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Abstract: This research paper intends to investigate some qualitative analysis for a nonlinear
Langevin integro-fractional differential equation. We investigate the sufficient conditions for the
existence and uniqueness of solutions for the proposed problem using Banach’s and Krasnoselskii’s
fixed point theorems. Furthermore, we discuss different types of stability results in the frame of
Ulam-Hyers by using a mathematical analysis approach. The obtained results are illustrated by
presenting a numerical example.

Keywords: ¢-ABC fractional derivative; initial conditions; existence and UH stability; fixed point
theorem

1. Introduction

Due to its relevance in simulating numerous complicated events in various and
widespread disciplines of science and engineering, fractional calculus (FC) and its applica-
tions have grown in importance over the last several decades. Some researchers noticed the
need to develop the idea of fractional calculus by constructing new fractional derivatives
(FD) with separate singular or nonsingular kernels to satisfy the requirement to simulate di-
verse real-life situations in science and engineering [1-8]. In the exponential kernel, Caputo
and Fabrizio in [9] introduced a new type of FD. Atangana and Baleanu investigated new
type and interesting FD with Mittag—Leffler kernels in [10]. In [11], Abdeljawad expanded
the Atangana and Baleanu FD types to higher arbitrary orders and created the integral
operators that accompany them.

Brownian motion is the erratic motion described by some particles found in a fluid
medium. One of the first reported scientific observations of this phenomenon was made
in 1785 by the Dutch physicist Jan Ingenhousz who was investigating small particles of
pulverized carbon on an alcohol surface. However, the discovery of Brownian movement
is generally attributed to the Scottish botanist Robert Brown. Hence, the phenomenon
has inherited its name from it. In 1827, Brown [12] observed under the microscope the
zigzagging movement on the water of small particles derived from pollen grains. In order
to verify that it was not a phenomenon restricted to particles from organic materials, he
performed several systematic experiments with inorganic materials and concluded that the
motion of the particles was not characteristic of living matter. In 1877, Delsaux was the
first to explain Brownian phenomenon of motion, arguing that it was a consequence of the
incessant collisions of fluid molecules. However, one of the first accurate investigations
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of Brownian motion was carried out by Leon Gouy in 1888. In this investigation, Gouy
showed that motion was an intrinsic property of the fluid. Gouy also discovered that the
movement of the particle was accentuated as the size of the particle decreased and also
when the viscosity of the fluid decreased. These characteristics had their origin in the
thermal movements of the molecules of the fluid [13].

Paul Langevin [14], a brilliant French physicist in the early twentieth century, pro-
posed the nonlinear Langevin equation (NLE). This scientist created a thorough and
accurate description of Brownian motion using the Langevin equation. The Langevin
differential equation was used to explain physical processes in oscillating domains. An-
alyzing the stock market [15], modelling evacuation processes [16], studying fluid sus-
pensions [17], self-organization in complex systems [18], photo-electron counting [19] and
protein dynamics [20] are just a few of the applications of this equation.

The fractional nonlinear Langevin equation is a model of the generalized Langevin
equation that is also an interesting topic. There are many researchers who studied general-
ized nonlinear Langevin equation under fractional derivatives (see [21-29]). For instance,
Eab and Lim in [23] studied an application of fractional generalized nonlinear Langevin
equation. The advantage of the operator Atangana—-Baleanu—Caputo fractional derivative
used in this study is the freedom of choice in the suitable classical differentiation opera-
tor and the suitable function ¢ for modeling some real-world problems such as various
infectious diseases including Ebola virus, dynamics of smoking, Leptospirosis, etc., in a
more comprehensive manner (see [30,31]). In this paper, to develop the model of single-file
diffusion, we will use a fractional generalised nonlinear Langevin equation with an exter-
nal force under the AB fractional derivative. It has been demonstrated that the solution
for a fractional generalised Langevin equation presents the correct short and long time
behaviour for the mean square displacement of single-file diffusion for an external force
that changes with power-law if an appropriate choice is made of parameters of fractional
generalised Langevin equation. Recently, Baleanu et al. in [32] studied the existence and
uniqueness of solution for the following nonlinear fractional Langevin equation:

{ MEDT(MEDT + M) (o) = (0, u(0)), o € (0,1),
#(0) = a, 1 (0) = a2,

where MLD” ML D1 are the Mittag—Leffler fractional derivatives of order r and g, respec-
tively, such thatr,q € (0,1].

Motivated by the aforesaid arguments, in this paper, we consider a more general
nonlinear fractional integrodifferential Langevin equation with the ¢-Atangana-Baleanu-
Caputo fractional derivative of the following type:

ABCDP (ABCDO? + A\ (o) = g(o, u(o) AP Igf’y(a)),a € (0,b), 1)
#(0) = a1, 4 (0) = az,

where 4BCDP# and 4B¢D? are the ¢-Atangana-Baleanu-Caputo fractional derivatives of
order p and o, respectively, such that p, 0 € (0,1], ABIS;‘P is ¢p—Atangana-Baleanu-fractional
integral of order p, ¢ is an increasing function having a continuous derivative ¢’ on
(0,b) such that ¢'(c) # 0, forall ¢ € (0,b) and g : U x R x R — R is continuous and
differentiable function such that ¢(0, #(0),4? Igf);t(O)) =0and g(’P(O, 1(0),4B Igij(O)) =0.
In fractional nonlinear Langevin Equation (1), y(c) is the particle position, function g is the
force acting on the particle from molecules of the fluid encircling the fractional Brownian
particle, A is a damping or viscosity term and a; and a; are the initial positions. To the best
of our knowledge, this is the first work considering fractional-order Langevin equations
under AB fractional derivative concerning another function ¢.

The target of this paper is to extend the previous work studied by [32] under a new
fractional operator with respect to another function. We will combine the definition of the
Atangana-Baleanu derivative and an increasing function. In order to prove the existence,
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uniqueness and UH stability results, we introduce some auxiliary conditions in order to
apply a fixed point theorem due to Banach-type and Krasnoselskii-type.

The proposed problem (1) for different values of a function ¢ includes the study of
problems involving the results in [32] and many other results that are not studied yet.

The following is a breakdown of the structure of the paper. We provide notations and
some preliminary facts in Section 2 that will be used throughout the study. The existence
and uniqueness results for the problem (1) are discussed in Section 3. Section 4 discusses
the stability analysis in the context of UH. Section 5 provides an example to demonstrate
the validity of our findings. Some concluding remarks on our findings are provided in
Section 6.

2. Auxiliary Results

Let U = [0,b] C Rand & = C(U, R) be the space of continuous functions y : U—R
with the norm ||| = max{|u(c)| : ¢ € U}. Then, (X, ||-||) is a Banach space.

Definition 1 ([2]). Let p > 0, f € L1(]). Then, the ¢-RL fractional integral and ¢-RL fractional
derivatives of f of order p are defined by the following:

o o -1
gt = [0 PO IO oy

and the following, respectively.

D) = (i) (@),

There is an important model of fractional calculus in the kernel of Mittag-Leffler (ML)
functions, namely the Atangana—Baleanu [10].

Definition 2. Let 0 < p < 1and u € H'(U). Then, the left-sided ABC fractional derivatives of
order p for a function y with respect to another function ¢ (o) is defined by the following:

ABCP _B(p) & —p ' -mp-1H (o)
Do (@) = 1—P,1Z()<1—P> Po" o)

where B(p) is the normalization function such that the following is the case. B(0) = B(1) = 1.

Definition 3. Let 0 < p < land u € H'(U). Then, the correspondent AB fractional integral
of ABC fractional derivatives of order p for a function y with respect to another function ¢(o) is
defined by the following.

ABppo oy 1P P Rhpg
I()+ ;LI(O') - %(P)]’l(o-) + %(p) IO+ ‘M(O')

Lemma 1 ([33]). Let 0 < p < land y € HY (D). If $-ABC fractional derivative exists, then

we have the following.
APIP AP (o) = (o) — p(a).

Lemma 2 ([11]). Let u(c) be a function defined on G and n < p < n+ 1. Then, for some n € Ny,
we have the following:

AB
(PDpPI) ) (0) = (o),
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and the following is the case.

no4@ ) .
(4P2D7 1) (0) = (o) — 3 Ve
i=0 :

Theorem 1 ([34]). Let K be a closed subspace from a Banach space X and G be a strict contraction
defined as G : K — K, i.e., |G(x) — G(y)|| < L||x —y|| for some 0 < L < 1andall x,y € K.
Then, G has a fixed point in K.

Theorem 2 ([35]). Let K be a nonempty, closed convex and bounded subset of Banach space X and
®1, 2 be two operators. If the following is the case:

(1) D'y + %0 € Xforall p,v € X;

(2) ®' is compact and continuous;

(3) @ is a contraction mapping;

then there exists a function z € K such that z = ®'z + ®?z.

Lemma 3. Let p,o € (0,1] and h € X with h(0) = 0, hy(0) = 0. Then, the following ¢-ABC-
problem

ABCD(’;ﬁ/> (ABCDY® + A)u(o) = h(o), )
u(0) = a1, g (0) = az,

is equivalent to the following equation:

)
(@)% ! h( ®)

where

G ) _l-e o _ @ _
Ql_W)%(p)/QZ_ /Q3_ /Q4_

and the following is the case.

S(o) = ()\ + A,If%)();; +ap (Q((P(FU()Q;(I;()O))Q 1l Q> N ﬁ(m —Nil%%g)) ’

1-0
M = 14+A—n0r.
B(0)

Proof. Assume that y is the solution to first equation of (2). Applying the operator A51/"%
on both sides of Equation (2). Then, by Definition 3 and Lemma 2, we have the following:

ABCDGt () = ;(P’;h(w + 93’(’1,)“15;%@ —Ape) +ar, )
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where ¢ ia an arbitrary constant. Next, we apply again the operator ABI(Q)"f on both sides of
Equation (4). Then, by Definition 3, we have the following.

o) = %?5)(1?5}1( )" =20 LIW( )= Au(e) )
+ 557 1@4’(%711(0) o 1) - /\y((f)+cl)+c2
( 1—

©
_ (1-9(-p) (1-o)p REipg
= spsp M)t sgee ) )
1—0) 1
~ ) P‘(‘T”%u 1
o(1-p) 12%1 opRL ) A
+3 <e>§g<p> o)+ st Lo o)

RL.o,
_WQQ) +F/‘( )+ 5 (Q) Igfcl‘i‘cz

Now, by conditions 1(0) = a1, h(0) = 0 and y4,(0) = a2, hy(0) = 0, we obtain the
following.

_ Q
g = (/\-0-%(9))0114—612,

c ! (u 02 >
2 = S\ Cny )
M B(e)
Substituting the values of ¢; and ¢ in Equation (5), we obtain Equation (3). O

3. Existence and Uniqueness of Solutions
In order to obtain our results, the following hypotheses must be satisfied.

Hypothesis 1 (H1). There exists a non-negative constant £ > 0 such that for any u, fi, 0,0 € RT,
we have the following.

8o, u(e), 0(0)) = g(o, 1i(e), 0(0))| < £(|p = | + [0 = 7))

Hypothesis 2 (H2). The function g : O x R x R — Riis a continuous and differentiable function
such that the following is the case:

g0, 1(0) PR u(0)| < (o) + Yo (0) (o),
where jg, Yg € X are nonnegative functions, and 11y = maxycgs|17g (o) | and Y = maxgeis|Yg(0)|.

In order to simplify our analysis, we set the following notation:

G — [IQ1|£<1+{ - 4 ((Iljz $(0)) D(¢(bzg—+¢l(0))g

7B () )
b _p (6)=9(0)"]) (#() ~ $(0))
*'QZ’3<”{ Bp) T B() Tt D Myt 1)
p o p (pb)—p(0)F T (¢(b) — $(0)*"F
*'Q”:(”{ (RS ORECES) D (QrptD)
<<> 40
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and the following is the case:

_ p
G = |Q1|wg—( (Ib%Q i()))) +|Q2|wg(¢(§zpf§())))
+
Q5w g(4’(b) $(0))° p+sup|8(0)| ,

Fle+tp+1) oep
where wg = maxge 7|g(c,0,0)|.

Theorem 3. Assume that (H1) holds. Then, ¢-ABC problem (1) has a unique solution provided
that G < 1.

Proof. By Lemma 3, we define the operator = : X — A’ by the following.

Define a closed ball IT; as the following:
s = {peX:|ul <d},

with radius 6 > E—lg Now, we divide the proof into two steps as follows.
Step (1): We will show that EITs C I1;. By (H1), we have the following.

$(o,1(0) AP 1 ()]

< [sto,m(@) P12 u(@)) - 5(0,0,0)[ + [5(0,0,0)]
< e[l@)] + AP ()] + g
< o(o)+ [ 5 + g EO—EO (o)) +

B(p) T(p+1)
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Now, for all i € Il; and o € U, we have the following.

(@) < suP{|Ql IR

el

\g(9,ﬂ(9)/*3 Igi”y(e))’de

o - -1
el [ g0/ B0 |u(9)|d9+5(0)|}

IA
Ie)
>
Q

1-p  p (o)~ 9(0)
[S(H[‘B p) "B T+ P)Hug]
_ 0
+10ufo KT+ supis (o)
1= p  p (o)~ p(0)' ]\ (9(0) — 9(0))"
< ['Ql":(”[%wﬁ%(m NCESY D gt 1)
1-p  p (o)~ 9(0)' ]\ (9(0) — 9(0))"
*'QZ’:(l*{%(m*%(m Fp+1) D NEESY
1—p . p (9(@)—¢0)P1\ (¢(o) — $(0)**F
*"33’3(”{%(;0)%(;9) NCESY ]) Mot prD)
_ Q
Lo (4;(;2“4,1(?)) ]5
(9(0) - 9(0)) (6(0) — 9(0))"
*['Ql"”g Moty ks
_ o+p
103l AP sl (o)
< Gé+ G <4

Thus, EIy C IT;.
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Step (2): We will show that & is a contraction mapping. Let y, % € Il; and 0 € .
Then, the following is the case.

(@ x> (27) ()|

< Qe >@im;—{< <mﬂhp <» 2(6,1(0), "B 15 1(6)) | do
+Qa Ji ¢'(0) LTIV o0, 4(0) 4P 12 (0)) — (60, (60),4 T 7(6))|do
+Qf¢wﬁﬁmﬁﬁiamwwhﬂm» $(6,7(6) P 124 (6)) | do
+Qu Ji ¢'(6) PO (0) — 7(0)] do.

From (H1), we obtain the following.

\gﬂﬂ)A“ﬂu(D—ﬂ@ﬂ)Ahﬂ#(w

< e[|p(0) — w(O)| +4T 1P |u(6) - %m@

P (o) -p(0)) ©®)
< Llp- P‘||+[ (p)JF%(p) (p+1) }”P‘ al

)
< (14 [l + oy L)) e - il

Hence, the following is the case.

|Ep —Efi]| = sup|Ep(c) — Eji(0)|
ceJ
< Gllu—Hul.

Due to G < 1, we conclude that & is a contraction operator. Hence, Theorem 1 implies
that = has a unique fixed point. [

Theorem 4. Assume that (H1)—(H2) hold. Then, the ¢p-ABC problem (1) has at least one solution
provided that the following is the case:

(¢(b) — 9(6))" (p(b) = 9(0)*"7 -
<|Q2| (p_|_1) |Q | (Q+P+1) >Yg <1, (7)
and the following is obtained.
¢Q

(Q+1)

Proof. Let us consider the operator = defined in Theorem 3 such that the following is the
case:

(Ep)(0) = (Bap) () + (Eap)(0),

where

and
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Define a closed ball IT, by I, = {p € X : ||u|| < r}, withr > %, where the following

is the case. e
L = maxees|S(o >|+<\Qd+|@ﬂ>%ng o

(¢(0)—¢(0))" $b)—p(0)° P«

+(1Qa P + 105 PR )i

In order to apply Theorem 2, we will divide the proof into three steps as follows.
Stepl: Eqpu + Eop € 11, for all u, i € I1,. First, for &;. Let u € 11,0 € U. Then, we
have the following.
1Bipll = maxees|(Eap)(0)] 1
—(0))¢
< maxpeo|S(0)] +maxpeo|Qul 5 ¢’ (0) LU — (6, 1(0), AP 172 u(6)) |d6 (10)
maxpes] S (0)] + [ Qa LEED e 1 vy,

A

IN

Next, for &;. Let ji € IT,,0 € U. Then, we have the following.
|Z2p] = maxyes|(Bap) (o >\
< maxoes|Qil fy ¢ >M\g<e,u<e>ﬁ3Igi”u(e»\de
+maxyes|Qal fy /(0 ipf”\gw,u(m AB 1P (6)|do
+maxyeo|Qal 7 ¢/(0 Q—f;))]gw u(6),2 157 (6))|do
Q| CDEEON 1 | 0y QUZEON |y 2O
E”g +Yyr)

IN

From (10) and (11), we obtain the following:

=0l < IZapl+ o]
(900) = 9O)° (. .\
rEE R UR)

< max|S(U)|—|—(\Q4|+|Q1|) T
(

(¢(b) — 9(6))" ob) —p(O)* "\ (L L\
('an“Q' CETESY )WY%)

< marls (o) + (10| + ) LD =2
90) - 90 | 60~ 91" |
+<|Q2r(p+1)+|Q3| Tlo+rp+1) )Wg
+(0u] + 1) D=2 s
90) -~ 9(0)"  (#1) = 9@)" .
<|Q2<P+1)+|Q3| T(o+p+1) )Ygr

< Xi+Xor<lr,

where 21 and X, defined in (7) and (9), respectively, £, < 1. Hence, E1u + Eppi € I1,.
Step2: &, is a contraction map. Let j1, ji € IT; and o € U, then we have the following.

o _ -1
@) -~ @n@) < 1 [ oo P L0 pojas

I'(o)
<l - i,

Due to (8), we conclude that &4 is contraction.
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Step3: &, is continuous and compact. Since f is continuous, E; is continuous too.
Moreover, by the first step in Theorem 3, we conclude that =, is uniformly bounded on
ITs. Now, we show that E,(I1,) is equicontinuous. For this purpose, let 1 € I1,. Then, for
0 < 0y < 02 < b, we have the following.

IN

IN

%

‘de
‘de

|[(E2p)(02) = (Eopt) (01)]
%) _ 0-1
S A e S L DI
1% _ p—-1
+0a [ 9'(0) P OO (6, 00) 47 15 (0t
1% _ o+p-1
+0a [ 9'(0) PO, 0) 40 138 o)
1 — o1
~01 [ g0 IO, )40 15 o) o
o1 _ p-1
~0n [ g0/ PO IO, u0) 40 15 oo
7o (@(01) = p(0))%H
Qs [0/ O TR (0,10 1 ()0
Qi f3" ¢/ (6) 12 011;(91()¢<mrp(e))Q:’?(e,u(e),ABI’“"” ‘de
+|Q2\f (9) )ﬁl;(p()ﬂtﬁ)fl’(@)) Jf(le’ﬂ( ),AB Il“P
+1Qs] [y ¢/ (6) L2 =2(@) r(oj;ff"”*"’“’” (0, 1(9), AP 1) u(
Qi [ ¢/ (6) 20N \geu 0)% 177 1(6))|do
+1Qa| 2 ¢'(60) 2 r(m |6, 1), 4P 172 u(6)) |0
+|Q\f <9> WZ;”’ lgw,y(e)ABIW( )|a
M |Q1| ¢(0)r)( ()( 1)—¢(0))
ot
+M|Q, | $(0 )r(p+(1)( o1)—¢(0))”
+My| Qs | {2120 ))r( T ii‘{l)*")(o))w
0as oy, — 07. o

According to the above steps and the Arzela—Ascoli theorem, we understand that
(EI1,) is relatively compact. Consequently, E; is completely continuous. Thus, by Theo-
rem 2, we infer that the ¢-ABC problem (1) has at least one solution on U. [

4. Stability Results

Ulam’s question about the stability of group homomorphisms in 1940 [36] inspired
the problem of functional equation stability. Hyers [37] presented a positive interpretation
of the Ulam question within Banach spaces the next year, which was the first important
advance and step toward more solutions in this topic. Many studies on various generalisa-
tions of the Ulam problem and Hyers theory have been published since then. Rassias [38]
was the first to extend Hyers idea of mappings across Banach spaces in 1978. Rassias’ result
drew the attention of many mathematicians all over the world, who began looking into
the difficulties of functional equation stability. For more information about the stability of
solutions, we refer the readers to papers [39,40].
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In this regard, we discuss the stability results in the frame of Ulam-Hyers (UH)-
Rassias (HUR). First of all, we introduce the following definitions. For € > 0, we consider
the following inequality.

|AECDP# (ABCDY 12 ) fi(o) — (o fi(0) P I i(0)) | <6, o €D (12)

Definition 4. The ¢-ABC problem (1) is UH stable if there exists a real number C¢ > 0 such that
for each & > 0 and for each solution ji € X of inequality (12), there exists a unique solution p € X
of ¢-ABC problem(1) with the following.

[i(0) = u(o)] < Ce.

Moreover, the ¢-ABC problem (1) is GUH stable if there is a function ¢r : Ry — Ry with
@f(0) = 0 such that the following is the case.

(o) — u(o)| < gre.

Remark 1. A function ji € X satisfies the inequality (12) if and only if there is a function z € X
such that the following is the case:

(i) |z(0)| < eforall o € U (z depends on p);

(ii) ABCDP# (ABCDO? + A)ji(0) = (o, fi(0) AP I 1)) + 2(0), o € U.

Lemma 4. If y € X is a solution to inequality (12), then y satisfies the following inequality:

(o) = ¥u| < eAg,,0,0s

where the following is the case:

o—1
¥ = o [0 OO g0 00,4 u(0)as
_ p-1
Qs /0 0'(0) PO T, )4 138 o)t

and

_ (g, @)= (9(0) =9(0)" | 5 (P(@) —¢(0)*"
B0 = (Ql Tle+1) T I(p+1) +Qs Tlo+p+1) )

Proof. In view of Remark 1, we have the following.

ABCDF“P(ABCDQ . /\)ﬁ( ) =g(o, ﬁ(O.)IAB Igipﬁ(ﬁ)) +z(0)
1(0) = #(0 )*01/]/14,(0):%:@.
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Then, by Lemma 3, we obtain the following:

i) = w00
o . -1

- _ +p—1
+Q3/0 ¢'(0) ((P(U)F(quj_g;))g ’ z(0)d6.

which implies the following.

o _ -1
(0 #D O

(o) — ¥

IN

™

>
o
©
N
O
W

O
Theorem 5. Suppose that (Hy) holds. If G < 1, then the following equation is the case.
ABCDP (ABCDE 1)) fi(e) = g(o, i), P 1y fi(0)), (13)
Moreover, it is Ulam—Hyers stable.

Proof. Lete > 0 and ji € X be a function that satisfies inequality (12), and let p € X be
the unique solution of the following problem

APCDPA (15D + 2) (o) = g(o,1(0), A Iy (o)
#(0) = (0) = a1, (0) = (0) = .

Then, by Lemma 3, we obtain the following.

Hence, by Lemma 4 and Equation (6), we have the following.

1= il = sup|u(o) = ¥a| < sup|u(o) — ¥, | +sup| ¥, — ¥y
el el el

< &b 0,0, G llH —Hl-

Thus, the following is obtained:

[ =l < Cre,
where the following is the case.
A
0Q1,22,Q3
Cf =G

Thus, the ¢-ABC problem (13) is Ulam-Hyers stability. Now, by choosing ¢ (e) = Cre
such that ¢((0) = 0, then the ¢-ABC problem (13) is generalized Ulam-Hyers stability. [

In order to prove Hyers-Ulam—Rassias stability, we need the following hypotheses.
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(H2) There exists an increasing function ay € & and there exists R > 0 such that for
any ¢ € U of the following;:

ABIg’fzx(P(a) < Ray(0), (14)
where & = {p, 0,0+ p}.
Definition 5. Let ji € X be a function that satisfies the following equation:
|4ECDP# (AECDY 1 1) fi(0) — g(0, i(0), AP 1) fi(0)) | < emg (@), (15)

and p € X be a solution of (1). If there exists 0 < N € R and non-decreasing function ay (o) such
that the following is the case:

|fi(o) —pu(o)| < Neag(o), 0€0,e>0,
then, the ¢-ABC problem (1) is Hyers—Ulam—Rassias stable with respect to ay ().

Remark 2. A function ji € X satisfies the inequality (15) if and only if there is a function z € X
such that the following is the case:
(i) |z(0)| < eng(0) forall ¢ € U (z depends on p);

(ii) APCDPY (ABCDYY 1 ) i(0) = g(0, (o) AP ;T (0) +2(0), 0 € T,
Lemma 5. If u € X is a solution of inequality (15), then y satisfies the following inequality:

(o) —¥pu| < eR(Q1+ Q2+ Q3)ag(0),

where the following is the case.

o o -1
w0 = o [ o@D, )

a(
v, — (0 p-1
+0a [ 90/ DT EDofo, ut0) 20 (o))
7 gy (P0) — p(6)* P AB P4
Qs [/ O) TP g (0 (O i ()0
o NT 0—1
~0u [ 90O o)io + (o),
Proof. Indeed, by Remark 2 and Lemma 3, one can easily prove that the following is the
case.
(o) = ¥p| < eR(Q1 + Q2+ Qs)ay(0).
O

Theorem 6. Assume that (H1) and (H2) hold. Then, the following is the case:

ABCP (45CDO? 1\ ) o) = g(o, i) AP 15 (),

and it is HUR and generalized HUR stable.

Proof. Lete > 0 and ji € X be a function that satisfies inequality (15), and let p € X be
the unique solution of the following problem.

ABCDP (ABCDO? 4 A)u(0) = g(o, p(0), AP T p(0)
p(0) = 71(0) = a1, ug (0) = jigy = ar.
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Then, by Lemma 3, we obtain the following.

Hence, by Lemma 4 and Equation (6), we have the following.

I = il = sup|u(e) — ¥z
el
< eR(Q1+ Q2+ Q3)ap(o) + Gllu —#l|-

<sup|u(o) —¥,u| + sup)‘Yy —‘I’ﬁ‘
<6} ce0

Thus, the following is the case:

e = Hill < Neag(o),
where the following is obtained.

~ R(Q1+Q2+Q3)
N = T .

Thus, the ¢-ABC problem (13) is HUR stable as well as generalized HUR stable. [J

5. An Example
Example 1. For p € (2,3], we consider the following ¢-ABC problem.

ABCDPY (ABCDO? + A) (o) = g(o, 1(0) AB 1) (), 0 € (0,1)
u(0) = a1, (0) = a2

Here, p = ¢ = 3 € (0,1],b = 1,A = 2,4y = ap = 1,¢ = €% and the following are
obtained.

$(o, (@) 2 12u(0)) = 5 (o) + 15 (o) ).

Clearly, g(0,(0),4B Igf’y(O)) =0.Let €[0,1], u, 7 € R. Then, the following is the case.

_ . 1 _ ) _
3(0, 1) PP u(0)) — 80 7 (0) AP IIR()) | < o5 [In =TI+ 1P | — .

Therefore, hypothesis (H1) holds with £ = &. Moreover, M = 4,Q; = £&,Q = 3,Q3 =
%, Qs = g. By given data, we obtain G =~ 0.76 < 1. Then, all conditions in Theorem 3 are satisfied;
hence, the ¢p-ABC problem (1) have a unique solution. For every ¢ = max{e1, €2} > 0 and each
il € X satisfies the following.

[ABCDP (AECDY 4+ 2 ji(e) — g (0, (o), " 1y R(0)) | < e

There exists a solution y € X of the p-ABC problem (1) with the following:

[ — pall < Cre,

where the following is the case.

A
o =2000
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As a result, all of the requirements in Theorem 5 are met; hence, the ¢-ABC problem (1) is
UH stable. Finally, we consider ay(c) = ¢(c) — ¢(0) for ¢ € [0,1]. Then, ap : [0,1] — R is
continuous non-decreasing function. Hence, by Definition 3, we obtain the following:

Britag(e) = AP [p() - 9(0)]
B e ST S S
~ B Ot g Wl 4’(0)]]

_1-¢ & (o) — 9(0))°
5@ B@ ey

+
1-¢ f [p(c) — ¢(0)F]

- <¢>*9s«s> [(E+2)

I ¢+
[1-¢ & [p(1) —¢(0))
B) TR )
Ray(0), forall 2 € J,

IN

+

where R =

%?g) + %%é) [Qb(%)(gfz(?)]é} > 0, for § = {p, 0,0+ p}. Therefore, Theorem 6 becomes

applicable. Moreover, for e > 0 and a continuous function ay : J —R™, we find that the following
is satisfied:

[4BCDP# (AECDY 4+ 2)fi(e) — (0, i(0),*P I R()) | < ey (o),
Then, Equation (13) is HUR stable with the following:

I = 7l < Neag(o)

where the following is the case.

N — R(Q1+ Q2+ Q3)

-~ > 0.

6. Conclusion Remarks

In recent interest, the theory of fractional operators in the frame of Atangana—Baleanu
is novel and significant; thus, there are some researchers who studied and developed some
qualitative properties of solutions of FDEs involving such operators. We investigated
sufficient conditions of the existence and uniqueness of solutions for a nonlinear fractional
integro-differential Langevin equation involving ABC fractional derivative with respect to
an increasing function under the nonsingular kernel.

Our approach was based on a reduction in the proposed problem into the fractional
integral equation and using some standard fixed point theorems due to Banach-type and
Krasnoselskii-type. Furthermore, by using mathematical analysis techniques, we analyzed
the stability results in the Ulam-Hyers sense. An example was provided to justify the
main results.

In fact, our outcomes generalize those in [32]. Due to the wide recent investiga-
tions and applications of Mittag—Leffler power law, we believe that the acquired results
here are important for future investigations on the theory of fractional calculus and
fractional inequalities.

Author Contributions: Conceptualization, M.A.A., EG., T.B., O.B,, S.A,; Data duration, M.A.A., EG.,
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manuscript.
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