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Abstract: In this paper, we consider the Prabhakar fractional logistic differential equation. By using
appropriate limit relations, we recover some other logistic differential equations, giving represen-
tations of each solution in terms of a formal power series. Some numerical approximations are
implemented by using truncated series.
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1. Introduction

Let us consider the classical logistic differential equation

x′(t) = x(t)(1− x(t)), (1)

which can be explicitly solved. The constant solutions are x(t) = 0 and x(t) = 1. If another
initial condition x(0) = x0 is imposed, the solution is given by

x(t) =
x0

x0 + (1− x0) exp(−t)
.

The solution can be also obtained in terms of formal power series. Let

x(t) =
∞

∑
n=0

antn. (2)

Then,

x′(t) =
∞

∑
n=1

nantn−1 =
∞

∑
n=0

(n + 1)an+1tn,

and

x2(t) =
∞

∑
n=0

(
n

∑
j=0

ajan−j

)
tn (3)

By substituting into (1), we obtain the following recurrence relation for the coefficients

an+1 =
1

n + 1

[
an −

n

∑
j=0

ajan−j

]
, n ≥ 1, a0 = x(0), (4)
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which provide a solution in a neighbourhood of t = 0 as described in [1].
It is possible to obtain the same recurrence relation if we further apply the Laplace

transform to (1). Let x(t) be given in (2), so that (3) holds true. Let L denote the Laplace
transform, and as usual, we shall denote F(s) the Laplace transform of a function f (t). Then,

L[x(t)(1− x(t))] = L[x(t)− x2(t)] =
∞

∑
n=0

(an − bn)
n!

sn+1 , bn =
n

∑
j=0

ajan−j.

Moreover,

L[x′(t)] = sX(s) =
∞

∑
n=0

an+1(n + 1)
n!

sn+1

Thus,
∞

∑
n=0

an+1(n + 1)
n!

sn+1 =
∞

∑
n=0

(an − bn)
n!

sn+1 (5)

which implies again the recurrence relation (4) for the coefficients of the power series
expansion of the solution. We need to impose that a0 = x(0) to be able to start the latter
recurrence relation.

We have included in Figure 1 some plots by using Mathematica [2] of the logistic function,
solution to (1) with x(0) = 1/2, and approximations of the function by the corresponding
Taylor polynomials.

1.2 1.4 1.6 1.8 2.0

0.75

0.80

0.85

0.90

Figure 1. Logistic function solution to Equation (1) with x(0) = 1/2, in blue, as well approximations
of the function by the corresponding Taylor polynomials in [1, 2]: n = 3 in orange color, n = 5 in
green color, n = 7 in red color, and n = 9 in grey color.

This very classical logistic differential equation has been deeply studied due to its
applications in different fields [3]. Recently, it has been used to study the evolution of the
COVID-19 pandemic [4,5]. By considering fractional derivatives, the fractional analogue
has been analyzed in several works mainly by considering the Liouville–Caputo fractional
derivative [1,6–11] (see also [12–14]). The classical logistic ordinary differential equation
has been recently studied from the view of fractional calculus and solved in some particular
cases [1,8,10]. In this work, we consider the fractional logistic differential equation by using
the Prabhakar fractional calculus [15–17].

The main aim of this work is to present the Prabhakar fractional logistic differential
equation and, by appropriate limit transitions, recover several logistic differential equations
(Liouville–Caputo, Atangana–Baleanu, and Caputo–Fabrizio), providing in each case a
representation of the expansion of the solution in formal power series.

For the fractional Prabhakar logistic differential equation, we know the solutions
for the Liouville–Caputo fractional derivative [7] (in terms of power series) and for the
Caputo–Fabrizio derivative [18] (in implicit form). We emphasize that in this work we
present the solution in terms of a power series expansion, as compared with the previous
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work [18], in which the solution is given in implicit form. It is also important to notice the
fact that much more general fractional-calculus operators are available in the literature
survey [19].

The structure of this work is the following: in Section 2 basic definitions, notations and
results are presented. In Section 3 the Prabhakar fractional logistic equation is presented.
For specific values of the parameters we recover the Liouville–Caputo, Atangana–Baleanu,
and Caputo–Fabrizio logistic differential equations. For each of these cases, the solu-
tion is computed in terms of a formal power series. Some numerical experiments are
also presented.

2. Basic Definition and Notations

Let α ∈ (0, 1) and σ ∈ L1(0, 1). The (Riemann–Liouville) fractional integral is de-
fined by

Iασ(t) =
1

Γ(α)

∫ t

0
(t− s)α−1σ(s)ds, t ∈ (0, 1)

where Γ(z) denotes the Euler gamma function [20].
For z ∈ C, α, β, γ ∈ C with <(α) > 0, the three-parameter Mittag–Leffler function,

introduced by Prabhakar in 1971 [16], is defined by

Eγ
α,β(z) =

∞

∑
n=0

(γ)n

Γ(nα + β)

zn

n!
,

which generalizes both the Mittag–Leffler function (γ = 1) as well as the classical exponen-
tial function (α = β = γ = 1). Additionally, E0

α,β(z) = 1/Γ(β). We would like to emphasize

that Eγ
α,β(z) in an entire function of order $ = 1/<(α) and type σ = 1 [21].

Let
eγ

α,β(λ; t) = tβ−1Eγ
α,β(λtα), (6)

be the Prabhakar kernel. In particular,

e1
1,1(λ; t) = exp(λt); e0

α,β(λ; t) =
tβ−1

Γ(β)
.

Additionally,

eγ
α,β(0; t) =

tβ−1

Γ(β)
.

The Prabhakar fractional integral with base point 0 is defined by

Pγ
α,β,λσ(t) =

∫ t

0
eγ

α,β(λ; t− s)σ(s)ds. (7)

for σ ∈ L1(0, 1). For σ ∈ L1(0, 1),

Pγ
α,β,λσ(t) =

∞

∑
n=0

(γ)n λn

n!
Iαn+βσ(t).

Thus, the Prabhakar fractional integral Pγ
α,β,λ is linear and bounded from Lp(0, 1) into

Lp(0, 1) for any 1 ≤ p ≤ ∞.
Recall that taking λ = −1

eγ
α,β(−1, t) = tβ−1Eγ

α,β(−tα)

is completely monotone if 0 < αγ ≤ b ≤ 1 [22]. For example, e1
1,1(−1, t) = exp(−t).

Moreover, Ref. [15]
Pγ

α,β,λeω
α,µ(λ; t) = eγ+ω

α,β+µ(λ; t).
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Let σ ∈ L1(0, 1), <(α) > 0, <(β) > 0. The Prabhakar fractional derivative in the
Riemann–Liouville sense is defined by

Dγ
α,β,λσ(t) =

d
dt
P−γ

α,1−β,λσ(t).

In doing so, it is required some regularity for σ, for example, that σ ? e−γ
α,1−β,λ ∈W1,1(0, 1),

where for Ω ⊂ Rn the Sobolev space Wm,p(Ω) is defined by

Wm,p(Ω) = { f ∈ Lp(Ω) |Dα ∈ Lp(Ω), ∀α ∈ Nn : |α| ≤ m}.

The Prabhakar fractional derivative in the Liouville–Caputo sense is

Dγ
α,β,λσ(t) = P−γ

α,1−β,λσ′(t).

We note that

P0
α,β,1σ(t) =

∫ t

0
e0

α,β(λ, t− s)σ(s)ds =
1

Γ(β)

∫ t

0
(t− s)β−1σ(s)ds = Iβσ(t).

Additionally,

Pγ
α,β,0σ(t) =

∫ t

0
eγ

α,β(0, t− s)σ(s)ds =
1

Γ(β)

∫ t

0
(t− s)β−1σ(s)ds = Iβσ(t).

In both cases, the classical Riemann-Liouville integral of order β > 0 is a particular case of
the Prabhakar operator.

The Laplace transform of the Prabhakar fractional derivative in the Liouville–Caputo
sense is [15] (page 27, Section 5.1, Equation (5.13))

L[Dγ
α,β,λx(t)](s) = sβ−αγ(sα − λ)γ

{
L[x(t)](s)−

m−1

∑
k=0

s−k−1 f (k)(0+)

}
, (8)

where m denotes the integer part of β. In particular, if m = 0 or m = 1, we have

L[Dγ
α,β,λtn](s) = sβ−αγ(sα − λ)γ Γ(n + 1)

sn+1 . (9)

Let us consider the Liouville–Caputo fractional derivative [23] for an absolutely
continuous function f : [0, T] 7→ R

CDα f (t) =
1

Γ(1− α)

∫ t

0
(t− s)−α f ′(s)ds, t ∈ [0, T]. (10)

We have that

L[ CDαtn](s) =
Γ(n + 1)
sn−α+1 , α > 0. (11)

Since

L[Dγ
α,β,0tn](s) = L[D0

α,β,λtn](s) =
Γ(n + 1)
sn−β+1 = L[ CDβtn](s).

the Liouville–Caputo fractional derivative is a particular case of the Prabhakar frac-
tional derivative.

The Atangana–Baleanu operator in the sense of Caputo for u ∈ AC(0, 1) = W1,1(0, 1)
is defined by [24]

ABDαu(t) =
1

1− α

∫ t

0
Eα

(
− α

1− α
(t− s)α

)
u′(s)ds. (12)
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It yields

L[ ABDαtn](s) =
B(α)
1− α

1
sα + α

1−α

Γ(n + 1)
sn−α+1 . (13)

where B(α) is a normalizing function satisfying B(0) = B(1) = 1. Let β = 0, γ = −1,
λ = α/(α− 1), so that

L[D−1
α,0,α/(α−1)t

n](s) =
Γ(n + 1)sα−n−1

sα + α
1−α

=
1− α

B(α)
L[ ABDαtn](s).

As a consequence, the Atangana–Baleanu derivative is a particular case of the Prabhakar
fractional derivative.

For u ∈ AC(0, 1) = W1,1(0, 1), the Caputo–Fabrizio fractional derivative is defined
by [25] (see also [26])

CFDαu(t) =
1

1− α

∫ t

0
exp

(
− α

1− α
(t− s)

)
u′(s)ds. (14)

We have that

L[ CFDαtn](s) =
Γ(n + 1)

α + (1− α)s
1
sn . (15)

Let α = 1, β = 0, γ = −1, λ = α/(α− 1), so that

L[D1
1,0,α/(α−1)t

n](s) =
s−nΓ(n + 1)

s− α
α−1

= (1− α)L[ CFDαtn](s),

revealing that the Caputo–Fabrizio derivative [25] is also a particular case of the Prabhakar
fractional derivative.

3. Prabhakar Fractional Logistic Equation and Its Limiting Cases

Let Dγ
α,β,λx(t) be the Prabhakar fractional derivative of a given function x(t). Let us

now consider the Prabhakar fractional logistic differential equation

Λ(α, β, γ, λ)Dγ
α,β,λx(t) = x(t)(1− x(t)), (16)

where the constant Λ(α, β, γ, λ) is defined by

Λ(α, β, γ, λ) =


1− λ

λ− 1
, α = 1,(

B(α)
1− α

) (1−α)γλ
α

, α 6= 1.

Let

x(t) =
∞

∑
n=0

antnξ , (17)

so that

x(t)(1− x(t)) =
∞

∑
n=0

(an − bn)tnξ , bn =
n

∑
j=0

ajan−j. (18)

If we apply the Laplace transform, we obtain

Λ(α, β, γ, λ)sβ−αγ(sα − λ)γ
∞

∑
n=0

an
Γ(ξn + 1)

sξn+1 =
∞

∑
n=0

(an − bn)
Γ(ξn + 1)

sξn+1 ,
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or equivalently

Λ(α, β, γ, λ)(sα − λ)γ
∞

∑
n=0

an
Γ(ξn + 1)

sξn+1−β+αγ
=

∞

∑
n=0

(an − bn)
Γ(ξn + 1)

sξn+1 . (19)

By using the binomial theorem,

Λ(α, β, γ, λ)(sα − λ)γ =
∞

∑
n=0

Γ(γ + 1)
Γ(k + 1)Γ(γ− n + 1)

sαn(−λ)γ−n =
∞

∑
n=0

cnsαn,

where

cn =
Γ(γ + 1)

Γ(n + 1)Γ(γ− n + 1)
(−λ)γ−n

and then

Λ(α, β, γ, λ)
∞

∑
n=0

cn

s−αn

∞

∑
n=0

an
Γ(ξn + 1)

sξn+1−β+αγ
=

∞

∑
n=0

(an − bn)
Γ(ξn + 1)

sξn+1 .

Thus, we have

Λ(β, α, γ, 0)Dγ
β,α,0 = CDα (Liouville–Caputo),

Λ(β, α, 0, λ)D0
β,α,λ = CDα (Liouville–Caputo),

Λ(α, 0,−1, α/(α− 1))D−1
α,0,α/(α−1) =

ABDα (Atangana–Baleanu),

Λ(1, 0,−1, α/(α− 1))D−1
α,0,α/(α−1) =

CFDα (Caputo–Fabrizio).

3.1. Fractional Liouville–Caputo Logistic Differential Equation

Let us consider the Liouville–Caputo fractional logistic differential equation

CDαx(t) = x(t)(1− x(t)), (20)

where CDα is defined in (10). Since

Λ(β, α, γ, 0)Dγ
β,α,0 = CDα,

Λ(β, α, 0, λ)D0
β,α,λ = CDα,

by applying the Laplace transform, taking into account (19) and (18), we obtain

∞

∑
n=1

Γ(ξn + 1)
snξ−α+1 an =

∞

∑
n=0

(an − bn)
Γ(nξ + 1)

snξ+1 .

For ξ = α, equating coefficients we have the following recurrence relation for the coeffi-
cients in the power series expansion (19)

a1 =
a0 − b0

Γ(1 + α)
, an =

Γ((n− 1)α + 1)
Γ(nα + 1)

(an−1 − bn−1). (21)

We have included in Figures 2 and 3 some plots of the logistic function, solution to (1)
with x(0) = 1/2, as well as some approximations of the solution to the Liouville–Caputo
fractional logistic differential Equation (20).
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Figure 2. Logistic function solution to Equation (1) with x(0) = 1/2, in blue, as well as some
approximations of the solution to the Caputo fractional logistic differential Equation (20) in [0, 2] for
α = 0.75, in orange. From left to right and top to bottom the approximations are shown for n = 3,
n = 5, n = 7, and n = 9. From these figures, one must use α closer to one as shown in Figure 3 in
order to approximate the classical solution.
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Figure 3. Logistic function solution to (1) with x(0) = 1/2, in blue, as well as some approximations
of the solution to the Caputo fractional logistic differential Equation (20) in [0, 2] for α = 0.95, in
orange. From left to right and top to bottom the approximations are shown for n = 3, n = 5, n = 7,
and n = 9.

3.2. Atangana–Baleanu Logistic Differential Equation

Let us consider
ABDαx(t) = x(t)(1− x(t)), (22)

where ABDα f (t) is the Atangana–Baleanu derivative defined in (12).
Since

Λ(α, 0,−1, α/(α− 1))D−1
α,0,α/(α−1) =

ABDα,
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if we apply the Laplace transform to (22), by using (19) and (18) we obtain

L[ ABDαx(t)](s) =
∞

∑
n=0

(an − bn)
Γ(nξ + 1)

snξ+1 . (23)

Thus, for ξ = α,

B(α)
(1− α)(sα + α

1−α )

∞

∑
n=1

an
Γ(nα + 1)
s(n−1)α+1

=
∞

∑
n=0

(an − bn)
Γ(nα + 1)

snα+1 . (24)

Hence,
B(α)
(1−α) ∑∞

n=1 an
Γ(nα+1)
s(n−1)α+1

= ∑∞
n=0(an − bn)

Γ(nα+1)
sα(n−1)+1 +

α
1−α ∑∞

n=0(an − bn)
Γ(nα+1)

snα+1 .
(25)

Equating the coefficients, we obtain

a1 =
a0 − b0 + b1(α− 1)Γ(α)
(B(α) + α− 1)Γ(α)

,

an =
(α− 1)bn +

α(an−1−bn−1)Γ((n−1)α+1)
Γ(nα+1)

B(α) + α− 1
.

By using

bn = 2a0an +
n−1

∑
j=1

ajan−j, (26)

we finally obtain the initial step in terms of the initial condition

a1 =
(a0 − 1)a0

Γ(α)((2a0 − 1)(α− 1)− B(α))
, (27)

as well the recurrence relation for the coefficients

an =
(1− α)∑n−1

j=1 ajan−j +
αΓ(α(n−1)+1)

(
∑n−1

j=1 ajan−j+(2a0−1)an−1

)
Γ(αn+1)

(2a0 − 1)(α− 1)− B(α)
, (28)

which in the limit as α→ 1 converge to (21).
We have included in Figures 4 and 5 some plots of the logistic function, solution to (1)

with x(0) = 1/2, as well as some approximations of the solution to the Atangana–Baleanu
logistic differential Equation (22).
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Figure 4. Logistic function solution to (1) with x(0) = 1/2, in blue, as well as some approximations
of the solution to the Atangana–Baleanu logistic differential equation in [0, 2] for α = 0.75, in orange.
From left to right and top to bottom the approximations are shown for n = 3, n = 5, n = 7, and n = 9.
From these figures, one must use α closer to one as shown in Figure 5 in order to approximate the
classical solution.
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Figure 5. Logistic function solution to (1) with x(0) = 1/2, in blue, as well as some approximations
of the solution to the Atangana–Baleanu logistic differential equation in [0, 2] for α = 0.95, in orange.
From left to right and top to bottom the approximations are shown for n = 3, n = 5, n = 7, and n = 9.

3.3. Caputo–Fabrizio Logistic Differential Equation

Let us consider
CFDαx(t) = x(t)(1− x(t)), (29)

where CFDα is the Caputo–Fabrizio derivative introduced in (14).
Since

Λ(1, 0,−1, α/(α− 1))D−1
α,0,α/(α−1) =

CFDα,
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if we apply the Laplace transform to (29), we obtain

∞

∑
n=1

Γ(nξ + 1)
(α(1− s) + s)

an

snξ
=

∞

∑
n=0

(an − bn)
Γ(nξ + 1)

snξ+1 ,

which, if we fix ξ = α, in the limit as α→ 1−, gives (5). Equivalently,

∞

∑
n=1

Γ(nξ + 1)
an

snξ
= (α + (1− α)s)

∞

∑
n=0

(an − bn)
Γ(nξ + 1)

snξ+1 ,

which can be rewritten as

∞

∑
n=1

Γ(nξ + 1)
an

snξ
= α

∞

∑
n=0

(an − bn)
Γ(nξ + 1)

snξ+1 + (1− α)
∞

∑
n=0

(an − bn)
Γ(nξ + 1)

snξ
.

Let ξ = 1. If we equate the coefficients, we obtain

an =
1
n

(
an−1 − bn−1 + nbn

α− 1
α

)
which in the limit as α → 1 converges to (4). This relation can be obtained from [18]
(Equation (8)).

We have included in Figures 6 and 7 some plots of the logistic function, solution to (1)
with x(0) = 1/2, as well as some approximations of the solution to the Caputo–Fabrizio
logistic differential Equation (29).
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Figure 6. Logistic function solution to (1) with x(0) = 1/2, in blue, as well as some approximations
of the solution to the Caputo–Fabrizio logistic differential Equation (29) in [0, 2] for α = 0.75, in
orange. From left to right and top to bottom the approximations are shown for n = 3, n = 5, n = 7,
and n = 9. As in the previous cases, from these figures one must use α closer to one as shown in
Figure 7 in order to approximate the classical solution.
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Figure 7. Logistic function solution to (1) with x(0) = 1/2, in blue, as well as some approximations
of the solution to the Caputo–Fabrizio logistic differential Equation (29) in [0, 2] for α = 0.95, in
orange. From left to right and top to bottom the approximations are shown for n = 3, n = 5, n = 7,
and n = 9.

Moreover, in Figure 8, we show a comparison between the results in [18] in implicit
form, and the results presented here in terms of recurrence relation for the coefficients in
the power series expansion. For this last comparison, we have chosen α = 0.9.
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Figure 8. In [0, 2] for α = 0.9, logistic function solution to (1) with x(0) = 1/2, in blue, some
approximations of the solution to the Caputo–Fabrizio logistic differential Equation (29), as well as
the solution given in [18] in orange. From left to right and top to bottom the approximations are
shown for n = 3, n = 5, n = 7, and n = 9.

4. Conclusions

The Prabhakar fractional calculus, based on the three-parameter generalization of the
Mittag–Leffler function, provides some physical examples such as anomalous phenomena
showing the need for an extension of ordinary calculus based on the Prabhakar function [15].
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We contribute to the study of the fractional logistic differential equation in the setting of
Prabhakar fractional calculus by solving that logistic equation in some cases.
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