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Abstract: Experimental data collected to provide us with information on the course of dielectric
relaxation phenomena are obtained according to two distinct schemes: one can measure either the
time decay of depolarization current or use methods of the broadband dielectric spectroscopy. Both
sets of data are usually fitted by time or frequency dependent functions which, in turn, may be
analytically transformed among themselves using the Laplace transform. This leads to the question
on comparability of results obtained using just mentioned experimental procedures. If we would like
to do that in the time domain we have to go beyond widely accepted Kohlrausch–Williams–Watts
approximation and become acquainted with description using the Mittag–Leffler functions. To
convince the reader that the latter is not difficult to understand we propose to look at the problem
from the point of view of objects which appear in the stochastic processes approach to relaxation.
These are the characteristic exponents which are read out from the standard non-Debye frequency
dependent patterns. Characteristic functions appear to be expressed in terms of elementary functions
whose asymptotics is simple. This opens new possibility to compare behavior of functions used to
describe non-Debye relaxations. It turnes out that the use of Mittag-Leffler function proves very
convenient for such a comparison.

Keywords: non-Debye relaxations; characteristic exponents; subordination; Efross theorem

1. Introduction

A description of physical phenomena whose kinetics is influenced by complexity,
disorder, or randomness often requires a radical departure from theoretical methods
established for analogous, but simpler, phenomena discussed in textbooks of general
physics. Such a situation arises when we become interested in study of dielectric relaxations
and encounter their time behavior different from the commonly expected exponential decay.
Depending on the experimental setup empirical investigation of the relaxation phenomena
and collecting the data is done by measuring either their time behavior or frequency
characteristics, i.e., the experiment provides us with data in the time or in the frequency
domains. A typical example of dielectric relaxation phenomena is provided by a dipolar
system which approaches the equilibrium being earlier driven out of it, i.e., polarized, by a
step or alternating external electric field. Depolarization is usually described in terms of
the relaxation or spectral functions [1]. The first just mentioned quantity, namely the time
dependent relaxation function n(t), counts dipoles surviving depolarization during the
time (0, t) ⊂ (0, ∞) and evolves form n(0+) = 1 to n(∞) = 0. The frequency dependent
spectral function φ̂(iω), describing diffractive and absorptive effects, results from the
analysis of phenomenological data obtained as a response of the system when it is probed
by the harmonic electric field. Defined as the normalized ratio of dielectric permittivities
[ε̂(iω)− ε∞]/[ε0 − ε∞], where ε∞ = limω→∞ ε̂(iω) and ε0 = limω→0 ε̂(iω), it is complex
valued function whose analytical properties stem from those obeyed by ε̂(iω). Following
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standard rules the data obtained in the time t or in the frequency ω domains are interrelated
by the Laplace transform L [−; ·]

φ̂(iω) = 1− iωn̂(iω), n̂(iω) = L [n(t); iω]. (1)

In typical non-Debye relaxation experiments the data measured in the time domain
are usually fitted using the stretched exponential or, in physicists’ community language,
the Kohlrausch–Williams–Watts (KWW) function

nKWW(t) = exp[−(t/τ)α] (2)

with α > 0. In what follows we will consider only the case α ∈ (0, 1) which preserves
the interpretation of the stretched exponential as the continuous sum of Debye exponen-
tial decays weighted by a probability distribution belonging to the class of Lévy stable
distributions [2,3]. Phenomenological functions usually used to fit the data in the fre-
quency domain, called the standard non-Debye relaxation patterns, are the Cole–Cole (CC),
Havriliak–Negami (HN), and Jurlewicz–Weron–Stanislawsky (JWS) models

φ̂CC(iω) = [1 + (iωτ)α]−1, φ̂HN(iω) = [1 + (iωτ)α]−β, and

φ̂JWS(iω) = 1− [1 + (iωτ)−α]−β, (3)

where α, β ∈ (0, 1] (The range of α and β ensures that the spectral functions initially found
as a fit for ω > 0 can be analytically continued to the upper half plane =ω > 0 and satisfy
assumptions of [4] (Theorem 2.7)). Notice that the CC spectral function generalizes the
Debye case φ̂D(iω) = [1 + (iωτ)]−1 and simultaneously can be obtained from φ̂HN(iω)
or φ̂JWS(iω) for β = 1. Additionally, if we set α = 1 and β ∈ (0, 1) in the HN model then
we get the Cole–Davidson (CD) pattern. An important property of relaxation patterns (3)
is that if transformed to the time domain they all lead to the relaxation functions n(t)
expressed in terms of functions belonging to the family of the Mittag–Leffler functions (see
Appendix A). Thus, we arrive at a two-fold way how to analyze the non-Debye relaxation
phenomena-we can take into account their modelling either in terms of the KWW function
or to choose the Mittag–Leffler functions. None of these approaches are singled out by
fundamental theoretical arguments and thus it is understood to treat them as challengers
whose usefulness is to be determined by comparison with experimental data. In our
opinion, the results of such comparison lead far beyond its instructive meaning as they
may be used to clarify ambiguities coming from difficulties that experiments are facing
in asymptotic (short/long time and high/low frequencies) regimes. Thus, looking for
arguments shedding light on choosing one of the just mentioned different approaches on
experimentally observed data is worth attention and more systematic investigation.

We shall begin comparison of the Mittag–Leffler family and KWW matchings with
recalling relations between the KWW and the standard Mittag–Leffler function that is
responsible for the time behavior of the CC model. Although the KWW function has been
used in modeling physical processes mainly in the context of relaxations (e.g., the Curie–
von Schweidler law), the CC pattern is by no means restricted to this class of phenomena.
Taken for real argument, t ∈ R+, and α > 0, the CC pattern becomes an example of the
generalized Cauchy–Lorentz (GCL) distributions used in numerous fields of basic and
applied sciences. To attract attention on the utility of the GCL distributions recall that for
α = 2 it found applications in optics long time ago [5,6]. Much more recently it has appeared
in quantum mechanics [7] where it describes the so-called Maxwell’s fish eye problem. An
interesting application, coming from the interface of the basic and applied science, is using
the CC pattern in electrochemistry [8,9], bioelectrochemistry [10–13] and photovoltaics [14].
Effects of distributed, i.e., non-Debye, relaxation processes, inhomogeneities of the system
and possible deviations from the Gaussian diffusion spreading lead to non-ideal interfacial
behavior. As the consequence to model electrochemical response one has to go beyond
simple models of electric circuits including capacity, such as, e.g., the Randles circuit
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(Randles circuit is an equivalent circuit composed of a resistor in series with combination
of a resistor and a capacitor in parallel), and the necessity of modifying current-voltage
relations introducing into them (sometimes ad hoc) additional time dependent factors given
by the KWW or GCL functions [9]. Recent progress in investigations of electrochemical
processes taking place in biological systems has shown that some results coming from the
fractional calculus may be useful to push forward understanding of non-ideal interfacial
capacitance. A working example is that if the so-called constant phase element (CPE) is
mounted to replace the standard capacitor in the effective circuit, then the differential
relation which describes capacitor discharging becomes fractional. Thus, we leave the
realm of exponential decays (also generalized, like the KWW pattern is) and it becomes
quite natural that functions characteristic for fractional calculus, such as the Mittag–Leffler
type, come into play and replace exponential-like decay laws. Such an approach has
been presented in investigations [10–13] where it has been also noticed that asymptotic
properties of the (standard) Mittag–Leffler function for short times agree with those of
the KWW function and that the Mittag–Leffler function interpolates between the KWW
for short times and the power-like behavior for long times. Among consequences of this
property it has been found that the (standard) Mittag–Leffler function appears useful not
only in studies of short time effects characteristic for biochemical processes [11,13] but also
in analysis of the long time phenomena occurring in the perovskite solar cells [12,14]. Here
we want to address the readers’ attention and emphasize that attempts to fit the data by
the (standard) Mittag–Leffler function instead of the KWW decay suggest to try the use of
other function belonging to the Mittag–Leffler family, especially if one would be interested
in search of matchings functioning beyond the leading order of small t asymptotics.

Let us suppose that we perform an experiment in which we are able to observe the
relaxation process taking place in two samples, each prepared exactly in the same way,
having exactly the same structure and put into the same experimental conditions. Measure-
ments performed for the first sample are taken in the time domain and provide us with
direct information on the time decay of polarization while for the second sample we collect
spectroscopy data which are next transformed to the time domain. In such a twin-like exper-
imental setup, the question arises about agreement between the KWW function commonly
used to fit the time data and the relaxation function(s) obtained using the Laplace transform
of spectral functions of Equation (3), where the choice of suitable pattern emerges from the
data analysis. Such comparison was first investigated numerically in refs. [15,16] for the
KWW and HN models as the authors of analysis were unaware of the Laplace transform
of the KWW function. Further study of the problem was announced a few years later
in [17]. Currently, having in hands new mathematical tools, at that time unknown to the
vast majority of physicists, we are going to show how to extend these results using contem-
porary knowledge, coming from sources far beyond the phenomenology, of the relaxation
phenomena. Information expected to help us emerges from dynamics and evolution equa-
tions which govern the relaxation processes [18–21]. However, to get such equations from
ab initio microscopic rules without implementing far going simplifications is extremely
difficult, if possible at all. Thus, some “effective” theoretical approaches have to be used-in
the case of relaxation processes suitable mathematical tools are provided by approaches
rooted in the stochastic processes theory with the crucial role played by methods grown
from the concepts of infinitely divisible distributions and subordination. To give a very
brief explanation, the most important property of non-negative, non-decreasing stochastic
processes. They are governed by infinitely divisible probability distributions and they
are uniquely characterized by functions called the characteristic (either Laplace or Lévy)
exponents, which carry all information concerning distributions under consideration. This
formalism adopted for studies of the relaxation phenomena leads to an unexpected result
which merges basic, mathematical in fact, theory and pure phenomenology-characteristic
exponents may be uniquely reconstructed from the knowledge of spectral function, i.e.,
experimentally obtained relaxation patterns. This provides us with a new tool to compare
various schemes describing relaxation processes-as we mentioned a few lines earlier our
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goal is to study similarities and/or dissimilarities of the relaxation descriptions based on
the KWW and Mittag–Leffler functions.

The content of our paper goes as follows. Section 2 involves preliminaries concerning
the characteristic exponents and stochastic approach to relaxations. The spectral and
characteristic functions of the KWW model are computed in Section 3. Knowledge of the
characteristic functions relevant for the standard non-Debye relaxation patterns and their
asymptotics enables us to confront the challenge which of them is the best candidate to
approximate the KWW model-we remark that results presented in Section 4 are conclusive
only for short times. The last section, Section 5, summarizes properties of functions
belonging to the Mittag–Leffler family, in particular their asymptotics and (fractional)
equations which they obey. We collect in one place results of long and often cumbersome
calculations in hope that experimentalists will find them useful in analyses of relaxation
experiments. The paper is concluded in Section 6 and it contained five appendices directly
devoted to mathematical tools used throughout it.

2. Characteristic Exponents and Stochastic Description—A Brief Tutorial

Characteristic exponents, Ψ̂(s)’s, s > 0, appear as basic objects reflecting properties of
non-negative infinitely divisible stochastic processes U(ξ) parametrized by a non-negative
non-decreasing random variable ξ. They are defined by the relation

〈exp (−sU(ξ))〉 = exp (−ξΨ̂(s)) (4)

and given by the Lévy–Khintchine formula [22] (Equation (1.3)). Among properties of
the characteristic exponents the most essential is that they belong to the class of Bernstein
functions (BFs), closely related to the class of completely monotone functions (CMFs), see
Appendix B. To make the notions of BFs and CMFs more intuitive one may understand
BFs as “maximally regularly” increasing positive functions, while CMFs as “maximally
regularly” decreasing, but still non-negative, ones. Within the subordination approach to
relaxation processes the characteristic exponents Ψ̂(s) are used to construct distribution
functions which subordinate the Debye law assumed to depend on irregularly flowing
stochastic operational time ξ. Subordination is realized by convolving such a Debye law
with some infinitely divisible probability density function (PDF) g(t, ξ). This last quantity
provides us with the probability density of finding the system at ξ if it is at the instant of
time t measured by a laboratory clock. Having this in mind we can write down n(t) as the
integral decomposition [20,23,24]

n(t) =
∫ ∞

0
e−B(τ) ξ g(t, ξ)dξ, g(t, ξ) = L −1

[ Ψ̂(s)
s

e−ξΨ̂(s); t
]
, (5)

where B(τ) (B in short-hand-notation) denotes the material, time independent, transition
rate characterizing the system. The PDF g(t, ξ) may be calculated from the cumulative
distribution function of U(ξ) and its “inverse” process S(t) = inf{ξ : U(ξ) > t} and is
uniquely determined by the PDF of U(ξ). In Ref. [25], it is shown that if the characteristic
exponent Ψ̂(s) is the completely Bernstein function (CBF), see Appendix B, then there exists
its associated partner function Φ̂(s) = s/Ψ̂(s) which also is CBF. The pair of Ψ̂(s) and
Φ̂(s) satisfies the relation Ψ̂(s)Φ̂(s) = s, which is called the Sonine property, mathematical
condition which enables reformulation of integral equations in terms integro-differential
equations and vice versa [26]. This unexpected duality has deeply meaningful consequences
which have been noticed and discussed elsewhere [27,28]. Here they are only briefly
mentioned in Section 4.

3. Spectral Function for the KWW Pattern

According to best of our knowledge, the analytic expression for the spectral function
of KWW model was found in Refs. [29,30] and is not quoted elsewhere. Numerically it
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was calculated in [16] employing Equation (1). Calculations presented in Refs. [29,30] lead
to representation of the KWW spectral function in terms of the Fox H function:

φ̂KWW(s) = 1− H1,1
1,1

(
(sτ)α

∣∣∣ (1, 1)
(1, α)

)
, α ∈ (0, 1]. (6)

According to their definition the Fox H functions Hm,n
p,q
(
z| [ap ,Ap ]

[bq ,Bq ]

)
are given by contour

integrals of the Mellin–Barnes type (cf. Appendix C), where the upper list of parameters
in short denoted as [ap, Ap] meaning (a1, A1), . . . (ap, Ap). Similarly, the lower list of
parameters in short denoted as [bq, Bq] meaning (b1, B1) . . . (bq, Bq). Applying Equation (A7)
to the Fox H function of Equation (6) we get

H1,1
1,1

(
(sτ)α

∣∣∣ (1, 1)
(1, α)

)
=
∫

L
Γ(1 + αξ)Γ(−ξ)(sτ)−αξ dξ/(2πi), (7)

where the contour L omits the poles of Γ(1 + αξ) and Γ(−ξ). We remark that according to
Equation (1) in the Laplace space the Fox H function of Equation (6) equals to s n̂KWW(s).

The Fox H function is a complicated mathematical object difficult to apply in practice.
Except of its general properties only a little information useful in calculations can be
found in standard compendia dealing with special functions [31–33]. Additionally, it is not
implemented in the computer algebra systems such as Mathematica and Maple. All this
makes calculations involving the Fox H function difficult, time consuming, and hard to be
verified. To avoid this trouble we have found a way how to express φ̂KWW(iω) in terms of
special functions which are analytically and numerically much more tractable. The solution
goes as follows: begin with the observation that in most of numerical calculations we are
always restricted to using rational numbers, such that the parameter α in Equation (7) may
be put equal to l/k. In such a case the Fox H in Equation (7) can be expressed in terms of
the Meijer G function Gm,n

p,q
(
z| (ap)

(bq)

)
(see Appendix C). Setting ξ/k = −u in Equation (7) we

rewrite the latter as

1− φ̂KWW(s) ≡ s n̂KWW(s) = k
∫

Lu
(sτ)lu Γ(1− lu)Γ(ku)du/(2πi)

=

√
lk

(2π)(l+k)/2−1

∫
Lu

[
ll

kk(sτ)l

]−u k−1

∏
i=0

Γ
( i

k + u
) l−1

∏
i=0

Γ
( 1+i

l − u
) du

2πi

=

√
lk

(2π)(l+k)/2−1
Gk,l

l,k

(
ll

kk(sτ)l

∣∣∣ ∆(l, 0)
∆(k, 0)

)
,

(8)

where we have used the Gauss multiplication formula, i.e., Γ(nz) = (2π)(1−n)/2nnz−1/2

∏n−1
i=0 Γ(z + i/n), applied to Γ(1− lu) and Γ(ku). The upper and lower list of parame-

ters are denoted as ∆(l, 0) and ∆(k, 0), respectively, where ∆(n, a) is a sequence of num-
bers a/n, (a − 1)/n, . . . , (a + n − 1)/n. For l ≤ k, the Meijer G function in (8) can be
expressed as the finite sum of the generalized hypergeometric functions (see Appendix C)
by using [33] (Equation (8.2.2.3)).

1− φ̂KWW(s) =
k−1

∑
j=0

(−1)j

j!
Γ(1 + l

k j)
(sτ)l j/k 1+l Fk

(
1, ∆(l, 1 + l

k j)
∆(k, 1 + j)

;
(−1)kll

kk(sτ)l

)
(9)

= ∑
r≥0

(−1)r

r!
Γ(1 + lr/k)
(sτ)lr/k . (10)

For passing between Equations (9) and (10) we have used the series definition of
generalized hypergeometric function pFq and the formula in which the sum of ar is split
into k sums with the term akr, akr+1, . . . akr+k−1, namely ∑r≥0 ar = ∑r≥0 ∑k−1

j=0 akr+j. Note
that the result Equation (9) we can get with the help of [34] (Equation (2.3.2.13)).
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4. Comparison of Characteristic Exponents

According to [20,35] the characteristic (Laplace or Lévy) exponent may be retrieved
from the knowledge the spectral function φ̂(s):

Ψ̂(s) =
1− φ̂(s)

φ̂(s)
. (11)

In the remaining part of the paper, we assume B(τ) = 1 so that all dependence on
τ is shifted to the spectral functions φ̂(s). The spectral functions for the CC, HN, and
JWS relaxation models are listed in Equation (3), while for the KWW model it is given by
Equation (8) and/or Equation (9). Asymptotic behavior of all considered spectral functions
for small and large frequencies confirms the experimentally established Jonscher’s universal
relaxation law (Jonscher’s URL) [36]. From Refs. [29,30] or, independently, taking the
Laplace transform of [18] (Equations (3.4), (3.29) and (3.45)) we get

φ̂A;CC(s) ∼
{

(sτ)−α, sτ � 1
1− (sτ)α, sτ � 1

, φ̂A;HN(s) ∼
{

(sτ)−αβ, sτ � 1
1− β (sτ)α, sτ � 1

,

and φ̂A;JWS(s) ∼
{

β (sτ)−α, sτ � 1
1− (sτ)αβ, sτ � 1

, (12)

where the parameters α and β belong to the range (0, 1]. We put reader’s attention that
contrary to the CC model the asymptotics of the HN and JWS spectral functions is governed
by two different exponentials-for the CC model it is only α while for the HN and JWS
models α and αβ = γ ≤ α ≤ 1 (In what follows we will use the index A to point out that
we consider the asymptotics of given spectral function and/or characteristic functions).
This suggests considering the CC and HN/JWS cases separately.

To compare the characteristic exponents relevant for the above presented models we
choose the KWW spectral function as the reference. In Refs. [29,30] it was shown that

φ̂A;KWW(s) ∼ Γ(1 + α)(sτ)−α, for sτ � 1, (13)

which flows out also from the series form of φ̂KWW(s) given by Equation (10).

(a) The characteristic exponents for CC relaxation model are given by the power-
law functions

Ψ̂CC(s) = (sτ)α and Φ̂CC(s) = (sτ)1−α (14)

which differ from the asymptotic behavior of Ψ̂KWW(s) and Φ̂KWW(s)

Ψ̂A;KWW(s) ∼ (sτ)α/Γ(1 + α) and Φ̂A;KWW(s) ∼ Γ(1 + α)(sτ)1−α, sτ � 1 (15)

only by the factor [Γ(1+ α)]−1. Thus, by rescaling Equation (14) we expect the asymp-
totic agreement with the characteristic functions of the KWW model calculated using
Equation (8) or (9). The comparison of Ψ̂KWW(s) with Ψ̂CC(s), as well as Φ̂KWW(s)
with Φ̂CC(s) are presented in Figure 1 where plots are made for α = 1/3. It is seen that
the characteristic exponents Ψ̂CC(s) and Φ̂CC(s) match Ψ̂KWW(s) and Φ̂KWW(s) for
large s. In the opposite case, i.e., for small s, Ψ̂CC(s) agrees with Φ̂KWW(s) much better
than Ψ̂KWW(s). Analogical observation can be made for Φ̂CC(s) which reconstructs
Ψ̂KWW(s) better than Φ̂KWW(s).
We should also observe that Ψ̂CC(s) and Φ̂CC(s), as well as Ψ̂KWW(s) and Φ̂KWW(s)
are CBFs and by construction satisfy the Sonine condition.
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Figure 1. Plot presents the comparison between characteristic functions Ψ̂KWW(s) (red solid curve
no. I) and Ψ̂CC(s) (brown dot-dashed curve no. Ia), as well as between partner functions Φ̂KWW(s)
(blue solid curve no. II) and Φ̂CC(s) (green dashed curve no. IIa) for α = 1/3 and τ = 1. The
characteristic exponents Ψ̂KWW(s) and Φ̂KWW(s) have been calculated using Equation (8) whereas
Ψ̂CC(s) and Φ̂CC(s) are given by Equation (14). The latter ones are, respectively, multiplied and
divided by [Γ(4/3)]−1.

(b) In case of the HN relaxation we have

Ψ̂HN(s) = {[1 + (sτ)α]β − 1} and Φ̂HN(s) = s{[1 + (sτ)α]β − 1}−1. (16)

For large s the leading asymptotic term of Ψ̂HN(s) is (sτ)αβ. For small s the relevant asymp-
totics is got if we rewrite Ψ̂HN(s) as the series ∑r≥0 Γ(1 + β)(sτ)αr/[r!Γ(1 + β− r)]− 1
whose first two terms (i.e., the terms with r = 0 and r = 1) give the asymptotics
of Ψ̂HN(s) proportional to β(sτ)α. Gathered together the asymptotic behavior of
Ψ̂HN(s) reads

Ψ̂A;HN(s) ∼ (sτ)αβ, sτ � 1, and Ψ̂A;HN(s) ∼ β(sτ)α, sτ � 1 (17)

which determine the asymptotics of Φ̂HN(s)

Φ̂A;HN(s) ∼ (sτ)1−α/β, sτ � 1, and Φ̂A;HN(s) ∼ (sτ)1−αβ, sτ � 1. (18)

As in the previous example also here Ψ̂A;HN(s) and Φ̂A;HN(s) are CBFs for α, β ∈ (0, 1].
The power-law asymptotics given by Equation (17) for sτ � 1 shows that in order
to match Ψ̂KWW(s) the relations of exponentials αHN βHN = αKWW has to be satisfied.
It means that αHN may be chosen arbitrarily if simultaneously βHN = αKWW/αHN .
Thus, the small s asymptotics of Ψ̂A;HN(s) becomes incompatible with the asymp-
totics of Ψ̂A;KWW(s) and matches it only for β = 1 which is the condition reducing the
HN pattern to the CC one. Figure 2, with αKWW = 1/3, αHN = 5/6, and βHN = 2/5,
shows that for large τs Ψ̂HN(s) and Φ̂HN(s) fit well Ψ̂KWW(s) and Φ̂KWW(s), respec-
tively, but the matching breaks down for small sτ.
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Figure 2. Plot presents the comparison between characteristic exponents Ψ̂KWW(s) (red solid curve
no. I) and Ψ̂HN(s) (brown dot-dashed curve no. Ib), as well as between partner functions Φ̂KWW(s)
(blue solid curve no. II) and Φ̂HN(s) (green dashed curve no. IIb). Ψ̂KWW(s) and Φ̂KWW(s) are
calculated with the help of Equation (8) where we use αKWW = 1/3, τ = 1. The characteristic
exponents Ψ̂HN(s) and Φ̂HN(s) are given by Equation (16) where αHN = 5/6 and βHN = 2/5. The
comparison between the characteristic functions is made with the factor [Γ(1 + 5/6)]−1 which is
multiplied by Ψ̂HN(s) and divided by Φ̂HN(s).

(c) The characteristic exponents of the JWS model are equal to

Ψ̂JWS(s) = {[1 + (sτ)−α]β − 1}−1 and Φ̂JWS(s) = s{[1 + (sτ)−α]β − 1} (19)

Their asymptotics read

Ψ̂A;JWS(s) ∼ sα/β, sτ � 1, and Ψ̂A;JWS(s) ∼ (sτ)αβ, sτ � 1, (20)

Φ̂A;JWS(s) ∼ s1−αβ, sτ � 1, and Φ̂A;JWS(s) ∼ β(sτ)1−α, sτ � 1. (21)

As in the previous case also here the asymptotics’ presented by Equation (20) are
given by CBFs for α, β ∈ (0, 1]. The comparison between Ψ̂KWW(s) and Ψ̂JWS(s), as
well as between Φ̂KWW(s) and Φ̂JWS(s) is shown in Figure 3. It is seen that for large s
Ψ̂JWS(s) and Φ̂JWS(s) match Ψ̂KWW(s) and Φ̂KWW(s) faster than for the CC and HN
models. Nevertheless the matchings for small s remain disappointing although at
the first glance they seem to be more acceptable than those resulting from the CC
and HN models. This, however, may be treated as an artifact coming from the choice
of parameters.

We complete this section with two remarks:

1. The leading order of large s, i.e., short t, asymptotics of all relaxation patterns being
considered matches the KWW function.

2. In Figures 1–3 the curves labelled by I and II show the behavior of various Ψ̂(s) and
Φ̂(s). Unidexed labels I and II characterize plots obtained for the KWW model if
α = 1/3. The labels I and II indexed with subscripts a, b, and c distinguish non-Debye
models: a is for the CC, b is for the HN, and c is for the JWS.
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Figure 3. Plot presents the comparison between Ψ̂KWW(s) (red solid curve no. I) and Ψ̂JWS(s)
(brown dot-dashed curve no. Ic), as well as between Φ̂KWW(s) (blue solid curve no. II) and Φ̂JWS(s)
(green dashed curve no. IIc). Ψ̂KWW(s) and Φ̂KWW(s) are calculated with the help of Equation (8)
where we use αKWW = 1/3, τ = 1. The characteristic exponents Ψ̂JWS(s) and Φ̂JWS(s) are given
by Equations (16) where αJWS = 2/5, β JWS = 5/6, and are, respectively, multiplied and divided
by [Γ(1 + 2/5)]−1.

5. The Mittag–Leffler Family: Comparison of Useful Properties
5.1. An Interlude: A Few Mathematical Tools
5.1.1. The Efross Theorem as an Integral Decomposition

The Efross theorem [37–42] generalizes the Borel convolution theorem for the Laplace
transform. According to it, for Ĝ(s) and q̂(s) being analytic functions, we have

L −1
[

Ĝ(s) ĥ1(x, q̂(s)); t
]
=
∫ ∞

0
L −1[ĥ1(x, s); ξ]L −1[Ĝ(s) e−ξ q̂(s); t]dξ

=
∫ ∞

0
h1(x, ξ)h2(ξ, t)dξ.

(22)

in which one immediately recognizes the structure of integral decomposition. In the
probabilistic language, if h1(x, ξ) and h2(ξ, t) are independent probability distributions,
Equation (22) expresses the Bayes theorem and thus may be treated as a joint probability
distributions. Namely this identification is made when stochastic methods are applied
to the relaxation theory [24]. Within this approach the non-negative random variable ξ
is interpreted as an “internal” or operational time which governs the evolution of the
function h1(x, ξ) = L −1[ĥ1(x, s); ξ] bearing the name of the parent process. The second
component of the integral decomposition Equation (22) h2(ξ, t) = L −1[Ĝ(s) e−ξ q̂(s); t]
describes the mutual dependence of operational ξ and physical t times. Unlike regularly
clocked physical time t the internal time ξ has the nature of a càdlàg (left continuous right
limited) non-negative and non-decreasing stochastic process. According to classification
proposed in Ref. [43] and recently reconsidered in Refs. [40,44] both functions hi’s, i = 1, 2,
can be either the “safe” or “dangerous” probability densities (PDFs). Sufficient condition
to be the “safe” PDF is infinite divisibility, and if it is not the case we may deal with
an example of “dangerous” PDF. The working criterion to distinguish the “safe” and
“dangerous” cases is their adherence to the class of Bernstein functions. This guarantees
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that the features characterizing the “safe” PDFs, i.e., non-negativity and infinite divisibility,
are satisfied (Appendix D). Remember also that h2(ξ, t) should be normalized. For h2(ξ, t)
being the “safe” PDF we can say that it subordinates h1(x, ξ). In the opposite case, i.e.,
for h2(ξ, t) being the “dangerous” PDF, we name h2(ξ, t) and h1(x, ξ) the constituents of
integral decomposition only.

5.1.2. Integral Decompositions as Subordinations

In the case of relaxation theory we know from Equation (5) that h1(x, ξ) is independent
on x. It is equal to the Debye relaxation function, i.e., h1(ξ) ≡ nD(ξ) = exp(−Bξ). The
latter is CBF as it is the non-negative, normalized, and infinitely divisible with respect to
ξ. Thus, nD(ξ) is the PDF of parent process. The function h2(ξ, t) ≡ h2,Ψ(ξ, t) involves
Ĝ(s) = Ψ̂(s)/s, as well as q̂(s) = Ψ̂(s) and it is equal to L −1{[Ψ̂(s)/s] exp[−ξΨ̂(s)]; t}.
Normalization of h2,Ψ(ξ, t) in ξ is fulfilled automatically. Because Ψ̂(s) is the characteristic
exponent, i.e., it belongs to the class of Bernstein functions, then using Appendix D we can
show that h2,Ψ(ξ, t) is “safe” PDF and it subordinates the Debye relaxation process h1(ξ).
With the help of Efross theorem Equation (22) n(t) can be written as

n(t) =
∫ ∞

0
L −1[n̂D(s); ξ]L −1

[ Ψ̂(s)
s

e−ξΨ̂(s); t
]

dξ

= L −1
[ Ψ̂(s)

s
n̂D
(
Ψ̂(s)

)
; t
]
,

(23)

where n̂D(s) = L [nD(t); s] = (B + s)−1. For Ψ̂(s) being CBF there exists associated CBF
Φ̂(s), such that Ψ̂(s)Φ̂(s) = s. Thus, Equation (23) can be written down in its alterna-
tive form

n(t) = L −1
{
[Φ̂(s)]−1 n̂D

(
s/Φ̂(s)

)
; t
]

=
∫ ∞

0
L −1[n̂D(s); ξ]L −1

{
[Φ̂(s)]−1 e−ξs/Φ̂(s); t

}
dξ,

(24)

where h2(ξ, t) ≡ h2,Φ(ξ, t) = L −1{exp[−ξs/Φ̂(s)]/Φ̂(s); t} subordinates the Debye relax-
ation process as well. This duality is not problematic-both characteristic functions Ψ(s) and
Φ(s) lead to the same n(t) if Ψ̂(s)Φ̂(s) = s which once more emphasizes the importance
of the Sonine condition. Additionally, by virtue of considerations presented in Section 2
(cf. Equation (5)), we know that h2,Ψ(ξ, t) and h2,Φ(ξ, t) are always the “safe” PDFs. Thus
they may be used to subordinate the Debye relaxation, as well as other “safe” distributions,
e.g., the normal distribution, cf. Ref. [28]. We can also use another subordinators, e.g.,
L −1{sαγ−β exp[−usα]; t}, which subordinates the CD relaxation model. The example of
using two kinds of subordinators is presented in Ref. [40].

5.1.3. Subordinations as Signposts Leading to Evolution Equations

The subordination approach allows one to find the evolution equations which govern
the behavior of subordinated parent process [43]; this we have named the relaxation
function n(t). To obtain suitable equations we need two building blocks. The first of them
is the standard evolution equation for nD(t), but considered in the Laplace space and with
s replaced by Ψ̂(s). The second one is the relation n̂D( Ψ̂(s)) = sn̂(s)/Ψ̂(s) derived from
Equation (23).

The evolution equation (with respect to time t) of nD(t) is well-known. It reads
ṅD(t) = −B nD(t) and in the Laplace space equals to

sn̂D(s)− nD(0) = −B n̂D(s) (25)

with the initial condition nD(0) = 1. After replacing s by Ψ̂(s) we have

Ψ̂(s) n̂D
(

Ψ̂(s)
)
− 1 = −B n̂D

(
Ψ̂(s)

)
. (26)
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Setting n̂D( Ψ̂(s)) = sn̂(s)/Ψ̂(s) and substituting it into Equation (26) we get

n̂(s) = s−1 − B [Ψ̂(s)]−1n̂(s), (27)

which can be rewritten as
Ψ̂(s)

s
[s n̂(s)− 1] = −Bn̂(s). (28)

Taking the inverse Laplace transform of Equations (27) and (28) in which we use the
Laplace convolution we get, respectively,

n(t) = 1− B
∫ t

0
M(t− u)n(u)du and

∫ t

0
k(t− u)ṅ(u)du = −Bn(t), (29)

where
M(t) = L −1[M̂(s); t] with M̂(s) = [Ψ̂(s)]−1, (30)

and
k(t) = L −1[k̂(s); t] with k̂(s) = [Ψ̂(s)/s]−1 = [Φ̂(s)]−1. (31)

The functions M(t) and k(t) are non-negative and can be interpreted as memory
functions or kernels. Because Ψ̂(s) is CBF then M̂(s) is the Stieltjes function (SF) and
s/Ψ̂(s) is also CBF, see Appendix B. Denoting the latter as Φ̂(s) we learn that k̂(s) is also
SF [27,45,46]. The relation Ψ̂(s)Φ̂(s) = s indicates that M̂(s) k̂(s) = s−1 which means that
the memory functions M(t) and k(t) fulfill the Sonine equation∫ t

0
M(t− u)k(u)du =

∫ t

0
M(u)k(t− u)du = 1. (32)

Equation (29) express the time-smeared evolution, either of the relaxation function or
its derivative. Detailed discussion of mutual relation between these equations has been pre-
sented in [27,46]. From the physical point of view the first equation present in the pair (29)
is known as the master equation and may be considered as general modeling of the mem-
ory dependent linear evolution scheme. Equation (29) are both the Volterra type integral
equations [4]. For some special choices of the kernel k(t) the second of them specializes to
the fractional differential equations. However, ulility of Equation (29) goes far beyond the
well-established fractional analysis approach to the relaxation phenomena [18,45].

5.2. Examples

As noticed, Equations (23) and (24) yield the same results as governed by equivalent
Equation (29). Thus, the relaxation function n(t) can be derived with the help either of
Equations (23) or (24). Without loss of generality we take Equation (23) with the character-
istic function Ψ̂(s) presented in Section 3 to describe the evolution of n(t).

To derive n(t) for any among the non-Debye relaxation models listed in Section 3 we
will use the formula

L −1[sαγ−β e−usα
; t] =

Γ(γ) tβ

α uγ
gγ

α,β(u, t) (33)

obtained from [47] (Equations (5) and (6)) with the help of the second formula in Equation (A4).
The function gγ

α,β(u, t) is connected to its one variable version gγ
α,β(x) through Equation (A5).

Equation (33) generalizes the known formula L −1[sα−1 e−usα
; t] = tgα(u, t)/(αu) appearing

for the one-parameter Mittag-Leffer function [39,40,48]. Indeed, Equation (33) reduces to it
for γ = β = 1. Having all this at hands we are ready to find relaxation functions looked for.
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(i) For the CC model, for which Ψ̂CC(s) is given by Equation (14) multiplied by B,
we have

nCC(t) =
∫ ∞

0
e−Bu L −1[Bταsα−1 e−uBταsα

; t]du

=
∫ ∞

0
e−τ−αξ L −1[sα−1 e−ξsα

; t]dξ,
(34)

where we set uBτα = ξ. We say that L −1[sα−1 e−ξsα
; t] subordinates the Debye case. Using

Equation (33) for γ = β = 1 we get Equation (A1) with a = τ−α and p = t and

nCC(t) = Eα[−(t/τ)α], (35)

which is well-known relaxation function of the CC model [18,21,29,30]. Asymptotics of
nCC(t) for t being smaller or larger than τ can be obtained from the first terms of the series
representations given in Refs. [18,29,30]. The results read

nA;CC(t) ∼ 1− (t/τ)α

Γ(1 + α)
, t� τ, and nA;CC(t) ∼

(t/τ)−α

Γ(1− α)
, t� τ. (36)

The short time asymptotics given by the first equation in Equation (36) constitutes also
the first two terms of the stretched exponential exp[−tα/Γ(1 + α)]. Such approximation
was proposed in Ref. [49] and it offers good results for low values of α at sufficiently
short times.

The evolution equations derived from Equation (29) read

nCC(t) = 1− τ−1(IαnCC)(t) and (cDαnCC)(t) = −ταnCC(t), (37)

where the symbol (I1−α d
dx f )(x) denotes the fractional integral defined in Appendix E

for α ∈ (0, 1) while cDα is the fractional (Caputo) derivative operator. Equations (37) are
equivalent to [50] (Equation (3.7.43)) and [18] (Equation (3.10)), respectively.

(ii) Our next example is the HN relaxation function. We begin with the subordi-
nation approach which involves the Debye relaxation and L −1{Ψ̂(s) exp[−ξΨ̂(s)]/s; t}.
Substituting Equation (16) multiplied by B into Equation (23) we get

nHN(t) = B
∫ ∞

0
L −1{Bs−1[ταβ(τ−α + sα)β − 1] e−ξBταβ(τ−α+sα)β

; t}dξ, (38)

where nD(ξ) is cancelled by exp(−Bξ) coming from Ψ̂HN(s). Next, we apply once more the
Efross theorem to the inverse Laplace transform in Equation (38), this time with Ĝ(s) = s−1

and q̂(s) = τ−α + sα put in. Thus, we can express Equation (38) as

nHN(t) = B
∫ ∞

0

{∫ ∞

0
L −1[(ταβsβ − 1) e−ξBταβsβ

; u] e−uτ−α
L −1[s−1 e−usα

; t]du
}

dξ

= B
∫ ∞

0
L −1

[
(ταβsβ − 1)

∫ ∞

0
e−ξBταβsβ

dξ; u
]
L −1[s−1 e−u(τ−α+sα); t]du

=
∫ ∞

0
e−uτ−α

L −1[s−β(sβ − τ−αβ); u]L −1[s−1 e−usα
; t]du.

(39)

Because of L −1[s−β(sβ − τ−αβ); u] = δ(u) − τ−αβuβ−1/Γ(β) we rewrite
Equation (39) as

nHN(t) = 1− τ−αβ
∫ ∞

0
e−τ−αu uβ−1

Γ(β)
L −1[s−1 e−usα

; t]du (40)

= 1− (t/τ)αβ
∫ ∞

0
e−τ−αu t

αu
gβ

α,1+αβ(u, t)du. (41)
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From Equation (33) it comes out that L −1[s−1 e−usα
; t] = Γ(β)t1+αβ/(αuβ)gβ

α,1+αβ(u, t).
Then, with the help of Equation (A4), we get

nHN(t) = 1− (t/τ)αβEβ
α,1+αβ[−(t/τ)α], (42)

which is usually obtained by employing φ̂HN(iω), Equations (A6) and (1) as it is presented
in [18,29,30,51]. Notice that, due to ([18] Equation (3.13)) we have

e−τ−αu uβ−1

Γ(β)
= ταβL −1[(1 + sτα)−β; t], (43)

proportional to the spectral function of CD model which now generates the parent process.
Hence, looking on Equations (40) and (43) we can say that the CD relaxation together with
L −1[s−1 exp(−usα); t] are the constituents of the integral decomposition of 1− nHN(t).
From [18,29,30] we know that the short and long time power-law asymptotics of nHN(t)
are equal to

nA;HN(t) ∼ 1− (t/τ)αβ

Γ(1 + αβ)
, t� τ, and nA;HN(t) ∼

β (t/τ)−α

Γ(1− α)
, t� τ. (44)

The evolution equation is equal to ([18] Equations (3.40) and (3.50))

C(Dα + τ−α)βnHN(t) = −ταβ, (45)

where the pseudo-operator C(Dα + τ−α)β is defined in Appendix E.
(iii) Equation (23) for the JWS model gives

nJWS(t) = B
∫ ∞

0
L −1

[ sαβ−1

(sα + τ−α)β − sαβ
e
−ξB (sα+τ−α)β

(sα+τ−α)β−sαβ ; t
]

dξ, (46)

which after using once again the Efross theorem where Ĝ(s) = sαβ−1 and q̂(s) = sα + τ−α

can be represented as

nJWS(t) = B
∫ ∞

0

{∫ ∞

0
L −1

[ 1
sβ − (s− τ−α)β

e
−ξB sβ

sβ−(s−τ−α)β ; u
]

×L −1[sαβ−1 e−u(τ−α+sα); t]du
}

dξ.

(47)

Calculating the integral over ξ (as it was done in the example (ii)) we can simplify the
first inverse Laplace transform. It enables us to write down the above equation in the form

nJWS(t) =
∫ ∞

0
L −1[s−β; u] e−uτ−α

L −1[sαβ−1 e−usα
; t]du

=
∫ ∞

0
e−uτ−α

uβ−1/Γ(β)L −1[sαβ−1 e−usα
; t]du

=
∫ ∞

0
e−τ−α t

αu
gβ

α,1(t, u) = Eβ
α,1[−(t/τ)α].

(48)

To show that L −1[sαβ−1 e−usα
; t] = Γ(β)t/(αuβ)gβ

α,1(u, t) we employ Equation (33).
Next, using Equation (43) we express nJWS(t) as

nJWS(t) =
∫ ∞

0
L −1[(τ−α + sα)−β; u]L −1[sαβ−1 e−usα

; t]du, (49)

which means that to obtain the relaxation function of the JWS model we can use two kinds
of subordination approaches. Using the different subordinators we can subordinate the
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Debye or CD process. Thus, the processes which lead to the JWS relaxation model can be
obtained using various approaches. The asymptotic behavior of nJWS(t) can be given by

nA;JWS(t) ∼ 1− β (t/τ)α

Γ(1 + α)
, t� τ, and nA;JWS(t) ∼

β (t/τ)−αβ

Γ(1− αβ)
, t� τ. (50)

Its evolution equation reads

(Dα + τ−α)βnJWS(t) =
tαβ

Γ(1− αβ)
. (51)

Appendix E contains the definition of the pseudo-operator (Dα + τ−α)β. Equation (51)
has been discussed in [52] (Equation (4.3)) and justified by the so-called under- and over-
shooting subordination technique applied for the anomalous diffusion.

Analyzing the above examples we see that the integral decomposition Equation (22)
can be interpreted as an alternative form of Equation (1) obtained from Equation (5) by
employing Equation (11). It provides us also a missing long-time asymptotics of the KWW
relaxation model Equation (2). The relevant asymptotic behavior for short and long times is

nKWW(t) ∼ 1− (t/τ)α, t� τ, and nKWW(t) ∼ exp[−(t/τ)α], t� τ, (52)

obtained in Refs. [29,30] .
Looking at the asymptotics of CC and JWS relaxation functions we see that for short

times they have similar power-law behavior as nKWW(t), albeit they differ by a constant.
The HN relaxation function differs more significantly, the exponential involves two param-
eters and to bring the asymptotics to agreement we have to put in restrictive condition
αHN βHN = αKWW . An analogous, but reverse situation we met when wanting to create
agreement between the asymptotics for large t. This leads to the conclusion that going
beyond the short time asymptotics one has to be careful with choosing one of the Mittag–
Leffler functions as an object suitable to replace the KWW function. In order to make the
proper choice it is necessary to have information concerning the middle and long-time
behavior of the relaxation function.

6. Conclusions

It is known that the KWW function does not describe properly many relaxation
phenomena. It is much better (and still friendly in practice) is to use the CC model.
However, this model also breaks down in many physically interesting cases: this was the
reason of introducing the HN and JWS models as phenomenological schemes fit the data
in the frequency domain. If transformed to the time domain, both these models lead to the
time decay laws given in terms of multiparameter Mittag–Leffler functions, until recently
unfamiliar to the physicists’ community. Simultaneously information on the time decay
of dielectric polarization is often much more needed for practical applications than data
obtained in the spectroscopy experiments. The latter are more precise and cover larger
range of the frequency involving 10 or even more orders of magnitude but they are not
easy to be translated to the time domain. A fear of using scary looking special functions
of the Mittag–Leffler family effectively discourages a vast majority of physicists, firt of all
the experimentalists. As the consequences it causes that they consider fitting the data by
the stretched exponential function not as a routine coming from the long-time habit but
as a method which is the only doable procedure. We consider this situation perplexing
and propose to give up this long-time habit. Having in mind that functions describing
the relaxation phenomena are rather unknown, we propose to begin with analysis of
the characteristic exponents expressed in terms of easily calculable functions. Properties
of these functions illustrate the problems we face when comparing various theoretical
schemes used in the relaxation theory, in particular the problem of choosing the most
suitable relaxation pattern. As a benchmark for comparing different relaxation patterns, we
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took the stretched exponential and collated it, one by one, with well established models: CC,
HN, and JWS. These models are significantly different and overlap only in the asymptotic
regime of large s, i.e., at short times. Nevertheless we do not consider this result valueless—
it only gives a warning that there is a need for additional information, e.g., the higher order
short time asymptotics of relaxation functions or their long-time behavior. Tools to be used
in order to push forward as such investigations are collected and listed in the Section 5.
Thus our main conclusion is that both theoretical studies, as well as the time domain
measurements of polarization decays, should go beyond the stretched exponential fit and
should use more extensively the results obtained by spectroscopy methods translated to
the time domain. Here, we would like to emphasize that Mittag–Leffler functions are well
manageable with standard computer algebra packages, such as Mathematica, Matlab and
Maple, and it is not a significant problem to familiarize oneself with them.
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Abbreviations
The following abbreviations are used in this manuscript:

KWW Kohlrausch–Williams–Watts relaxation
CC Cole–Cole relaxation
CD Cole–Davidson relaxation
HN Havriliak–Negami relaxation
JWS Jurlewicz–Weron–Stanislavsky relaxation
CMF Completely monotone function
SF Stieltjes function
CBF Completely Bernstein function

Appendix A. The Stretched Exponential and Mittag–Leffler Functions

The Lévy stable distributions take a distinguished place in our considerations (We
shall exploit extensively the new class of Lévy distributions for rational α < 1 which exact
and explicit forms was found in [53]) because they enter the integral representations of
basic functions used to describe non-Debye relaxations, namely the stretched exponential
exp(−apα) [54] and the one-parameter Mittag–Leffler function Eα(−apα) [21,48], both with
a > 0 and α ∈ (0, 1]. Introducing for x, y > 0 modified functions gα(x, y) = x−1/αgα(y x−1/α)
we rewrite the standard Pollard definitions [48,54] as

e−apα
=
∫ ∞

0
e−up gα(a, u)du and Eα(−apα) =

∫ ∞

0
e−ua p

αu
gα(u, p)du. (A1)

Equation (A1) have the form of the Laplace integrals but the variable u enters them in differ-
ent ways: either through gα(a, u) = a−1/αgα(ua−1/α) or through gα(u, p) = u−1/αgα(pu−1/α).
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Worth to note is also the different shape of differential relations for the stretched exponential
and the one-parameter Mittag–Leffler function

d
dp

e−apα
= −aαpα−1 e−apα

and cDα
pEα(−apα) = −aEα(−apα). (A2)

The first equality above is a differential relation which introduces the so-called Weibull
distribution αpα−1 exp(−apα) [55] while in the second equality we deal with an integro-
differential relation of the eigenequation form in which the operator cDα

p denotes the
Caputo fractional derivative, see Appendix E. The one-parameter Mittag–Leffler function

Eα(−x) = 1− x
Γ(1 + α)

+
x2

Γ(1 + 2α)
+ . . . = ∑

r≥0

(−x)r

Γ(1 + αr)
(A3)

constitutes a generalization of exponential function as its series expansion differs from the
usual exponential function series only by a parameter α present in the argument of the Γ
function in denominators. Moreover, the α parameter indicates that the eigenequation in
Equation (A2) is a generalization of the differential equation for the exponential function
obtained when we put α = 1 in any of the equations Equation (A2).

The one-parameter Mittag–Leffler function provides us with the representative of
a class of functions which generalize the exponential function and are met in studies of
anomalous kinetic phenomena. Another often used function belonging to this class is the
three-parameter Mittag–Leffler function Eγ

α,β(x) whose series form is

Eγ
α,β(−x) = 1− γx

Γ(β + α)
+

γ(γ + 1)x2

2Γ(β + 2α)
− . . . =

1
Γ(γ) ∑

r≥0

Γ(γ + r)(−x)r

r!Γ(β + αr)
, α, β, γ > 0

while its integral representation reads

Eγ
α,β(−apα) =

∫ ∞

0
e−ua p

αu
gγ

α,β(u, p)du, gγ
α,β(u, p) = u−1/αgγ

α,β(pu−1/α), (A4)

with a generalization of the one-sided Lévy stable distribution gα(u, p), denoted by gγ
α,β(u, p),

being used [27]. For rational α = l/k ∈ (0, 1) the function gγ
α,β(u, p) can be expressed through

the Meijer G function (see [27] (Corollary 3) and Appendix C)

gγ
α,β(x) =

1
Γ(γ)

l1−β

k1−γ

√
lk

(2π)(k−l)/2
1
x

Gk,0
l,k

( ll

kkxl

∣∣∣ ∆(l, β)

∆(k, γ)

)
. (A5)

For α = l/k and β = γ = 1 Equation (A5) reduces to the one-sided Lévy stable
distribution g1

l/k,1(x) = gl/k(x) so we can say that the three-parameter Mittag–Leffler
function turns into the one-parameter Mittag–Leffler function for α ∈ (0, 1) and β = γ = 1.
For α, β ∈ (0, 1) and γ = 1 the three-parameter Mittag–Leffler function boils down to the
two-parameter Mittag–Leffler function called the Wiman function [56]. One of the most
useful properties of the three-parameter Mittag–Leffler function multiplied by a monomial
xβ−1, in the literature called the Prabhakar function, is that its Laplace transform takes the
form of simple rational function

L [xβ−1Eγ
α,β(−axα); s] =

sαγ−β

(a + sα)γ
. (A6)

Appendix B. The Completely Monotone and Completely Bernstein Functions

The Bernstein functions (BFs) are non-negative functions on R+, differentiable there in-
finitely many times and satisfying for s ∈ R+ and n ∈ N0 the conditions (−1)nh(n+1)(s) ≥ 0
everywhere in their domain.
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The function ĥ(s), s ∈ R+, is a completely Bernstein function (CBF) if it is BF and
ĥ(s) and s/ĥ(s) have the representation given by the Stieltjes transform [25]. Alternative
criterion says that ĥ(s) is CBF if s/ĥ(s) is CBF [25].

The completely monotone functions (CMF) Ĥ(s) are non-negative function of a non-
negative argument whose all derivatives exist and alternate on R+, i.e.,

(−1)n F̂(n)(s) ≥ 0, n = 0, 1, . . .

The Bernstein theorem uniquely and mutually connects CMF with the non-negative
function F(t) defined on R+ by the Laplace transform:

Ĥ(s) =
∫ ∞

0
e−st F(t)dt,

where Ĥ(s) is CMF [3,57,58].
We can say that f the Stieltjes function (SF) if, and only if, 1/ f is a CBF [25].

Appendix C. The Fox H, Meijer G, and Generalized Hypergeometric Functions

The Fox H function is defined by a Mellin–Barnes contour integral, see Ref. [33]:

Hm,n
p,q

(
z
∣∣∣ [ap, Ap]

[bq, Bq]

)
=

1
2πi

∫
LH

∏m
j=1 Γ(bj + Bjs) ∏n

j=1 Γ(1− aj − Ajs)

∏
p
j=n+1 Γ(aj + Ajs) ∏

q
j=m+1 Γ(1− bj − Bjs)

z−s ds, (A7)

where empty products are taken to be equal to one. In Equation (A7) the parameters are
subject of conditions

z 6= 0, 0 ≤ m ≤ q, 0 ≤ n ≤ p;

Aj > 0, aj ∈ C, j = 1, . . . , p; Bj > 0, bj ∈ C, j = 1, . . . , q;

[ap, Ap] = (a1, A1), · · · (ap, Ap); [bq, Bq] = (b1, B1), · · · (bq, Bq).

(A8)

For Aj = Bj = 1 the Fox H functions reduces to the Meijer G function:

Gm,n
p,q

(
z
∣∣∣ (ap)

(bq)

)
=

1
2πi

∫
LG

∏m
j=1 Γ(bj + s) ∏n

j=1 Γ(1− aj − s)

∏
p
j=n+1 Γ(aj + s) ∏

q
j=m+1 Γ(1− bj − s)

z−s ds, (A9)

where conditions listed in Equation (A8) become conditions for [ap, 1] = (ap) = a1, · · · , ap and
[bq, 1] = (bq) = b1, · · · , bq. For a full description of the integration contours LH and LG and
its properties, as well as special cases for the H and G functions, see [33] (Sections 8.2 and 8.3).

The generalized hypergeometric function pFq is defined as follows

pFq

(
a1, · · · , ap

b1, · · · , bq
; z
)
= ∑

r≥0

zr

r!

∏
p
j=1(aj)r

∏
q
j=1(bj)r

, (A10)

where (a)r is the Pochhammer symbol (rising factorial) equals to Γ(a + r)/Γ(a) =
a(a + 1) · · · (a + r− 1).

Appendix D. Relation between the Infinitely Divisible Distribution and the
Bernstein-Class Functions

The relation between the CBF and infinitely divisible function is expressed by [25]
(Lemma 9.2). It says that the measure g on [0, ∞) is infinitely divisible if L[g; λ] =
exp[− f (λ)] where f is CBF.
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Appendix E. Fractional Integrals and Derivatives

The fractional integral (Iα f )(x) for α ∈ (0, 1) equals to

(Iα f )(x) def
=
∫ x

0
f (σ)(x− σ)α−1 dσ/Γ(α)

and fractional derivative in the Caputo sense (cDα f )(x), also with α ∈ (0, 1), coincides
with (I1−α d

dx f )(x). Explicitly for α ∈ (0, 1) it reads

(cDα f )(x) def
=[Γ(1− α)]−1

∫ x

0
(x− y)−α f ′(y) dy

If α = 1 reduces to the ordinary derivative: limα→1−(cDα f )(x) = f ′(x) [59].
The pseudo-operators on the left hand side of Equations (37) and (45) belong to the

class of Prabhakar-like integral operators which for the considered case are described
in [18] (Appendix B)

C(Dα + a)β f (x) def
=
∫ x

0
(x− σ)−αβE−β

α,1−αβ[−a(x− σ)α] f ′(σ)dσ

and
(Dα + a)β f (x) def

=
d

dσ

∫ x

0
(x− σ)−αβE−β

α,1−αβ[−a(x− σ)α] f (σ)dσ.

Equations (45) and (51) which should be completed with a suitable initial condition.
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