 and p > 1. Then, for
all a, b ≥ 0, there holds

ab ≤ εap + Cε,pb
p

p−1 ,

where Cε,p = (p− 1)p−1(εp)
−1
p−1 .

Remark 1. For a function u : (0, ∞)× (0, L)→ R, the notation ∂αu
∂tα used in (2), where 1 < α < 2,

means the following:

∂αu
∂tα

(t, x) =
(

I2−α
0

∂2u
∂t2 (·, x)

)
(t), t > 0, 0 < x < L,

i.e.,
∂αu
∂tα

(t, x) =
1

Γ(2− α)

∫ t

a
(t− s)1−α ∂2u

∂t2 (s, x) ds.

Similarly, the notation ∂βu
∂tβ used in (2), where 0 < β < 1, means the following:

∂βu
∂tβ

(t, x) =
(

I1−β
0

∂u
∂t

(·, x)
)
(t), t > 0, 0 < x < L,

i.e.,
∂βu
∂tβ

(t, x) =
1

Γ(1− β)

∫ t

a
(t− s)−β ∂u

∂t
(s, x) ds.

3. Statement of the Main Results

We first consider problem (1). Let

Q = [0, ∞)× [0, L].

We introduce the test function space

Φ =
{

ϕ ∈ C2(Q) : ϕ ≥ 0, ϕ(·, 0) = ϕ(·, L) ≡ 0, ϕ(t, ·) ≡ 0 for sufficiently large t
}

.

Definition 1. Let u0, u1 ∈ L1([0, L]) and f , g ∈ L1
loc([0, ∞)). We say that u is a global weak

solution to (1), if

(i) xσ|u|p ∈ L1
loc(Q), u ∈ L1

loc(Q);
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(ii) for every ϕ ∈ Φ,

∫
Q

xσ|u|p ϕ dx dt +
∫ ∞

0

(
f (t)

∂ϕ

∂x
(t, 0)− g(t)

∂ϕ

∂x
(t, L)

)
dt

+
∫ L

0

(
u1(x)ϕ(0, x)− u0(x)

∂ϕ

∂t
(0, x) + u0(x)ϕ(0, x)

)
dx

≤ −
∫

Q
u

∂2 ϕ

∂x2 dx dt +
∫

Q
u

∂2 ϕ

∂t2 dx dt−
∫

Q
u

∂ϕ

∂t
dx dt.

(9)

Remark 2. The weak formulation (9) is obtained by multiplying the differential inequality in (1)
by ϕ, integrating over Q, and using the initial conditions in (1). So, clearly, any global solution to
(1) is a global weak solution to (1) in the sense of Definition 1.

We first consider the case g ≡ 0.

Theorem 1. Let u0, u1 ∈ L1([0, L]), f ∈ L1
loc([0, ∞)), and g ≡ 0. Suppose that

∫ L

0
(u0(x) + u1(x))(L− x) dx > 0. (10)

If
σ < −(p + 1), (11)

then (1) admits no global weak solution.

Remark 3. Comparing with the existing results in the literature, in Theorem 1, it is not required
that the initial data are sufficiently large with respect to a certain norm. The same remark holds for
the next theorems.

Example 1. Consider problem (1) with

f (t) =
1√

t
, t > 0, g ≡ 0, u0(x) = −(L− x), u1(x) = 2(L− x), σ = −4, p = 2.

Then, all the assumptions of Theorem 1 are satisfied. Consequently, we deduce that (1) admits
no global weak solution.

Next, we consider the case when

g(t) = Cgtγ, γ > −1, t > 0, (12)

where Cg > 0 is a constant.

Theorem 2. Let u0, u1 ∈ L1([0, L]), f ∈ L1
loc([0, ∞)), and g be the function defined by (12). If

one of the following conditions is satisfied:

(i) σ < −(p + 1);
(ii) σ ≥ −(p + 1), γ > 0,

then (1) admits no global weak solution.

Example 2. Consider problem (1) with

f (t) =
et
√

t
, t > 0, u0(x) = x, u1(x) = x2, g(t) =

√
t, t > 0, σ = −2, p = 2.

Then, by the statement (ii) of Theorem 2, we deduce that (1) admits no global weak solution.
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Consider now problem (2). For all T > 0, let

QT = [0, T]× [0, L].

We introduce the test function space

ΦT =

{
ϕ ∈ C2(QT) : ϕ ≥ 0, ϕ(·, 0) = ϕ(·, L) ≡ 0,

∂(I2−α
T ϕ)

∂t
(T, ·) ≡ 0

}
.

Definition 2. Let u0, u1 ∈ L1([0, L]) and f , g ∈ L1
loc([0, ∞)). We say that u is a global weak

solution to (2), if

(i) xσ|u|p ∈ L1
loc(Q), u ∈ L1

loc(Q);
(ii) for all T > 0 and ϕ ∈ ΦT ,

∫
QT

xσ|u|p ϕ dx dt +
∫ T

0

(
f (t)

∂ϕ

∂x
(t, 0)− g(t)

∂ϕ

∂x
(t, L)

)
dt

+
∫ L

0

(
u1(x)(I2−α

T ϕ)(0, x)− u0(x)
∂(I2−α

T ϕ)

∂t
(0, x) + u0(x)(I1−β

T ϕ)(0, x)

)
dx

≤ −
∫

QT

u
∂2 ϕ

∂x2 dx dt +
∫

QT

u
∂2(I2−α

T ϕ)

∂t2 dx dt−
∫

QT

u
∂(I1−β

T ϕ)

∂t
dx dt.

(13)

Remark 4. The weak formulation (13) is obtained by multiplying the differential inequality in (2)
by ϕ, integrating over QT , using the initial conditions in (2), and using the fractional integration
by parts rule provided by Lemma 1. So, clearly, any global solution to (2) is a global weak solution
to (2) in the sense of Definition 2.

As for problem (1), we first consider the case g ≡ 0.

Theorem 3. Let u0, u1 ∈ L1([0, L]), f ∈ L1
loc([0, ∞)), and g ≡ 0. If

σ < −(p + 1),

and one of the following conditions is satisfied:

α < β + 1,
∫ L

0
u1(x)(L− x) dx > 0; (14)

α = β + 1,
∫ L

0
(u0(x) + u1(x))(L− x) dx > 0; (15)

α > β + 1,
∫ L

0
u0(x)(L− x) dx > 0, (16)

then (2) admits no global weak solution.

Example 3. Consider problem (2) with

f (t) =
1√

t
, t > 0, u0 ≡ 0, u1(x) = 2(L− x), α =

3
2

, β =
3
4

, σ = −4, p = 2.

Since (14) is satisfied and σ < −(p + 1), by Theorem 3, we deduce that (2) admits no global
weak solution.

Next, we consider the inhomogeneous case, where the function g is given by (12).
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Theorem 4. Let u0, u1 ∈ L1([0, L]), f ∈ L1
loc([0, ∞)), and g be the function defined by (12). If

α > max{1− γ, 1}, β > max{−γ, 0}, (17)

and one of the following conditions is satisfied:

(i) σ < −(p + 1);
(ii) σ ≥ −(p + 1), γ > 0,

then (2) admits no global weak solution.

Example 4. Consider problem (2) with

f (t) =
1√

t
, t > 0, u0(x) = −x, u1(x) = x2, g(t) = t

2
3 , t > 0, α =

3
2

, β =
1
2

,

and
σ = −3, p = 3.

Then (17) is satisfied, σ ≥ −(p + 1), and γ > 0. Then, by Theorem 4, we deduce that (2)
admits no global weak solution.

4. Proof of the Main Results

Throughout this section, any positive constant independent on T and R, is denoted
by C. Namely, in the proofs, we use several asymptotic estimates as T → ∞ and R→ ∞;
therefore, the value of any positive constant independent of T and R has no influence in
our analysis.

4.1. Proof of Theorem 1

Proof. Suppose that u is a global weak solution to (1). Then, by (9), for every ϕ ∈ Φ,
there holds ∫

Q
xσ|u|p ϕ dx dt +

∫ ∞

0

(
f (t)

∂ϕ

∂x
(t, 0)− g(t)

∂ϕ

∂x
(t, L)

)
dt

+
∫ L

0

(
u1(x)ϕ(0, x)− u0(x)

∂ϕ

∂t
(0, x) + u0(x)ϕ(0, x)

)
dx

≤
∫

Q
|u|
∣∣∣∣∂2 ϕ

∂x2

∣∣∣∣ dx dt +
∫

Q
|u|
∣∣∣∣∂2 ϕ

∂t2

∣∣∣∣ dx dt +
∫

Q
|u|
∣∣∣∣∂ϕ

∂t

∣∣∣∣ dx dt.

(18)

On the other hand, using Lemma 3 with ε = 1
3 and adequate choices of a and b,

we obtain

∫
Q
|u|
∣∣∣∣∂2 ϕ

∂x2

∣∣∣∣ dx dt ≤ 1
3

∫
Q

xσ|u|p ϕ dx dt + C
∫

Q
x
−σ
p−1 ϕ

−1
p−1

∣∣∣∣∂2 ϕ

∂x2

∣∣∣∣
p

p−1

dx dt, (19)

∫
Q
|u|
∣∣∣∣∂2 ϕ

∂t2

∣∣∣∣ dx dt ≤ 1
3

∫
Q

xσ|u|p ϕ dx dt + C
∫

Q
x
−σ
p−1 ϕ

−1
p−1

∣∣∣∣∂2 ϕ

∂t2

∣∣∣∣
p

p−1

dx dt, (20)

∫
Q
|u|
∣∣∣∣∂ϕ

∂t

∣∣∣∣ dx dt ≤ 1
3

∫
Q

xσ|u|p ϕ dx dt + C
∫

Q
x
−σ
p−1 ϕ

−1
p−1

∣∣∣∣∂ϕ

∂t

∣∣∣∣
p

p−1
dx dt. (21)
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Using (18)–(21), we obtain∫ ∞

0

(
f (t)

∂ϕ

∂x
(t, 0)− g(t)

∂ϕ

∂x
(t, L)

)
dt

+
∫ L

0

(
u1(x)ϕ(0, x)− u0(x)

∂ϕ

∂t
(0, x) + u0(x)ϕ(0, x)

)
dx

≤ C
3

∑
j=1

Ij(ϕ),

(22)

where

I1(ϕ) =
∫

Q
x
−σ
p−1 ϕ

−1
p−1

∣∣∣∣∂2 ϕ

∂x2

∣∣∣∣
p

p−1

,

I2(ϕ) =
∫

Q
x
−σ
p−1 ϕ

−1
p−1

∣∣∣∣∂2 ϕ

∂t2

∣∣∣∣
p

p−1

,

I3(ϕ) =
∫

Q
x
−σ
p−1 ϕ

−1
p−1

∣∣∣∣∂ϕ

∂t

∣∣∣∣
p

p−1
.

Consider now two cut-off functions ξ, µ ∈ C∞([0, ∞)) satisfying the following properties:

0 ≤ ξ, µ ≤ 1, ξ(s) =
{

1 if 0 ≤ s ≤ 1
2

0 if s ≥ 1
, µ(s) =

{
0 if 0 ≤ s ≤ 1

2
1 if s ≥ 1

.

For sufficiently large ` and R, let

ϕ1(t) = ξ`(R−θt), ϕ2(x) = (L− x)µ`(Rx), t ≥ 0, x ∈ [0, L], (23)

where θ > 0 is a constant that will be determined later. Consider the function

ϕ(t, x) = ϕ1(t)ϕ2(x), t ≥ 0, x ∈ [0, L]. (24)

By the properties of the cut-off functions ξ and µ, it can be easily seen that the function
ϕ defined by (24), belongs to Φ. Thus, the estimate (22) holds for this function.

Now, let us estimate the terms Ij(ϕ), j = 1, 2, 3. For j = 1, by (24), we obtain

I1(ϕ) =

(∫ ∞

0
ϕ1(t) dt

)(∫ L

0
x
−σ
p−1 ϕ

−1
p−1
2 (x)|ϕ′′2 (x)|

p
p−1 dx

)
:= I(1)1 (ϕ1)I(2)1 (ϕ2). (25)

On the other hand, by the definitions of the function ϕ1 and the cut-off function ξ,
there holds

I(1)1 (ϕ1) =
∫ ∞

0
ξ`
(

R−θt
)

dt

=
∫ Rθ

0
ξ`
(

R−θt
)

dt

≤ Rθ . (26)

By the definitions of the function ϕ2 and the cut-off function µ, we obtain

ϕ′′2 (x) = `R2µ`−2(Rx)×[
(L− x)

(
(`− 1)µ′2(Rx) + µ(Rx)µ′′(Rx)

)
− 2R−1µ(Rx)µ′(Rx)

]
χ[ 1

2 R−1,R−1](x),

which yields
|ϕ′′2 (x)| ≤ CR2µ`−2(Rx)χ[ 1

2 R−1,R−1](x),
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where χ[ 1
2 R−1,R−1] is the indicator function of the interval

[
1
2 R−1, R−1

]
. Then, there holds

I(2)1 (ϕ2) ≤ CR
2p

p−1

∫ R−1

1
2 R−1

x
−σ
p−1 (L− x)

−1
p−1 µ

`− 2p
p−1 (Rx) dx

≤ CR
2p

p−1

∫ R−1

1
2 R−1

x
−σ
p−1 dx

≤ CR
σ

p−1+
2p

p−1−1. (27)

Thus, it follows from (25)–(27) that

I1(ϕ) ≤ CRθ+
p+1+σ

p−1 . (28)

For j = 2, Ij(ϕ) can be written as

I2(ϕ) =

(∫ ∞

0
ϕ
−1
p−1
1 (t)|ϕ′′1 (t)|

p
p−1 dt

)(∫ L

0
x
−σ
p−1 ϕ2(x) dx

)
:= I(1)2 (ϕ1)I(2)2 (ϕ2). (29)

By the definitions of the function ϕ1 and the cut-off function ξ, we obtain

ϕ′′1 (t) = `R−2θξ`−2(R−θt)
[
(`− 1)ξ ′2(R−θt) + ξ`−1(R−θt)ξ ′′(R−θt)

]
χ[ 1

2 Rθ ,Rθ ](t),

which yields
|ϕ′′1 (t)| ≤ CR−2θξ`−2(R−θt)χ[ 1

2 Rθ ,Rθ ](t).

Thus, there holds

I(1)2 (ϕ1) ≤ CR
−2θp
p−1

∫ Rθ

1
2 Rθ

ξ
`− 2p

p−1 (R−θt) dt

≤ CRθ
(

1− 2p
p−1

)
. (30)

Moreover, we have

I(2)2 (ϕ2) =
∫ L

0
x
−σ
p−1 ϕ2(x) dx

=
∫ L

1
2 R−1

x
−σ
p−1 (L− x)µ`(Rx) dx

≤ C
∫ L

1
2 R−1

x
−σ
p−1 dx.

On the other hand, by (11), we have σ < p− 1, thus we deduce that

I(2)2 (ϕ2) ≤ C. (31)

Combining (29)–(31), there holds

I2(ϕ) ≤ CRθ
(

1− 2p
p−1

)
. (32)

Now, let us estimate I3(ϕ). This term can be written as

I3(ϕ) =

(∫ ∞

0
ϕ
−1
p−1
1 (t)|ϕ′1(t)|

p
p−1 dt

)(∫ L

0
x
−σ
p−1 ϕ2(x) dx

)
:= I(1)3 (ϕ1)I(2)3 (ϕ2). (33)
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A similar calculation as above yields

I(1)3 (ϕ1) ≤ CRθ
(

1− p
p−1

)
. (34)

Observe that I(2)3 (ϕ2) = I(2)2 (ϕ2). Thus, by (31), (33), and (34), we obtain

I3(ϕ) ≤ CRθ
(

1− p
p−1

)
. (35)

Next, combining (28), (32), and (35), we obtain

3

∑
j=1

Ij(ϕ) ≤ C
(

Rθ+
p+1+σ

p−1 + Rθ
(

1− p
p−1

))
. (36)

Let θ be such that

θ +
p + 1 + σ

p− 1
= θ

(
1− p

p− 1

)
,

that is,

θ =
−(p + 1)− σ

p
.

Notice that by (11), we have θ > 0. Then, (36) reduces to

3

∑
j=1

Ij(ϕ) ≤ CRθ
(

1− p
p−1

)
. (37)

Next, let us estimate the terms from the right side of (22). Observe that by the definition
of the function ϕ, and the properties of the cut-off function µ, we have

∂ϕ

∂x
(t, 0) = 0, t > 0.

Moreover, since g ≡ 0, there holds∫ ∞

0

(
f (t)

∂ϕ

∂x
(t, 0)− g(t)

∂ϕ

∂x
(t, L)

)
dt = 0. (38)

By the properties of the cut-off function ξ, we have

ϕ(0, x) = ϕ2(x),
∂ϕ

∂t
(0, x) = 0, x ∈ (0, L).

Thus, we obtain∫ L

0

(
u1(x)ϕ(0, x)− u0(x)

∂ϕ

∂t
(0, x) + u0(x)ϕ(0, x)

)
dx

=
∫ L

0
(u0(x) + u1(x))ϕ(0, x) dx

=
∫ L

0
(u0(x) + u1(x))ϕ2(x) dx

=
∫ L

0
(u0(x) + u1(x))(L− x)µ`(Rx) dx.
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Then, taking into consideration that u0, u1 ∈ L1([0, L]), by the dominated convergence
theorem, we obtain

lim
R→∞

∫ L

0

(
u1(x)ϕ(0, x)− u0(x)

∂ϕ

∂t
(0, x) + u0(x)ϕ(0, x)

)
dx

=
∫ L

0
(u0(x) + u1(x))(L− x) dx.

(39)

Hence, by (10), for sufficiently large R, there holds∫ L
0

(
u1(x)ϕ(0, x)− u0(x) ∂ϕ

∂t (0, x) + u0(x)ϕ(0, x)
)

dx ≥ 1
2

∫ L
0 (u0(x) + u1(x))(L− x) dx. (40)

Next, combining (22), (37), (38), and (40), we obtain

1
2

∫ L

0
(u0(x) + u1(x))(L− x) dx ≤ CRθ

(
1− p

p−1

)
.

Passing to the limit as R→ ∞ in the above inequality, we obtain

1
2

∫ L

0
(u0(x) + u1(x))(L− x) dx ≤ 0,

which contradicts (10). Consequently, (1) admits no global weak solution. The proof
is completed.

4.2. Proof of Theorem 2

Proof. As was performed previously, suppose that u is a global weak solution to (1). From
the proof of Theorem 1, for sufficiently large R, there holds

−
∫ ∞

0
g(t)

∂ϕ

∂x
(t, L) dt

+
∫ L

0

(
u1(x)ϕ(0, x)− u0(x)

∂ϕ

∂t
(0, x) + u0(x)ϕ(0, x)

)
dx

≤ C
(

Rθ+
p+1+σ

p−1 + Rθ
(

1− p
p−1

) ∫ L

1
2 R−1

x
−σ
p−1 dx

)
,

(41)

where θ > 0 and ϕ is the function defined by (24). On the other hand, by the definition of
the function ϕ, for sufficiently large R, there holds

∂ϕ

∂x
(t, L) = −ϕ1(t), t > 0,

which yields

−
∫ ∞

0
g(t)

∂ϕ

∂x
(t, L) dt =

∫ ∞

0
g(t)ϕ1(t) dt

= C
∫ ∞

0
tγξ`(R−θt) dt

≥ C
∫ 1

2 Rθ

0
tγ dt

= CRθ(γ+1).
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Then, by (41), we deduce that

C + R−θ(γ+1)
∫ L

0

(
u1(x)ϕ(0, x)− u0(x)

∂ϕ

∂t
(0, x) + u0(x)ϕ(0, x)

)
dx

≤ C
(

R−θγ+
p+1+σ

p−1 + R−θ
(

γ+
p

p−1

) ∫ L

1
2 R−1

x
−σ
p−1 dx

)
.

(42)

Let σ < −(p + 1). In this case, (42) reduces to

C + R−θ(γ+1)
∫ L

0

(
u1(x)ϕ(0, x)− u0(x)

∂ϕ

∂t
(0, x) + u0(x)ϕ(0, x)

)
dx

≤ C
(

R−θγ+
p+1+σ

p−1 + R−θ
(

γ+
p

p−1

))
.

(43)

Taking θ > 0 so that

θγ >
p + 1 + σ

p− 1
, (44)

passing to the limit as R→ ∞ in (43), and using (39), we obtain a contradiction with C > 0.
This proves part (i) of Theorem 2.

Let σ ≥ −(p + 1) and γ > 0.
If −(p + 1) ≤ σ < p− 1, then (43) holds. Since γ > 0, there exists θ > 0 such that (44)

holds. Thus, passing to the limit as R→ ∞ in (43), we obtain a contradiction.
If σ = p− 1, then (42) yields

C + R−θ(γ+1)
∫ L

0

(
u1(x)ϕ(0, x)− u0(x)

∂ϕ

∂t
(0, x) + u0(x)ϕ(0, x)

)
dx

≤ C
(

R−θγ+
p+1+σ

p−1 + R−θ
(

γ+
p

p−1

)
ln R

)
.

As in the previous case, since γ > 0, there exists θ > 0 such that (44) holds. Thus,
passing to the limit as R→ ∞ in the above inequality, we obtain a contradiction.
If σ > p− 1, then (42) yields

C + R−θ(γ+1)
∫ L

0

(
u1(x)ϕ(0, x)− u0(x)

∂ϕ

∂t
(0, x) + u0(x)ϕ(0, x)

)
dx

≤ C
(

R−θγ+
p+1+σ

p−1 + R−θ
(

γ+
p

p−1

)
+ σ

p−1−1
)

.

Taking θ such that (44) is satisfied, and passing to the limit as R → ∞ in the above
inequality, a contradiction follows. Thus, part (ii) of Theorem 2 is proved.

4.3. Proof of Theorem 3

Proof. Suppose that u is a global weak solution to (2). Then, by (13), for every T > 0 and
ϕ ∈ ΦT , there holds∫

QT

xσ|u|p ϕ dx dt +
∫ T

0

(
f (t)

∂ϕ

∂x
(t, 0)− g(t)

∂ϕ

∂x
(t, L)

)
dt

+
∫ L

0

(
u1(x)(I2−α

T ϕ)(0, x)− u0(x)
∂(I2−α

T ϕ)

∂t
(0, x) + u0(x)(I1−β

T ϕ)(0, x)

)
dx

≤
∫

QT

|u|
∣∣∣∣∂2 ϕ

∂x2

∣∣∣∣ dx dt +
∫

QT

|u|
∣∣∣∣∣∂2(I2−α

T ϕ)

∂t2

∣∣∣∣∣ dx dt +
∫

QT

|u|
∣∣∣∣∣∂(I1−β

T ϕ)

∂t

∣∣∣∣∣ dx dt.

(45)
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On the other hand, using Lemma 3 with ε = 1
3 and adequate choices of a and b,

we obtain ∫
QT

|u|
∣∣∣∣∂2 ϕ

∂x2

∣∣∣∣ dx dt

≤ 1
3

∫
QT

xσ|u|p ϕ dx dt + C
∫

QT

x
−σ
p−1 ϕ

−1
p−1

∣∣∣∣∂2 ϕ

∂x2

∣∣∣∣
p

p−1

dx dt,

(46)

∫
QT

|u|
∣∣∣∣∣∂2(I2−α

T ϕ)

∂t2

∣∣∣∣∣ dx dt

≤ 1
3

∫
QT

xσ|u|p ϕ dx dt + C
∫

QT

x
−σ
p−1 ϕ

−1
p−1

∣∣∣∣∣∂2(I2−α
T ϕ)

∂t2

∣∣∣∣∣
p

p−1

dx dt,

(47)

and ∫
QT

|u|
∣∣∣∣∣∂(I1−β

T ϕ)

∂t

∣∣∣∣∣ dx dt

≤ 1
3

∫
QT

xσ|u|p ϕ dx dt + C
∫

QT

x
−σ
p−1 ϕ

−1
p−1

∣∣∣∣∣∂(I1−β
T ϕ)

∂t

∣∣∣∣∣
p

p−1

dx dt.

(48)

Using (45)–(48), we obtain∫ T

0

(
f (t)

∂ϕ

∂x
(t, 0)− g(t)

∂ϕ

∂x
(t, L)

)
dt

+
∫ L

0

(
u1(x)(I2−α

T ϕ)(0, x)− u0(x)
∂(I2−α

T ϕ)

∂t
(0, x) + u0(x)(I1−β

T ϕ)(0, x)

)
dx

≤
3

∑
j=1

Jj(ϕ),

(49)

where

J1(ϕ) =
∫

QT

x
−σ
p−1 ϕ

−1
p−1

∣∣∣∣∂2 ϕ

∂x2

∣∣∣∣
p

p−1

dx dt,

J2(ϕ) =
∫

QT

x
−σ
p−1 ϕ

−1
p−1

∣∣∣∣∣∂2(I2−α
T ϕ)

∂t2

∣∣∣∣∣
p

p−1

dx dt,

J3(ϕ) =
∫

QT

x
−σ
p−1 ϕ

−1
p−1

∣∣∣∣∣∂(I1−β
T ϕ)

∂t

∣∣∣∣∣
p

p−1

dx dt.

For sufficiently large T, λ, `, and R, let

ϕ(t, x) = η(t)ϕ2(x), t ≥ 0, x ∈ [0, L], (50)

where η is the function defined by (4), and ϕ2 is the function given by (23). Using Lemma 2
and the properties of the cut-off function µ, it can be easily seen that the function ϕ defined
by (50), belongs to ΦT . Thus, (49) holds for this function.

Let us estimate the terms Jj(ϕ), j = 1, 2, 3. For j = 1, by (50), we have

J1(ϕ) =

(∫ T

0
η(t) dt

)(∫ L

0
x
−σ
p−1 ϕ

−1
p−1
2 (x)|ϕ′′2 (x)|

p
p−1 dx

)
. (51)
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An elementary calculation shows that∫ T

0
η(t) dt =

T
λ + 1

. (52)

Hence, using (27), (51), and (52), we obtain

J1(ϕ) ≤ CTR
σ+2p
p−1 −1. (53)

For j = 2, we have

J2(ϕ) =

(∫ T

0
η
−1
p−1 (t)|(I2−α

T η)′′(t)|
p

p−1 dt
)(∫ L

0
x
−σ
p−1 ϕ2(x) dx

)
. (54)

Moreover, by Lemma 2, we obtain

η
−1
p−1 (t)|(I2−α

T η)′′(t)|
p

p−1 =

[
Γ(λ + 1)

Γ(1− α + λ)

] p
p−1

T−λ(T − t)λ− αp
p−1 .

Integrating over (0, T), there holds∫ T

0
η
−1
p−1 (t)|(I2−α

T η)′′(t)|
p

p−1 dt = CT
−αp
p−1 +1. (55)

Next, taking into consideration that σ < −(p + 1) (so σ < p− 1), it follows from (31),
(54), and (55) that

J2(ϕ) ≤ CT1− αp
p−1 . (56)

Proceeding as above, we obtain

J3(ϕ) ≤ CT1− βp
p−1 . (57)

Hence, by (53), (56), and (57), we obtain

3

∑
j=1

Jj(ϕ) ≤ C
(

TR
σ+2p
p−1 −1

+ T1− βp
p−1

)
. (58)

Consider now the terms from the right side of (49). By (50) and the properties of the
cut-off function µ, since g ≡ 0, there holds∫ T

0

(
f (t)

∂ϕ

∂x
(t, 0)− g(t)

∂ϕ

∂x
(t, L)

)
dt = 0. (59)

On the other hand, using (50) and Lemma 2, for all x ∈ [0, L], we obtain

(I2−α
T ϕ)(0, x) = Γ(λ+1)

Γ(3−α+λ)
T2−α ϕ2(x) := C1T2−α ϕ2(x),

∂(I2−α
T ϕ)
∂t (0, x) = − Γ(λ+1)

Γ(2−α+λ)
T1−α ϕ2(x) := −C2T1−α ϕ2(x),

(I1−β
T ϕ)(0, x) = Γ(λ+1)

Γ(2−β+λ)
T1−β ϕ2(x) := C3T1−β ϕ2(x).
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Consequently, we obtain

∫ L

0

(
u1(x)(I2−α

T ϕ)(0, x)− u0(x)
∂(I2−α

T ϕ)

∂t
(0, x) + u0(x)(I1−β

T ϕ)(0, x)

)
dx

=
∫ L

0

(
C1T2−αu1(x) + C2T1−αu0(x) + C3T1−βu0(x)

)
ϕ2(x) dx

=
∫ L

0

(
C1T2−αu1(x) + C2T1−αu0(x) + C3T1−βu0(x)

)
(L− x)µ`(Rx) dx.

(60)

Thus, combining (49), (58)–(60), we obtain∫ L

0

(
C1T2−αu1(x) + C2T1−αu0(x) + C3T1−βu0(x)

)
(L− x)µ`(Rx) dx

≤ C
(

TR
σ+2p
p−1 −1

+ T1− βp
p−1

)
.

Next, taking T = Rθ , where θ > 0 is a constant that will be determined later, the above
inequality reduces to∫ L

0

(
C1Rθ(2−α)u1(x) + C2Rθ(1−α)u0(x) + C3Rθ(1−β)u0(x)

)
(L− x)µ`(Rx) dx

≤ C
(

Rθ+
σ+2p
p−1 −1

+ Rθ
(

1− βp
p−1

))
.

(61)

Suppose that (14) holds. In this case, we obtain

lim
R→∞

R−θ(2−α)
∫ L

0

(
C1Rθ(2−α)u1(x) + C2Rθ(1−α)u0(x) + C3Rθ(1−β)u0(x)

)
(L− x)µ`(Rx) dx

= C1

∫ L

0
u1(x)(L− x) dx

> 0.

Hence, for sufficiently large R,∫ L
0

(
C1Rθ(2−α)u1(x) + C2Rθ(1−α)u0(x) + C3Rθ(1−β)u0(x)

)
(L− x)µ`(Rx) dx ≥ CRθ(2−α). (62)

Combining (61) with (62), we obtain

C ≤ Rθ(α−1)+ σ+2p
p−1 −1

+ Rθ
(

α− βp
p−1−1

)
. (63)

Observe that, since α < β + 1, we have

α− βp
p− 1

− 1 < 0.

Hence, taking into consideration that σ < −(p + 1), picking θ > 0 so that

θ <
−(p + 1)− σ

(p− 1)(α− 1)
,

and passing to the limit as R→ ∞ in (63), we obtain a contradiction with C > 0.
Suppose that (15) holds. Then,

(I2−α
T ϕ)(0, x) = (I1−β

T ϕ)(0, x).
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Thus, (61) reduces to∫ L

0

(
C1Rθ(2−α)(u0(x) + u1(x)) + C2Rθ(1−α)u0(x)

)
(L− x)µ`(Rx) dx

≤ C
(

Rθ+
σ+2p
p−1 −1

+ Rθ
(

1− βp
p−1

))
.

(64)

Moreover, we have

lim
R→∞

R−θ(2−α)
∫ L

0

(
C1Rθ(2−α)(u0(x) + u1(x)) + C2Rθ(1−α)u0(x)

)
(L− x)µ`(Rx) dx

= C1

∫ L

0
(u0(x) + u1(x))(L− x) dx

> 0,

which yields∫ L

0

(
C1Rθ(2−α)(u0(x) + u1(x)) + C2Rθ(1−α)u0(x)

)
(L− x)µ`(Rx) dx ≥ CRθ(2−α),

for sufficiently large R. Hence, using (64), and following the same argument as above, a
contradiction follows.

Finally, suppose that (16) holds. In this case, we obtain

lim
R→∞

R−θ(1−β)
∫ L

0

(
C1Rθ(2−α)u1(x) + C2Rθ(1−α)u0(x) + C3Rθ(1−β)u0(x)

)
(L− x)µ`(Rx) dx

= C3

∫ L

0
u0(x)(L− x) dx

> 0.

Hence, for sufficiently large R,∫ L
0

(
C1Rθ(2−α)u1(x) + C2Rθ(1−α)u0(x) + C3Rθ(1−β)u0(x)

)
(L− x)µ`(Rx) dx ≥ CRθ(1−β). (65)

Combining (61) with (65), we obtain

C ≤ Rθβ+
σ+2p
p−1 −1

+ R
−θβ
p−1 . (66)

Taking θ > 0 such that

θ <
−σ− (p + 1)

β(p− 1)
,

and passing to the limit as R→ ∞ in (66), a contradiction follows. This completes the proof
of Theorem 3.

4.4. Proof of Theorem 4

Proof. Suppose that u is a global weak solution to (2). From the proof of Theorem 3, for
sufficiently large T and R, there holds

−
∫ T

0
g(t)

∂ϕ

∂x
(t, L) dt

+
∫ L

0

(
C1T2−αu1(x) + C2T1−αu0(x) + C3T1−βu0(x)

)
(L− x)µ`(Rx) dx

≤ C
(

TR
σ+2p
p−1 −1

+ T1− βp
p−1

∫ L

1
2 R−1

x
−σ
p−1 dx

)
,

(67)
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where ϕ is the function defined by (50). On the other hand, by (50) and the properties of
the cut-off function µ, we have

−
∫ T

0
g(t)

∂ϕ

∂x
(t, L) dt =

∫ T

0
g(t)η(t) dt

= T−λ
∫ T

0
tγ(T − t)λ dt

= B(γ + 1, λ + 1)Tγ+1

:= CTγ+1,

where B denotes the Beta function. Thus, by (67), we obtain

C +
∫ L

0

(
C1T1−α−γu1(x) + C2T−γ−αu0(x) + C3T−β−γu0(x)

)
(L− x)µ`(Rx) dx

≤ C
(

T−γR
σ+2p
p−1 −1

+ T−
βp

p−1−γ
∫ L

1
2 R−1

x
−σ
p−1 dx

)
.

Taking T = Rθ , where θ > 0 is a constant that will be determined later, the above
inequality reduces to

C +
∫ L

0

(
C1Rθ(1−α−γ)u1(x) + C2R−θ(γ+α)u0(x) + C3R−θ(β+γ)u0(x)

)
(L− x)µ`(Rx) dx

≤ C
(

R−θγ+
σ+2p
p−1 −1

+ R−θ
(

βp
p−1+γ

) ∫ L

1
2 R−1

x
−σ
p−1 dx

)
.

(68)

Let σ < −(p + 1). In this case, for sufficiently large R, there holds∫ L

1
2 R−1

x
−σ
p−1 dx ≤ C.

Hence, (68) yields

C +
∫ L

0

(
C1Rθ(1−α−γ)u1(x) + C2R−θ(γ+α)u0(x) + C3R−θ(β+γ)u0(x)

)
(L− x)µ`(Rx) dx

≤ C
(

R−θγ+
σ+2p
p−1 −1

+ R−θ
(

βp
p−1+γ

))
.

(69)

Since by (17), β + γ > 0, there holds

βp
p− 1

+ γ > 0.

Thus, taking θ > 0 so that

θγ >
σ + p + 1

p− 1
, (70)

using (17), and passing to the limit as R→ ∞ in (69), we obtain a contradiction with C > 0.
This proves part (i) of Theorem 4.

Let σ ≥ −(p + 1) and γ > 0.
If −(p + 1) ≤ σ < p− 1, then (69) holds. Since γ > 0, there exists θ > 0 satisfying

(70). Thus, passing to the limit as R→ ∞ in (69), a contradiction follows.
If σ = p− 1, then (68) yields

C +
∫ L

0

(
C1Rθ(1−α−γ)u1(x) + C2R−θ(γ+α)u0(x) + C3R−θ(β+γ)u0(x)

)
(L− x)µ`(Rx) dx

≤ C
(

R−θγ+
σ+2p
p−1 −1

+ R−θ
(

βp
p−1+γ

)
ln R

)
.

(71)
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As in the previous case, since γ > 0, there exists θ > 0 satisfying (70). Thus, passing
to the limit as R→ ∞ in (71), a contradiction follows.
If σ > p− 1, then (68) yields

C +
∫ L

0

(
C1Rθ(1−α−γ)u1(x) + C2R−θ(γ+α)u0(x) + C3R−θ(β+γ)u0(x)

)
(L− x)µ`(Rx) dx

≤ C
(

R−θγ+
σ+2p
p−1 −1

+ R−θ
(

βp
p−1+γ

)
+ σ

p−1−1
)

.
(72)

So, taking θ > 0 satisfying (70) and

θ

(
βp

p− 1
+ γ

)
>

σ

p− 1
− 1,

and passing to the limit as R→ ∞ in (72), a contradiction follows. This proves part (ii) of
Theorem 4.

5. Conclusions

Using the test function method, sufficient conditions for the nonexistence of global
weak solutions to problems (1) and (2) are obtained. For each problem, an adequate choice
of a test function is made, taking into consideration the boundedness of the domain and the
boundary conditions. Comparing with previous existing results in the literature, our results
hold without assuming that the initial values are large with respect to a certain norm.

In this paper, we treated only the one dimensional case. It will be interesting to study
problems (1) and (2) in a bounded domain Ω ⊂ RN under different types of boundary
conditions, such as Dirichlet boundary conditions, Neumann boundary conditions, and
Robin boundary conditions.

Author Contributions: Investigation, A.B.S.; Supervision M.J. and B.S. All authors have read and
agreed to the published version of the manuscript.

Funding: The second author is supported by the Researchers Supporting Project number (RSP-
2021/57), King Saud University, Riyadh, Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tsutsumi, M. On solutions of semilinear differential equations in a Hilbert space. Math. Japon. 1972, 17, 173–193.
2. Levine, H.A. Some additional remarks on the nonexistence of global solutions to nonlinear wave equations. SIAM J. Math. Anal.

1974, 5, 138–146. [CrossRef]
3. Galaktionov, V.A.; Pohozaev, S.I. Blow-up and critical exponents for nonlinear hyperbolic equations. Nonlinear Anal. 2003, 53,

453–466. [CrossRef]
4. Erbay, H.A.; Erbay, S.; Erkip, A. Thresholds for global existence and blow-up in a general class of doubly dispersive nonlocal

wave equations. Nonlinear Anal. 2014, 95, 313–322. [CrossRef]
5. Kalantarov, V.K.; Ladyzhenskaya, O.A. The occurrence of collapse for quasilinear equations of parabolic and hyperbolic type. J.

Soviet Math. 1978, 10, 53–70. [CrossRef]
6. Li, F. Global existence and blow-up of solutions for a higher-order Kirchhoff-type equation with nonlinear dissipation. Appl.

Math. Lett. 2004, 17, 1409–1414. [CrossRef]
7. Wang, X.; Chen, Y.; Yang, Y.; Li, J.; Xu, R. Kirchhoff-type system with linear weak damping and logarithmic nonlinearities.

Nonlinear Anal. 2019, 188, 475–499. [CrossRef]
8. Guedda, M.; Labani, H. Nonexistence of global solutions to a class of nonlinear wave equations with dynamic boundary

conditions. Bull. Belg. Math. Soc. Simon Stevin. 2002, 9, 39–46. [CrossRef]
9. Messaoudi, S.A. Blow-up of positive-initial-energy solutions of a nonlinear viscoelastic hyperbolic equation. J. Math. Anal. Appl.

2006, 320, 902–915. [CrossRef]

http://doi.org/10.1137/0505015
http://dx.doi.org/10.1016/S0362-546X(02)00311-5
http://dx.doi.org/10.1016/j.na.2013.09.013
http://dx.doi.org/10.1007/BF01109723
http://dx.doi.org/10.1016/j.am1.2003.07.014
http://dx.doi.org/10.1016/j.na.2019.06.019
http://dx.doi.org/10.36045/bbms/1102715139
http://dx.doi.org/10.1016/j.jmaa.2005.07.022


Fractal Fract. 2021, 5, 258 20 of 20

10. Kafini, M.; Messaoudi, S.A. blow-up result for a viscoelastic system in RN . Electron. J. Differ. Equ. 2007, 113, 1–7.
11. Kafini, M.; Messaoudi, S.A. On the decay and global nonexistence of solutions to a damped wave equation with variable-exponent

nonlinearity and delay. Ann. Pol. Math. 2019, 122, 49–70. [CrossRef]
12. Freeborn, T.J. A survey of fractional-order circuit models for biology and biomedicine. IEEE J. Emerg. Sel. Top. Circuits Syst. 2013,

3, 416–423. [CrossRef]
13. Bagley, R.L.; Torvik, P.J. A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 1983, 27, 201–210.

[CrossRef]
14. Povstenko, Y.Z. Fractional heat conduction equation and associated thermal Stresses. J. Therm. Stress. 2005, 28, 83–102. [CrossRef]
15. Chen, W.; Sun, H.G.; Zhang, X.; Korosak, D. Anomalous diffusion modeling by fractal and fractional derivatives. Comput. Math.

Appl. 2010, 59, 1754–1758. [CrossRef]
16. Zhao, Y.; Hou, Z. Two viscoelastic constitutive models of rubber materials using fractional derivations. J. Tsinghua Univ. 2013, 53,

378–383.
17. Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach: Yverdon,

Switzerland, 1993.
18. Agarwal, R.P.; Benchohra, M.; Hamani, S. A survey on existence results for boundary value problems of nonlinear fractional

differential equations and inclusions. Acta Appl. Math. 2010, 109, 973–1033. [CrossRef]
19. Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999.
20. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier Science Limited:

Amsterdam, The Netherlands, 2006.
21. Li C.; Zeng F.H. Numerical Methods for Fractional Calculus; Chapman and Hall/CRC: Boca Raton, FL, USA, 2015.
22. Kirane, M.; Tatar, N.-E. Exponential growth for a fractionally damped wave equation. Z. Anal. Anwend. 2003, 22, 167–177.

[CrossRef]
23. Georgiev, V.; Todorova, G. Existence of a solution of the wave equation with nonlinear damping and source terms. J. Differ. Equ.

1994, 109, 295–308. [CrossRef]
24. Tatar, N.-E. A blow up result for a fractionally damped wave equation. Nonlinear Differ. Equ. Appl. 2005, 12, 215–226. [CrossRef]
25. Mitidieri, E.; Pohozaev, S. A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities.

Proc. Steklov Inst. Math. 2001, 234, 1–383.
26. Korpusov, M.O.; Lukyanenko, D.V.; Panin, A.A.; Shlyapugin, G.I. On the blow-up phenomena for a 1-dimensional equation of

ion sound waves in a plasma: Analytical and numerical investigation. Math. Methods Appl. Sci. 2018, 41, 2906–2929. [CrossRef]
27. Pelinovsky, D.; Xu, C. On numerical modelling and the blow-up behavior of contact lines with a 180 degrees contact angle. J. Eng.

Math. 2015, 92, 31–44. [CrossRef]
28. Cangiani, A.; Georgoulis, E.H.; Kyza, I.; Metcalfe, S. Adaptivity and blow-up detection for nonlinear evolution problems. SIAM J.

Sci. Comput. 2016, 38, A3833–A3856. [CrossRef]
29. Carl, S.; Le, V.K.; Motreanu, D. Nonsmooth Variational Problems and Their Inequalities; Springer: New York, NY, USA, 2007.

http://dx.doi.org/10.4064/ap180524-31-10
http://dx.doi.org/10.1109/JETCAS.2013.2265797
http://dx.doi.org/10.1122/1.549724
http://dx.doi.org/10.1080/014957390523741
http://dx.doi.org/10.1016/j.camwa.2009.08.020
http://dx.doi.org/10.1007/s10440-008-9356-6
http://dx.doi.org/10.4171/ZAA/1137
http://dx.doi.org/10.1006/jdeq.1994.1051
http://dx.doi.org/10.1007/s00030-005-0015-6
http://dx.doi.org/10.1002/mma.4791
http://dx.doi.org/10.1007/s10665-014-9763-9
http://dx.doi.org/10.1137/16M106073X

	Introduction
	Preliminaries on Fractional Calculus
	Statement of the Main Results
	Proof of the Main Results
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4

	Conclusions
	References

