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Abstract: We explore some new variants of the Julia set by developing the escape criteria for a
function sin(z") + az + ¢, where a,¢ € C, n > 2, and z is a complex variable, utilizing four distinct
fixed point iterative methods. Furthermore, we examine the impact of parameters on the deviation
of dynamics, color, and appearance of fractals. Some of these fractals represent the stunning art on
glass, and Rangoli (made in different parts of India, especially during the festive season) which are
useful in interior decoration. Some fractals are similar to beautiful objects found in our surroundings
like flowers (to be specific Hibiscus and Catharanthus Roseus), and ants.
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1. Introduction

Due to the self-similarity, the study of fractals emerged as the most fascinating area of
research [1,2]. The investigation on fractals commenced at the beginning of the twentieth
century, when French mathematician Gaston Maurice Julia and French mathematician
and astronomer Pierre Joseph Louis Fatou studied complex dynamics and determined
the successive approximations of the complex function f(z) = z? +¢, c is a complex
number and z is a complex variable. In 1918, Julia [3,4] was successful at iterating this
function but could not sketch it. Fatou [5] was the first to study the Julia sets. This is
why its complement is often known as the Fatou set. It comprises values possessing the
characteristic that all neighboring values act in the same way under repeated iteration of the
underlying function. On the other hand, the Julia set comprises values having the property
that even an arbitrarily small perturbation may create serious changes in the sequence
of iterated functions. Consequently, the function on the Fatou set behaves in a “regular”
manner, on the other hand, the function on the Julia set behaves in a “chaotic” manner.
Later on, around 1980, a Polish-born French-American mathematician and polymath Benoit
B. Mandelbrot [1] drew the Julia set and investigated its characteristics. He gave the name
fractals to these complex graphs and noticed that, for distinct values of the parameter c,
the Julia sets possess distinctiveness in their characteristics. In addition, on interchanging
the position of z and c, he introduced a new set widely known as the Mandelbrot set
in which we investigate the connectedness of the Julia set for every value of c. On the
contrary, in the Julia set, we investigate the behavior of the iterates for every value of
z. In 1987, Lakhtakia et al. [6] extended their work by utilizing f(z) = z" +¢, n > 2,
and, in 1989, Crowe et al. [7] sketched complex graphs for z? + ¢ and introduced the
anti-Julia and anti-Mandelbrot sets to discuss their connected locus. These graphs are
termed as “tricorn” [8]. Since then, numerous generalizations of fractals have come into
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the existence via different fixed point iterative methods (for instance, Mann-iteration [9],
Ishikawa-iteration [10], S-iteration [11], Noor-iteration [12], Jungck-type iterations [13-19],
CR-iteration [20], SP-iteration [21], and so on). Fractals for transcendental complex
functions were studied in [22-28]. It is interesting to mention here that an iteration method,
also known as a method of successive approximations, permits finding a solution with a
predetermined accuracy and may be easily programmed. Consequently, it is convenient
to use in computer calculations. In addition, this reduces the time of calculation and is
self-correcting because the small errors that are committed in the calculation process of
successive approximations may be corrected later. Iteration methods have many real-life
applications. For instance, the Hybrid—Euler method [29] which is a blend of Euler’s
method [30] and the spline interpolation method (suitable for smooth functions which do
not have oscillating behavior [31]) has been utilized to predict the total number of infected
people and the number of active cases for COVID-19 propagation to describe the dynamics
of the pandemic.

In the current work, we explore some novel variants of the Julia set for the transcendental
complex function of the type sin(z") + az + ¢, n > 2, a and ¢ are complex numbers, and z
is a complex variable via utilizing four distinct celebrated fixed point iterative methods.
First, we develop the escape criteria in algorithms for this transcendental complex sine
function, and then we utilize it to sketch Julia sets. It is worth mentioning here that the
algorithms perform a significant role in sketching the fractals while, the escape limitations
are fundamental requirements for running the algorithms. Finally, we compare the sketched
complex graphics in Picard-orbit, Mann-orbit, Ishikawa-orbit, and Noor-orbit and examine
the response of stunning Julia sets for distinct variables via these distinct algorithms.

2. Preliminaries

The filled Julia set [2,3] of the polynomial p : C — C over the set of complex numbers
of degree > 2 is defined as

Fy={z € C:|p(z)[;Zy is bounded}.

Noticeably, it is a set of complex numbers for which the orbits do not converge to a
point at infinity. The Julia set of p is the boundary of Jp, thatis, Jp = dF,.

Definition 1. Let T : C — C be a complex valued self-map. For zy € C, a, 8,y € (0,1] and
k=0,1,2,...,
(i)  the Picard-iteration [32] is
zkr1 = T(zk).

Clearly, it is a one-step feedback procedure.

(ii)  the Mann-iteration [9] is
zk1 = (1 —a)zg +aT(z).

Clearly, it is a one-step feedback procedure.

(iii)  the Ishikawa-iteration [10] is

zrr1 = (I—a)ze +aT(yr),
v = (1—B)zk+BT(z).

Clearly, it is a two-step feedback procedure.
(iv) the Noor-iteration [12] is

zrr1 = (I—a)ze +aT(y),
v = (1—PB)z+BT(xx),
xx = (T=7)zx +9T(z).

Clearly, it is a three-step feedback procedure.
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Remark 1. The Noor-orbit diminishes to:

1.  Ishikawa-orbit when v = 0,
2. Mann-orbit when p =y = 0.
3. Picard-orbit whena =1, = v = 0.

Motivated by the applications of the function sine, for instance, in modeling periodic
phenomena like the velocity and position of harmonic oscillators, light and sound waves,
day length and sunlight intensity, average temperature variations throughout the year,
and so on, we utilize sine function to explore some fascinating fractals via four different
fixed point iterations. The sine function can be traced to the jya functions utilized by
Indian mathematicians and Astronomers (Aryabhatiya, Surya Siddhanta). However, jya
is a function of arcs of circles instead of angles. The modern trigonometric function of
sine is a function of an angle whose only real fixed point is zero. The more improved
version expresses the sine as an infinite series, allowing their extension to arbitrary negative,
positive, and complex numbers.

It is well known that |sin(z")| <1,V z € Cand

3n 5n
. z Z
[sin(z")] = |2" =5+ 5 =]
2n 4n
z z
= g
3n 5n
. ¥ ¥
|sin(y")] = |y”—?+ﬁ—...f
2n 4n
¥ ¥
= W=
and
3n 5n
. x x
|Sln(xn)‘ = |xn_?+?_|
2n 4n
x x
= =g
x,y,z € C. We take T(z) as Tc(z), xo = x, Yo = y and zg = z and assume that
. 2n 4n
Q) [N-F+%5F—...|>]wl,
2n An
i -4 +%5—...|>]wl,
2n 4n
(i) [1-%r+% —...| > |ws]
where |w1], |wa|, |ws| € (0,1] except the values of x,y, z for which |w;| = |wz| = |w3| = 0.

3. Escape Criteria for Complex Sine Functions

By utilizing four distinct celebrated iterations, we prove here an escape criterion for
the transcendental complex sine function of the type T(z) = sin(z") +az+c¢, a,c € C,
n>2.

1
Theorem 1. Let T.(z) = sin(z") +az+c,a,c € C,n > 2, |z| > |c| > (Z(E]l'”')) . If the
sequence {zy }xen is Picard-iteration, then |zy| — oo as k — oo.
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Proof. Let |z, 1| = |T(z¢)|- Ifk =0,

z1] = [T(z)]

= |sin(z") +az+¢|

> [sin(z")| - |az] - |¢

= |sin(z")| — |a[|z] = |z, |z| = |c],

Z  |wr[z"] = |z[(1 + |a])
|wr ||z

= [+l (S 1)

Because |sin(z")| = |z" ZS—.” + @ —...| > |w||z"|, where z € C except the values
51 p

3!
of z for which |w1| = 0 |w1| € (0,1]. Thus, we get

|21] |ewr ]|z
SN v I 1+ a] )
For k = 1, we have

jwr |27

ol 2 (9l
‘ 2| - ‘ 1| 1+|ﬂ|

‘ |(|w1HZn 1| )2
- 1+ |a

1
—1 n—1
Because |z1| > |z| (145 — 1) and |z1] > |2 > |} > (2G2H) "™, this implies

1+]a| ||
that
n—l|

|r ]2 |||z
(Bl gy s ey
=l (5 = =T

On iterating till kth term,

|Z| ( |wl||2n_l| _ 1)3

1+ |a

| ]|z 4
z > |z (7—1)
| 4| e | | 1+|a|

v

|z3]

|||z k
z > 1z (7— ) .
‘ k| = | | 1 |61|

1

Since |z| > |c| > (%)m, where |w1| € (0,1], this yields “‘('i”rz‘:)l‘ -1>1

Therefore, the orbit of z tends to infinity, that is, |z;| — co when k — co. [

1
Theorem 2. Let T,(z) = sin(z") +az+c,a,c € C,n > 2, |z| > |c| > (M) B . If the

afer
sequence {zy } ke is Mann-iteration, then |zy| — oo as k — co.

Proof. Let T,(z) = sin(z") +az + ¢, zo = z and

|zka] = [(1 = )z + aT(z)].
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Ifk=0,

21 = [(1—a)z+aT(z)]
(1 —a)z+a(sin(z") +az+c)]

> w|sin(z")| — alaz| — alc] — [(1 — a)z|

> afsin(z")| — alallz] — alz] - |z| + alz], [z] = [c],

> afwr|2"] = |zlla] = |z], « € (0,1],

= afwn[z"] = |z|(1 + |a])

afewy ||z
= |z|(1+4+|a <7— )
=11+ o) (14
Because | sin(z")| = |z" — Zgi,n + 251'” —...| = |w1||z"|, where z € C except the values

of z for which |w| = 0, |w1| € (0,1]. Thus, we get

z1] g len ]z
= |z| -1).
a 1+ |a|

If k =1, we have
afws ||z 1
|Zl|( || 1 | _1)
1+ |a

|z|(a|a1]14|r|7a| )2.

|22

n—1|

v

1
n—1 -1
Since |z1| > |z|<%ﬁ{‘| —1) and |z1| > |z| > |¢| > (%)" ', this implies that

n—l|

awr ||z 7Y afwi||z
(Ml gy g el gy
|1|( 1+ |af = |2l 1+ |a]

On iterating until the kth term,

a|ewy ||z 3
> |z (7 - )
| 3| el | | 1—|—|ﬂ|
a|ewy ||z )4
V4 Z\———— —1
a2 (T
|lze| > |z|(5‘|‘”1||2"71,| _1>k
K= 1+ |a] '

L -
Since |z| > |c| > (%) ", where |w| € (0,1], this yields % -1>1.

Therefore, the orbit of z tends to infinity, that is, |zx| — coc when k — co. [

1
n—1 . n—1
Corollary 1. Let |z,,| > max{\c\, (%) ! }, m > 0. Since % —1>1, |zpk] >
n—1
\

‘Z|(“\W1||Z

m+k
Tl ) , then |z;| — oo when k — .
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1
Theorem 3. Let Te(z) = sin(z") +az+¢,a,c € C,n > 2, |2 = [e| > (24EEL) "™ and

afer |

1
lz| > |c| > (W) " If the sequence {zy }xen is Ishikawa-iteration, then |zi| — oo as

k — oo,
Proof. Let T(z) = sin(z") +az+c, zp = zand

lykl = [(1 = B)zx + BT (z) |-

Ifk=0,
ol = 1(1=B)z0+BT(z0)]
= |(1=B)z+ Blsin(z") +az +c)|
> Bsin(z")| - Blaz| = Blel = |(1 - B)z|
> Blsin(z")| - Blallz| - Blzl — |zl + Blz], |2l = |,
> Blanllz"| = |zllal — |2I, p € (0,1],
= Blonllz"] = 211+ lal)
Blewr |z
- 'Z'(”'”')(W”)‘

Since | sin(z")| = |2" — 23— + %&r —...| > |wi||z"|, where z € C except the values of
z for which |w1| =0, |wq] € (0,1]. hus, we get

1yl Blen||z"
> = |g|(BE= T ),
|Z‘( 1+ |a] 1)

,,% n—1 n
Since |z| > (%) ", this provides that [y"| > \z|”<% — 1) > Blws||z|™.

Now, for the next step of Ishikawa-iteration, we have
|Zky1] = [(1 — &)zg + T (yx) |-
Againifk =0,

lz1] = |[1—a)z+aT(y)|
[(1—a)z+ a(sin(y") + ay + ¢)|

> afsin(y")| — alay| — ale] — [(1 — a)z]
> afsin(y")| — alally| — afz| — [z] + alz], |z] = [c],
= afws|[y"] — alylla] - |z]
> aplw||ws||z"] — aBlwn||z]|a] — |z|
= aplwr|wz|[z"] — |z[|a] = |z, &, B, w1 € (0,1],
= aplwr||wo||z"| — [z](1 +[a])
aplwi||wa|[z" |
z|(14 |a ( —1).
21+ Ja) (2Bl
Since |sin(y")| = |y" — ys— + y5— —...| = |wa||y"|, where z € C except the values of
z for which |w;| = 0, |wz| € (0,1] . In addition, |y| > B|wi||z|. Thus, we get
|21 aplws||wa|[z" |
z > =z ( —1).
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Now;, on iterating up to kth term, we obtain

aplwilwsl[z" N2
Z > z( — )
| 2‘ = | | 1+ |ﬂ|
aplwslwsl[z" 1 N3
z > |z ( —1)
| 3‘ = | | 1+ |LZ|
aB|ws [|wn]|z" | 4
z > |z ( —1)
| 4‘ = | | 1+ |a|
aB|wi||ws ||z 1 k
) > (el
1+ |a|
= =
Since |z| > [c] > (Z%ﬂﬁ‘))"* and |z| > |c] > (%)"7 , w1, |wa| € (0,1], this
implies that
2(1+ |al) \ a1
212 > (ganenl)
1]y

I
(1+]al)
whenk — co. O

Hence, —1 > 1 and the orbit of z tends to infinity, that is, |zx| — oo

1 1 e
Corollary 2. Let |z| > max{|c| ( ;ﬁ'l’l")) -t (Zglt)L““)) " },m > 0. Since %ﬁlh‘;ll _

N

m+k
(i) ) . Hence, |zx| — oo when k — oo.

1 > 1, therefore, |z, x| > |z|<

1

Theorem 4. Let T;(z) = sin(z") +az+c,a,c € C,n > 2, |z| > |c] > ( (Lta D) ,z| >

afewr |

1
lc| > (2(};&‘““)) and |z| > ] > ( (,yllt)‘"")) . If the sequence {zy }ren is Noor-iteration,

then |z| — oo as k — oo.
Proof. Let T(z) = sin(z") +az +¢, zp = z and

el = [(1 = 1)z + T (z)-

Ifk=0,
lxol = [(1—=7)z0+7T(z20)]

= [(1=7)z+7(sin(z") +az+ )]

> lsin(z")] = ylaz| = vle| = |(1 =)z

> ylsin(z")| = ylal|z| = vlz| — |z + vlzl, 2] = |el,

> ylw]|2"] = |z[lal = [z], v € (0,1],

= 7lwrl[z"] = [z[(1 +[a])
Ylws ||z

= |71 vz T q)),

1+ lah) (P = 1)

—...| = |w1]|z"|, where z € C, except the values of

Since |sin(z")| = |2" — o+
1].

Z
3 51
z for which |wy| =0, |w1| € (0,1]. Thus, we get

lwr ||z

= 1+|a|:|2|( 1+la ):
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1
: 2(1 n—1 .. n—1 n
Since |z| > (%) , this gives that |x"| > |z|"(%ﬁl|l - 1) > y|wr||z]™

Now, for the next step of Noor-iteration, we have

lyxl = (1 = B)zx + BT (x¢)|-

Ifk=0,
yol = (1 —=p)z+BT(x)|
— |(1— B)z+ Blsin(x") + ax +¢)|
> plsin(x")| — Blax| — Ble[ - |(1 - p)z|
> Blsin(x")| — Blal|x| — Blz| — [z[ + Bz, |z = [e],
> Plws||x"] = Blx|la] — 2|
> Brlwil|ws|[2"| = Brlwillz]la] - ||
= Brlwilws||2"] = |zl|a] = [z], B, 7,1 € (0,1],
= Brlwr|lws||2"] = |2|(1 +[a])
Brlws|lwsllz" 1|
|z|<1+|a|>( ] 1).
.| = |ws||x"|, where z € C except the values of

: m\*

Since | sin(x")| = |x" — x3— +
z for which |w3| =0, |ws| € (0,1]. I ddlthl’l |x| > y|wi||z]. Thus, we get

1
>
A e

oy BYlwlews| |2
= (5 ).

1
Since |y| > (M)m, this provides that |y"| > |Z‘”(M - 1>n >

Blaws| 1+]al =
Bylwr|ws||z]".
Now, for the next step of Noor-iteration, we have

|zks1] = [(1 = )z + aT (yx)|.

Againifk =0,

21l = [(1—a)z+aT(y)|

= [(1—-a)z+a(sin(y") +ay +c)|

> afsin(y")] - alay| —ale| — [(1 - a)z|

> afsin(y")| —alally| —alz| = |z| +alz], [z] = [c|,

> alwa|ly"| — alyllal - |z]

> apy|wil|w|ws|2"] — apy|wi||ws]|z|]a] 2]
apy|wsl|ws|ws||2"] - |zlla] - |z|, &, B, v, w1, w3 € (0,1],
apry|wr||wz]|ws||2"| — |z|(1+ |af)

aBy|wi||ws||ws ||zt
_ |z\<1+|a|>( aloalinll? )y
Since | sin(y")| = |[y" — % yS— —...| = |wa||y"|, where z € C except the values of

z for which |wy| =0, |wy| € (0 1]. In addition, |y| > By|w1||ws]||z]. Thus, we get

nfll

21| > 1] — |z |(“,37|w1||w2||w3\|z

—-1).
1+ a] 14 |a| )

Now, on iterating up to kth term, we obtain
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n—1 2

> o (SErlleallenlFT Ty
1+ |al

n—1 3

|z3| > |Z|(“ﬁ7“01||w2||w3||z |_1)
1+ |al

n—1 4

2] = |z|(txﬁ’ﬂwﬂ|“’2||W3||Z |_1)
1+ |al

| n—1 k

ol = (el
1+ |al

1 1 1
. 2(1+ -1 2(1+ n—1 2(1+ n=1
Since |z| > |c| > (%) Lz > e| > (%TW) " and |z| > |c] > (%TW) ",

where [y, |wal, [cws] € (0,1] that is,
1
20t )™
2l > lel > (i) -

Therefore,

aBy|wn ||ws||ws|z" L -1 1
(1+]a) -

and the orbit of z tends to infinity that is, |zx| — co when k — co. [

Corollary 3. Let |z| > max{|c|, (2(14”'”'))”1?1, (2(1“&“))%—1, (M) ﬁ},m > 0. Since

alewr ] Blwa ¥|ws|

- - +k
apry|ws ||ws||ws ||z 1| aBy|wr||ws|ws| 21\ ™
b ‘(‘H\HD l —1 > 1,50 |zppk] > |2](2E | I(‘lﬂ‘tlz\) d . Then, |z;| — oo as

k — oo.

Remark 2. (i)  The selection of the parameters in the above theorems is new and has not been
studied till now in this perspective.

(i)  The Corollaries 1, 2 and 3 provide algorithms for exploring Julia sets of T,. If |z| < |c|, we
obtain the orbit of z. If | zy| lies in the exterior of the circle of radius for some k, then the orbit
escapes meaning, thereby z is not inside the Julia sets. However, if |zi| does not exceed this
bound, then utilizing the definitions of the Julia sets, we utilize these algorithms to generate
fractals in the next section.

4. Generation of Julia Sets

We attempt to obtain the non-classical Julia sets in four distinct orbits using Matlab
8.5.0 (R20015a). It has been observed from Figure 1 that the corresponding Julia sets
for almost all the methods have no significant difference except in the Picard-iteration.
However, as the iteration changes from one step to three steps, more beautiful results are
noticed. We notice that, for Picard-iteration, we get a Julia set only in the neighborhood of 0.
Moreover, the small change in any of the parameters gives the major change in the output.
Therefore, we fix almost all the parameters and obtain the results for distinct iteration
methods which are visible in the figures given below.

The parameters used in Figure 1 are as following in Table 1:

Table 1. The parameters used in Figure 1.

a c « B 0% w1 w3 w3 n
(@) 1.19802032 c=—1.89i 0.17835 0.1675056 0.14323409 0.11025 0.115025 0.115025 3
(i) 1.19802032 c=—1.89 0.17835 0.1675056 - 0.11025 0.115025 - 3
(iii) 1.19802032 c=—1.89i 0.17835 - - 0.11025 - - 3
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(i) (ii) (iii)

Figure 1. Cubic Julia sets in (i) Noor-orbit; (ii) Ishikawa-orbit; (iii) Mann-orbit.
The parameters used in Figure 2 are as following in Table 2:

Table 2. The parameters used in Figure 2.

a c o B 0% w1 wy w3
0] 1.19802032 —1.89i 0.0077835 0.1675056  0.0814323409 0.07101025 0.079115025 0.078115025
(i) 1.19802032 —1.89i 0.0077835 0.1675056 - 0.07101025 0.079115025 -
(iii) 1.19802032 —1.89i 0.0077835 - - 0.07101025 - -

(i) (ii) (iii)

Figure 2. Cubic Julia sets in (i) Noor-orbit; (ii) Ishikawa-orbit; (iii) Mann-orbit.

The parameters used in Figure 3 are as following in Table 3:

Table 3. The parameters used in Figure 3.

a c % B 0% w1 wy w3
(@) 1.0229802032 —1.89 0.077835 0.05675056  0.0814323409 0.000017101025 0.79115025 0.8115025
(i) 1.0229802032 —1.89 0.077835 0.05675056 - 0.000017101025 0.79115025 -

(1if) 1.0229802032 -1.89 0.077835 - - 0.000017101025 - -
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(i) (ii) (iii)

Figure 3. Cubic Julia sets in (i) Noor-orbit; (ii) Ishikawa-orbit; (iii) Mann-orbit.
The parameters with quintic (n = 5) used in Figure 4 are as following in Table 4:

Table 4. The parameters used in Figure 4.

a c o B 0% w1 wy w3
0] 1.0229802032  —1.0089i 0.077835 0.05675056  0.0814323409 0.000017101025  0.79115025 0.8115025
(i) 1.0229802032  —1.00891 0.077835 0.05675056 - 0.000017101025 0.79115025 -
(iii) 1.0229802032  —1.0089i1 0.077835 - - 0.000017101025 - -

(i) (ii) (iii)

Figure 4. Quintic Julia sets in (i) Noor-orbit; (ii) Ishikawa-orbit; (iii) Mann-orbit.

The parameters used in Figures 5-7 with septic (n = 7) are as following in Table 5:

Table 5. The parameters used in Figures 5-7.

a c % B 0% w1 wy w3
(@) 1.0229802032 —1.891 0.077835 0.05675056  0.0814323409 0.000017101025 0.79115025 0.8115025
(i) 1.0229802032 —1.89i 0.077835 0.05675056 - 0.000017101025 0.79115025 -

(1if) 1.0229802032 —1.89i 0.077835 - - 0.000017101025 - -
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(i) (ii) (iii)

Figure 5. Cubic Julia sets in (i) Noor-orbit; (ii) Ishikawa-orbit; (iii) Mann-orbit.

(i) (ii) (iii)

Figure 6. Quintic Julia sets in (i) Noor-orbit; (ii) Ishikawa-orbit; (iii) Mann-orbit.

(i) (ii) (iii)

Figure 7. Septic Julia sets in (i) Noor-orbit; (ii) Ishikawa-orbit; (iii) Mann-orbit.

In Figures 8(i), (ii) fractals are looking like ants and in Figures 8(iii), 9-11, fractals are
looking like Rangoli. As n increases the fractal takes a circular shape (see Figure 11 of the
higher-order (n = 15) Julia set which looks like a colorful teething ring or circular saw or
may be compared to glass paintings.

The parameters used in Figures 8-11 are as following in Table 6:



Fractal Fract. 2021, 5,272

13 0f 17

Table 6. The parameters used in Figures 8-11.

a c o B 0% w1 wy w3
@) 6.5 0 0.0097577835  0.11295675056  0.00975814323409 0.17101025 0.115025 0.8115025
(i1) 6.5 0 0.0097577835  0.11295675056 - 0.17101025 0.115025 -
(iii) 6.5 0 0.0097577835 - - 0.17101025 - -

(i) (ii) (iii)

Figure 8. Cubic Julia sets in (i) Noor-orbit; (ii) Ishikawa-orbit; (iii) Mann-orbit.

(i) (ii) (iii)

Figure 9. Quintic Julia sets in (i) Noor-orbit; (ii) Ishikawa-orbit; (iii) Mann-orbit.

(i) (ii) (iii)

Figure 10. Septic Julia sets in (i) Noor-orbit; (ii) Ishikawa-orbit; (iii) Mann-orbit.
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(i) (ii) (iii)

Figure 11. Higher-order Julia sets in (i) Noor-orbit; (ii) Ishikawa-orbit; (iii) Mann-orbit.

With the above parameters, we did not get Julia sets in Picard-orbit. Now, we explore
some Julia sets in Picard-orbit also by suitably changing the parameters. In Figure 12(i)—(iii),
fractals are looking like an earthen lamp (diya) with its own reflection along with real axis.
In Figures 13-14, fractals are looking like Hibiscus and, in Figure 15, fractals are looking
like Catharanthus Roseus (Rose Periwinkle).

The parameters used in Figures 12-15 are as following in Table 7:

Table 7. The parameters used in Figures 12-15.

a c [ B 0% w1 woy w3
(@) 1.65 —0.192975i 0.12397835 0.125675056  0.04323409 0.17101025 0.00179115025 0.009118115025
(i)  1.65 —0.192975i 0.12397835  0.125675056 - 0.17101025 0.00179115025 -
(i)  1.65 —0.192975i 0.12397835 - - 0.17101025 - -
(iv)  1.65 —0.192975i - - - 0.17101025 - -

(i) (ii) (iii) (iv)

Figure 12. Cubic Julia sets in (i) Noor-orbit; (ii) Ishikawa-orbit; (iii) Mann-orbit; (iv) Picard-orbit.

(©) (ii) (iii) (iv)

Figure 13. Quintic Julia sets in (i) Noor-orbit; (ii) Ishikawa-orbit; (iii) Mann-orbit; (iv) Picard-orbit.
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(©) (ii) (iii) (iv)

Figure 14. Quintic Julia sets in (i) Noor-orbit; (ii) Ishikawa-orbit; (iii) Mann-orbit; (iv) Picard-orbit.

(®) (ii) (iii) (iv)

Figure 15. Septic Julia sets in (i) Noor-orbit; (ii) Ishikawa-orbit; (iii) Mann-orbit; (iv) Picard-orbit.

The change in sign in parameters a2 and c leads to reflexive and rotational symmetry.
However, the parameters &, 8, and -y give beautiful texture when « < 8 < <. The vibrant
color is highly dependent on the choice of «, 8, and v. When & > B > v, it is observed
that the fractals are connected. The parameters wj, wy, and w3 are also used in getting
the aura around each fractal. As w1y, wy, and ws tend to zero, more beauty is added to the
symmetrical pattern. It is seen that

1.  the parameters a, B, and 7 play a very important role in giving shape, size, and color
to the fractals.

2. the convergence criteria derived for the fractals are also playing a very crucial role in
giving resolution and richness of pixel in the fractals.

3.  all the fractals developed in this paper are very novel, aesthetic, and pleasing as the
function f(z) contains the special kind of sine function in it.

4. the function f(z) = sin(z") + az + c carries lots of characteristics in it. Various
combinations of parameters lead to a variety of fractals—some of which may be used
to create fractal art on glass (to give stunning effects).

5. for the chosen function, we get the effects of flowers, ants, Rangoli, and glass painting
in the fractals developed in the paper.

We displayed here only the zoomed version of each fractal because sin(z) is unbounded,
and the fractals occupy the infinite area to lie in. However, because of unboundedness only
on a real and imaginary axis, it can be visible.

5. Conclusions

In this work, we have utilized four different fixed point iterative methods to find
convergence criteria for a special kind of transcendental complex function. It is worth
mentioning here that transcendental functions, especially sine function, are often utilized
to determine the solution of Laplace’s equation, differential equations, and appears in
the functional equation for the Gamma function, Riemann zeta-function, and so on.
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Consequently, these are useful in distinct branches of science and engineering. We have
generated variants of Julia sets and noticed that the size of fractals explored depends on the
parameters a, 8, and -y, whereas the shape and symmetry depend on the parameter 4, b and
c. In addition, as # increases, the area occupied by the fractals decreases. It is fascinating to
notice that some of our fractals represent the traditional Rangoli found in different parts of
India and glass painting/art which is useful in interior decoration. Some represent ants
and beautiful flowers (Hibiscus and Catharanthus Roseus) found in nature.
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