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Abstract: In this paper, we consider the stochastic fractional-space Chiral nonlinear Schrödinger
equation (S-FS-CNSE) derived via multiplicative noise. We obtain the exact solutions of the S-FS-
CNSE by using the Riccati equation method. The obtained solutions are extremely important in the
development of nuclear medicine, the entire computer industry and quantum mechanics, especially
in the quantum hall effect. Moreover, we discuss how the multiplicative noise affects the exact
solutions of the S-FS-CNSE. This equation has never previously been studied using a combination of
multiplicative noise and fractional space.

Keywords: fractional Chiral nonlinear Schrödinger; stochastic Chiral nonlinear Schrödinger; exact
stochastic-fractional solutions; Riccati equation method

MSC: 35Q51; 35A20; 60H10; 60H15; 83C15

1. Introduction

The fractional derivatives may be used to represent many physical phenomena in
electromagnetic theory, signal processing, mathematical biology, engineering applications
and different scientific disciplines. For example, the fractional derivative has been uti-
lized in the disciplines of finance [1–3], biology [4–6], physics [7–11], hydrology [12,13]
and biochemistry and chemistry [14,15]. Since fractional-order integrals and derivatives
allow for the representation of the memory and heredity properties of various substances,
these new fractional-order models are more suited than the previously used integer-order
models [16]. This is the most important benefit of fractional-order models in comparison
with integer-order models, where such impacts are ignored.

On the other hand, randomness or fluctuations have now been shown to be important
in many phenomena. Therefore, random effects have become significant when modeling
different physical phenomena that take place in oceanography, physics, biology, meteorol-
ogy, environmental sciences, and so on. Equations that consider random fluctuations in
time are referred to as stochastic differential equations.

It seems to be more important to examine fractional equations with some random
force. Therefore, in this paper, we take into account the following stochastic fractional-
space Chiral nonlinear Schrödinger equation (S-FS-CNSE) derived in the Itô sense by
multiplicative noise in this form

iϕt + D2α
x ϕ− iδ(ϕ∗Dα

x ϕ− ϕDα
x ϕ∗)ϕ = iρϕWt, (1)
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where ϕ(x, t) is a complex function, ρ is the noise strength, W is the standard Gaussian pro-
cess, δ is a nonlinear coupling constant and the symbol ∗ indicates the complex conjugate.
In this study, we restrict ourselves to the case of spatially constant noise.

Equation (1) with ρ = 0 is a kind of nonlinear evolution equation found in many fields
of applied research, including nonlinear quantum mechanics, plasma physics, and optics. It
produces chiral solitons, which play a significant role in the quantum-hall effect. Recently,
many authors addressed Equation (1) with α = 1 and ρ = 0, such as Nishino et al. [17]
Bulut et al. [18], Rezazadeh et al. [19], Javid and Raza [20], Eslami [21], Biswas et al. [22],
Cheemaa et al. [23], Alshahrani et al. [24], Sulaiman et al. [25] and Rehman et al. [26],
while Mohammed et al. [27,28] studied Equation (1) in one space dimension and two space
dimensions, with stochastic term and α = 1.

The originality of this article is to obtain the exact stochastic fractional solutions of
the S-FS-CNSE (1) forced by multiplicative noise by using the Riccati equation method. In
addition, we discuss the influence of the stochastic term on these solutions. To add more to
our knowledge, this is the first paper that uses a combination of multiplicative noise and
fractional space to obtain the exact solution of the S-FS-CNSE (1).

The following is the format of this article: In the next section, we define the order α
of Jumarie’s derivative and we state some important properties of the modified Riemann–
Liouville derivative. In Section 3, we obtain the wave equation for S-FS-CNSE (1), while
in Section 4, we have the exact stochastic solutions of the S-FS-CNSE (1) by applying the
Riccati equation method. In Section 6, we display some graphs to demonstrate the effect of
the stochastic term on the obtained solutions of the S-FS-CNSE. Finally, the conclusions of
this paper are presented.

2. Modified Riemann–Liouville Derivative and Properties

Jumarie [29] defines the order α of derivative for the continuous function f :R→ R
as follows:

Dα
x f (x) =


1

Γ(1−α)
d

dx

∫ x
0 (x− ζ)−α( f (ζ)− f (0))dζ, 0 < α < 1,

[ f (n)(x)]α−n, n ≤ α ≤ n + 1, n ≥ 1,

where Γ(.) is the Gamma function.
Here, we present some important properties of the modified Riemann–Liouville

derivative:

Dα
x xγ =

Γ(1 + γ)

Γ(1 + γ− α)
xγ−α, γ > 0,

Dα
x [a f (x) + bg(x)] = aDα

x f (x) + bDα
x g(x),

Dα
x [ f (x)g(x)] = σx[g(x)Dα

x f (x) + f (x)Dα
x g(x)

and
Dα

x g(ϕ(x)) = σx
dg
dϕ

Dα
x ϕ,

where a, b are constants and σx is called the sigma indexes [30,31].

3. Wave Equation for S-FS-CNSE Equation

Let us begin with the complex wave transformation:

ϕ(t, x) = ψ(ξ)eiθ+ρW(t)−ρ2t, ξ =
k1xα

Γ(1 + α)
+ k2t, and θ =

ω1xα

Γ(1 + α)
+ ω2t, (2)
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where ψ is a determinstic function, k1, k2, ω1 and ω2 are real constants. We use

dϕ

dt
= (k2ψ′ + iω2ψ + ρψWt +

1
2

ρ2ψ− ρ2ψ)eiθ+ρW(t)−ρ2t,

Dα
x ϕ = (σxk1ψ′ + iσxω1ψ)eiθ+ρW(t)−ρ2t,

Dα
x ϕ∗ = (σxk1ψ′ − iσxω1ψ)e−iθ+ρW(t)−ρ2t, (3)

D2α
x ϕ = (σ2

x k2
1ψ′′ + 2iσ2

x k1ω1ψ′ − σ2
x ω2

1ψ)eiθ+ρW(t)−ρ2t.

Putting (3) into Equation (1), we obtain, for real part,

σ2
x k2

1ψ′′ + 2δσxω1ψ3e2ρW(t)−2ρ2t − (ω2 + σ2
x k2

1)ψ = 0. (4)

Taking expectation on both sides, we have

σ2
x k2

1ψ′′ + 2δσxω1ψ3e−2ρ2tE(e2σW(t))− (ω2 + σ2
x k2

1)ψ = 0, (5)

where ψ is a deterministic function. Since W(t) is standard normal random variable, then

E(eγW(t)) = e
γ2
2 t for any real constant γ. Hence Equation (5) becomes

ψ′′ + H1ψ3 − H2ψ = 0, (6)

where H1 = 2δω1
σxk2

1
and H2 =

ω2+σ2
x k2

1
σ2

x k2
1

.

In the next, we utiliz the Riccati equation method to find the exact solution of the
S-FS-CNSE (1).

4. The Exact Solutions of the S-FS-CNSE

Here, we apply the Riccati equation method to find the solutions of Equation (6). That
leads us to find the exact solutions of the S-FS-CNSE (1). First, we suppose the solution of
the (6) has the form

ψ =
N

∑
`=0

a`χ`, (7)

where χ solves
χ′ = χ2 + b, (8)

where b is an unknown constant. By balancing ψ3 with ψ′′ in Equation (6), we can evaluate
the parameter N as follows:

3N = N + 2,

hence
N = 1. (9)

From Equation (9), we can rewrite Equation (7) as

ψ = a0 + a1χ, a1 6= 0. (10)

Putting Equation (10) into Equation (6) and utilizing Equation (8), we obtain a polyno-
mial with degree 3 of χ as follows:

(2a1 + H1a3
1)χ

3 + (H1a0a2
1)χ

2

+(2a1b + H1a2
0a1 − H2a1)χ + H1a3

0 − H2a0 = 0

Equating each coefficient of χk (k = 3, 2, 1, 0) to zero, we have the set of algebraic
equations as follows:

2a1 + H1a3
1 = 0,
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H1a0a2
1 = 0,

2a1b + H1a2
0a1 − H2a1 = 0,

and
H1a3

0 − H2a0 = 0.

By solving this system, we obtain:

a0 = 0, a1 = ±

√
−2
H1

and b =
H2

2
.

There many cases for the solutions of Equation (8) depend on b.
First case: If ω2 = −σ2

x k2
1, then b = 0. The solution of Equation (8) in this case becomes

χ(ξ) =
−1
ξ

.

According to Equation (10), the corresponding solution of the traveling wave Equation (6) is

ψ(ξ) = ±

√
−2
H1

ξ−1 if H1 < 0,

or

ψ(ξ) = ±i

√
2

H1
ξ−1 if H1 > 0.

Therefore, the exact solution of the S-FS-CNSE (1) is

ϕ1(x, t) = ±

√
−2
H1

(
k1xα

Γ(1 + α)
+ k2t)−1ei( ω1xα

Γ(1+α)
+ω2t)+ρW(t)−ρ2t if H1 < 0, (11)

or

ϕ2(x, t) = ±i

√
2

H1
(

k1xα

Γ(1 + α)
+ k2t)−1ei( ω1xα

Γ(1+α)
+ω2t)+ρW(t)−ρ2t if H1 > 0. (12)

Second case: If ω2 > −σ2
x k2

1, then b > 0. The solution of Equation (8) in this case becomes

χ(ξ) =
√

b tan(
√

bξ) =

√
H2

2
tan(

√
H2

2
ξ).

In this situation, the solution of the traveling wave Equation (6) takes the form

ψ(ξ) = ±

√
−H2

H1
tan(

√
H2

2
ξ), if H1 < 0,

or

ψ(ξ) = ±i

√
H2

H1
tan(

√
H2

2
ξ), if H1 > 0.

Hence, by using (2), the exact solution of the S-FS-CNSE (1) is

ϕ3(x, t) = ±

√
−H2

H1
tan(

√
H2

2
(

k1xα

Γ(1 + α)
+ k2t))ei( ω1xα

Γ(1+α)
+ω2t)+ρW(t)−ρ2t, (13)
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if H1 < 0, or

ϕ4(x, t) = ±i

√
H2

H1
tan(

√
H2

2
(

k1xα

Γ(1 + α)
+ k2t))ei( ω1xα

Γ(1+α)
+ω2t)+ρW(t)−ρ2t, (14)

if H1 > 0.
Third case: If ω2 < −σ2

x k2
1, then b < 0. The solution of Equation (8) in this case becomes

χ(ξ) =
√
−b tanh(

√
−bξ) =

√
−H2

2
tanh(

√
−H2

2
ξ).

In this situation, the solution of the traveling wave Equation (6) takes the form

ψ(ξ) = ±

√
H2

H1
tanh(

√
−H2

2
ξ), if H1 < 0,

or

ψ(ξ) = ±i

√
−H2

H1
tanh(

√
H2

2
ξ), if H1 > 0.

Therefore, by using Equation (2), the exact solution of the S-FS-CNSE (1) is

ϕ5(x, t) = ±

√
H2

H1
tanh(

√
−H2

2
(

k1xα

Γ(1 + α)
+ k2t))ei( ω1xα

Γ(1+α)
+ω2t)+ρW(t)−ρ2t (15)

if H1 < 0, or

ϕ6(x, t) = ±i

√
−H2

H1
tan(

√
−H2

2
(

k1xα

Γ(1 + α)
+ k2t))ei( ω1xα

Γ(1+α)
+ω2t)+ρW(t)−ρ2t, (16)

if H1 > 0.

5. The Effect of Noise on the Solutions of S-FS-CNSE

Understanding the influence of noise on wave propagation is a critical issue. Even
though deterministic models are frequently used to illustrate propagation, in many cases,
randomness should be addressed. It has the potential to significantly modify qualitative
behavior and result in new properties. Therefore, in this section, we address the effect of
the stochastic term on the exact solutions of the S-FS-CNSE (1).

First, let us fix the parameters k1 = δ = 1
σx

and k2 = −1. We present some of graphs
for different value of ρ (noise intensity). We utilize the MATLAB program to plot the
solution ϕ3(t, x) and ϕ5(t, x) defined in Equations (11) and (13), respectively, as follows.

In Figures 1–4: When the noise intensity is equal to zero, the surface becomes less
flat, as seen in the first graph in the tables. However, when noise emerges and the in-
tensity of the noise increases (ρ = 1, 2, 3), the surface becomes more planar after minor
transitioning behaviors. This indicates that the solutions are stable due to the effect of the
stochastic term.
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ρ = 0, α = 1 ρ = 1, α = 1

ρ = 2, α = 1 ρ = 3, α = 1

Figure 1. Graph of solution |ϕ3| in Equation (13) with ω1 = −1, ω2 = −1 and α = 1.

ρ = 0, α = 0.5 ρ = 1, α = 0.5

ρ = 2, α = 0.5 ρ = 3, α = 0.5

Figure 2. Graph of solution |ϕ3| in Equation (15) with ω1 = −1, ω2 = −1 and α = 0.5.
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ρ = 0, α = 1 ρ = 1, α = 1

ρ = 2, α = 1 ρ = 3, α = 1

Figure 3. Graph of solution |ϕ5| in Equation (15) with ω1 = −1, ω2 = −2 and α = 1.

ρ = 0, α = 0.5 ρ = 1, α = 0.5

ρ = 2, α = 0.5 ρ = 3, α = 0.5

Figure 4. Graph of solution |ϕ5| in Equation (13) with ω1 = −1, ω2 = −2 and α = 0.5.

6. Conclusions

In this article, we obtained different exact solutions of the stochastic fractional-space
Chiral nonlinear Schrödinger equation (Equation (1)) by using the Riccati equation method.
We were able to obtain several dark and bright soliton solutions for this equation. These
forms of solutions can be used to explain a wide range of exciting and difficult scien-
tific phenomena. Moreover, we utilized the MATLAB program to create some graphical
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representations to discuss the impact of the stochastic term on the exact solutions of the
S-FS-CNSE (1). Finally, we noticed that the proposed method is a simple and beautiful
mathematical technique that gives important results when applied to several types of
nonlinear models.
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