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Abstract: Under a new generalized definition of exact controllability we introduced and with a
appropriately constructed time delay term in a special complete space to overcome the delay-
induced-difficulty, we establish the sufficient conditions of the exact controllability for a class of
impulsive fractional nonlinear evolution equations with delay by using the resolvent operator theory
and the theory of nonlinear functional analysis. Nonlinearity in the system is only supposed to be
continuous rather than Lipschitz continuous by contrast. The results obtained in the present work are
generalizations and continuations of the recent results on this issue. Further, an example is presented
to show the effectiveness of the new results.

Keywords: controllability; impulsive fractional evolution equations; delay; measure of noncompact-
ness; mild solution; fixed point theorem

1. Introduction

This paper’s primary objective is to investigate the exact controllability of the follow-
ing impulsive fractional nonlinear evolution equations with delay in Banach spaces:

Dγx(t) = Ax(t) + f (t, x(t), xt) + Bu(t), a.e. t ∈ I := [0, a],
∆x(ti) = x(t+i )− x(t−i ) = Ii(x(ti)), i = 1, 2, · · ·, m,
x(t) = φ(t), t ∈ [−b, 0],

(1)

where Dγ represents the Caputo derivative of order γ ∈ (0, 1). The state x(·) takes values
in X, control function u is given in L2(I, U), and B : U → X is a bounded linear operator
where X and U are Banach spaces. 0 = t0 < t1 < t2 < · · · < tm < tm+1 = a < +∞.
A : D ⊂ X → X is a closed linear unbounded operator on X with dense domain D. xt
represents the history of the state function that will be specified in (2). φ(t) ∈ C([−b, 0], X).
The given functions f and Ii (i = 1, 2, · · ·, m) are supposed to satisfy some appropriate
assumptions that will be specified later.

In the last few decades, the topic of fractional calculus has received considerable and
extensive attention. The modelling of many mathematical and biological problems by frac-
tional differential equations has more superiority and accuracy than classical integral-order
ones. In view of its extensive applications in the area of physics, chemistry, mathematics,
medicine and economics, a growing number of researchers have devoted generous energy
to the study of various types of fractional differential equations. For further details of the
recent works, we refer readers to [1–5].

It is well known that impulse and delay embody lots of rich and varied dynamic
behaviors. The investigation of various dynamical systems with impulsive interference
and time delay effects has obtained more and more attention due to their important
and potential applications in signal and image processing, weather predicting, artificial
intelligence and some other optimization problems. For more details, one can see [6–8].

It is noted that the research on the controllability of fractional differential equations
is becoming more and more active, since controllability is a quite important concept in
mathematics and control theory. As one of the most mainstream research direction, exact
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controllability of many kinds of integral-order and fractional-order control systems have
been well investigated by taking advantage of diverse tools and methods in some recent
literatures. For example, S. Ji et al. [9] studied the exact controllability of a class of integral-
order impulsive differential equations by using the measure of noncompactness and fixed
point theorem under a compact condition imposed on the nonlocal item. J. Wang and
Y. Zhou [10] investigated a class of fractional differential systems without assuming the
compactness of the semigroup. They discussed the exact controllability of the considered
control systems under the assumption that the nonlinearity satisfied Lipschitz continuity.
In [11], J. Du et al. obtained a result of exact controllability for some fractional neutral
integro-differential evolution systems with delay and nonlocal conditions. The Lipschitz
condition and some other growth conditions on nonlocal item and nonlinearity are still
necessary. Z. Tai [12] proved the exact controllability results for fractional impulsive
neutral integro-differential systems in Banach spaces. The results are obtained by utilizing
Banach contraction mapping theorem due to the Lipschitz conditions of the systems. In
addition, some excellent results of exact controllability for various fractional differential
equations have also been established recently [7,10–23], but the limitation is also that
the functions in the systems are either Lipschitz continuous, compact or satisfy some
special growth suppositions. Although the exact controllability studied in [13] does not
require the nonlinear term to satify Lipschitz condition, the considered evolution system
in [13] have no effects of time delay and impulse. At present, it seems that the exact
controllability results of fractional evolution equations with both impulses and delays are
rare [12,21,22]. We point out that nonlinearities and impulsive items in these papers satisfy
special growth assumptions [21], Lipschitz condition [12,22], and semigroups together
with the resolvent operators of some systems possess compactness, which still show the
limitation to a certain extent in practical problems. Therefore, it seems interesting whether
the exact controllability of the impulsive fractional evolution equations with delay can be
established via noncompact resolvent operators together with the nonlinearity satisfying
continuity rather than Lipschitz continuity.

Inspired by the abovementioned papers and the ideas adopted in [13], in this work,
we present a new depiction of the exact controllability of the system (1) by using the
theory of resolvent operator and the theory of nonlinear functional analysis. The main
contributions of this article are as follows. (i) The Lipschitz and other restrictive con-
ditions on nonlinear and impulsive items have been removed. (ii) The application of
C0-semigroup based on probability density function [24] is replaced by resolvent operators
without compact conditions, which is different from most of the existing literatures such
as [7,10–12,17,21,22,25,26]. (iii) With the properly defined delay item in a corresponding
complete space we introduced, we have solved the delay-induced-difficulty during the
investigation of exact controllability by measures of noncompactness.

The organization of this work is as follows. Some necessary notations, definitions and
lemmas are introduced in next section. In the third section, sufficient conditions ensuring
exact controllability of the addressed systems are provided. An example is worked out in
the last section to illustrate our theory of the main results.

2. Preliminaries

We denote by X a Banach space with the norm ‖ · ‖. By C(I, X) and C([−b, a], X)
we denote the spaces of continuous functions from I into X, [−b, a] into X with suprema
norms ‖ · ‖C(I,X) and ‖ · ‖C([−b,a],X), respectively. For the case of a = 0, norm ‖ · ‖C([−b,a],X)

is abbreviated as ‖ · ‖b. Also consider the usual Banach space PC(I, X) = {x : I → X |
x ∈ C((tk, tk+1], X), x(t−k ) and x(t+k ) exist with x(t−k ) = x(tk), k = 1, 2, · · ·, m}, with the
norm ‖x‖PC = sup

t∈I
{‖x(t)‖}. D stands for the domain of the operator A in (1) with the

graph norm ‖x‖D = ‖x‖ + ‖Ax‖. Denote by U a Banach space with the norm ‖ · ‖U .
By Cγ(I, X), γ ∈ (0, 1), we denote the space of all the γ-Hölder continuous functions
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from I into X with the norm ‖x‖Cγ(I,X) = ‖x‖C(I,X) + [|x|]Cγ(I,X), where [|x|]Cγ(I,X) =

sup
t,s∈I,t 6=s

‖x(t)− x(s)‖
(t− s)γ

. For any measurable function x : I → R, define the norm

‖x‖Lp(I) =


(∫

I
|x(t)|pdt

) 1
p
, 1 ≤ p < ∞,

inf
µ(I)=0

{ sup
t∈I−I

|x(t)|}, p = ∞,

where µ(I) is the Lebesgue measure on I. Let L(X, Y) be the space of all bounded linear
operators from X into Banach space Y equipped with operator norm ‖ · ‖L(X,Y).

Introduce a complete and integrable space L([−b, 0], X) which contains all the in-
tegrable functions from [−b, 0] into X. For x ∈ PC(I, X) and t ∈ I, define a piecewise
function as follows:

xt(θ) =

{
x(t + θ), t + θ ≥ 0,

φ(t + θ), t + θ ≤ 0,
(2)

for every θ ∈ [−b, 0], where φ is the same as in (1). It is not hard to verify that
xt ∈ L([−b, 0], X).

Remark 1. Based on (2) and Lemma 4 together with Lemma 5 which we will present in the
following discussions, it is much more convenient to study the exact controllability of system (1) by
using the theory of noncompact measures.

Next we list the well known definitions as follows.

Definition 1. ([27]) The fractional integral with order γ > 0 for a function u : (0,+∞)→ R can
be defined as

Iγ
0+u(t) =

1
Γ(γ)

∫ t

0
(t− s)γ−1u(s)ds,

provided that the right side integral is pointwise defined on [0,+∞).

Definition 2. ([27]) The Caputo fractional derivative with order γ > 0 for a function u : (0, ∞)→
R is written as

Dγ
0+u(t) =

1
Γ(n− γ)

∫ t

0

u(n)(s)
(t− s)γ−n+1 ds,

where n = [γ] + 1, provided the right side integral is pointwise defined on [0, ∞).

Definition 3. ([28]) A family of bounded linear operators {℘(t)}t≥0 ⊂ L(X) on X is called a
resolvent operator of integral equation

x(t) =
∫ t

0

(t− s)γ−1

Γ(γ)
Ax(s)ds, t ≥ 0, (3)

if the following assumptions are satisfied:
(i) ℘(t) is strongly continuous on R+ and ℘(0) = I;
(ii) ℘(t)D ⊂ D, A℘(t)x = ℘(t)Ax for every t ≥ 0 and x ∈ D;
(iii) the resolvent equation holds

℘(t)x = x +
∫ t

0

(t− s)γ−1

Γ(γ)
A℘(s)xds.
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Definition 4. ([28]) A resolvent operator ℘(t) of (3) is called differentiable, if there is a function
ϕ ∈ L1

loc(R+) such that the following inequality holds:

‖℘̇(t)x‖ ≤ ϕ(t)‖x‖D a.e. on R+, ∀x ∈ D,

where ℘(·)x ∈W1,1
loc (R+, X) for each x ∈ D.

Consider the equation

x(t) = g(t) +
∫ t

0

(t− s)γ−1

Γ(γ)
Ax(s)ds, t ∈ I, (4)

where g ∈ L1(I, X). According to [28], the mild solution of (4) can be defined as follows.

Definition 5. We call x ∈ C(I, X) a mild solution for (4) if
∫ t

0

(t− s)γ−1

Γ(γ)
x(s)ds ∈ D, and

satisfies

x(t) = g(t) + A
∫ t

0

(t− s)γ−1

Γ(γ)
x(s)ds,

for each t ∈ I.

Now, let us give a useful lemma about differentiable resolvent operator from which
one can get the equivalent definition of mild solution for Equation (4).

Lemma 1. ([28]) Assume that ℘(t) is a differentiable resolvent operator for (4) and g ∈ C(I,D).
Then

x(t) =
∫ t

0
℘̇(t− s)g(s)ds + g(t), t ∈ I,

is a mild solution of (4).

We now recall some useful properties of Kuratowski measures of noncompactness.
For more details, please refer [29].

Lemma 2. Let X be a Banach space and β(·) be the Kuratowski measures of noncompactness
which is given by β(Ω) = inf{δ > 0 : Ω =

⋃k
i=1 Ωi with diam(Ωi) ≤ δ, i = 1, 2, · · ·, k} for a

bounded subset Ω in X.
(I) Let D1, D2 be bounded sets of X and λ ∈ R. Then

(i) β(D1) = 0⇔ D1 is relatively compact;
(ii) β(λD1) = |λ|β(D1);
(iii) β(D1 + D2) ≤ β(D1) + β(D2);

(II) Assume that D = {un} is a countable set of strongly measurable functions from I into Banach
space X, and there has a function ψ ∈ L1(I) such that ‖un(t)‖ ≤ ψ(t) a.e.t ∈ I, n = 1, 2, · · ·,
then β(D(t)) is integrable on I, and satisfies

β

({∫
I

un(t)dt : n ∈ N
})
≤ 2

∫
I

β(D(t))dt.

For convenience, the Kuratowski measures of noncompactness of a bounded subset in
spaces X, PC(I, X) and L([−b, 0], X) are all denoted by β(·), on the premise of no confusion.

Lemma 3. (Mönch) Suppose X to be a Banach space and D ⊂ X is a closed and convex set, x0 ∈ D.
If A : D → D is continuous and satisfies: C ⊂ D countable, C ⊂ co({x0}

⋃
A(C)) ⇒ C is

relatively compact. Then A has a fixed point in D.

At last of this section, we present two important lemmas as follows.
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Lemma 4. Suppose that xn converges to x0 in PC(I, X) as n → +∞. Then (xn)t converges to
(x0)t in L([−b, 0], X) for each t ∈ I as n→ +∞.

Proof. By (2), we can obtain
(i) if t ≤ b, then

‖(xn)t − (x0)t‖L[−b,0] =
∫ 0

−b
‖(xn)t(θ)− (x0)t(θ)‖dθ

=
∫ t

t−b
‖(xn)t(θ)− (x0)t(θ)‖d(t + θ)

=
∫ t

0
‖xn(t + θ)− x0(t + θ)‖d(t + θ)

=
∫ t

0
‖xn(s)− x0(s)‖ds.

(ii) if t ≥ b, then

‖(xn)t − (x0)t‖L[−b,0] =
∫ 0

−b
‖(xn)t(θ)− (x0)t(θ)‖dθ

=
∫ t

t−b
‖(xn)t(θ)− (x0)t(θ)‖d(t + θ)

=
∫ t

t−b
‖xn(t + θ)− x0(t + θ)‖d(t + θ)

=
∫ t

t−b
‖xn(s)− x0(s)‖ds.

Obviously, (i) and (ii) imply that

‖(xn)t − (x0)t‖L[−b,0] ≤ b‖xn − x0‖PC(I,X), ∀t ∈ I.

This completes the proof.

Lemma 5. Let D = {xn}∞
n=1 be a bounded countable sequence in PC(I, X). Then for each t ∈ I,

one has
β(Dt) ≤ bβ(D),

where Dt = {(xn)t}∞
n=1.

Proof. From the definition of Kuratowski measures of noncompactness in Lemma 2, we
can infer that for any ε > 0, there is a partition D =

⋃k
i=1 Di such that

diam(Di) < β(D) + ε, i = 1, 2, · · ·, k. (5)

As already done in Lemma 4, we also deduce

‖(xn)t − (xm)t‖L[−b,0] ≤ b‖xn − xm‖PC(I,X), t ∈ I. (6)

Hence, from (5) and (6) one derives

diam(Dit) ≤ bdiam(Di) < b(β(D) + ε), i = 1, 2, · · ·, k,

which means
β(Dt) < bβ(D) + bε.

The arbitrariness of ε implies that the conclusion is true.
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3. Main Results

In this section, we always suppose the resolvent operator {℘(t)}t≥0 for (4) to be
differentiable. Based on [30], Definition 5 and the Riemann-Liouville standard fractional
integral, the mild solution of system (1) can be defined as below.

Definition 6. For any given u ∈ L2(I, U), a function x ∈ PC(J, X) is called a mild solution of

system (1) on J, provided that
∫ tk

tk−1

(tk − s)γ−1x(s)ds,
∫ t

tk

(t− s)γ−1x(s)ds ∈ D for all 0 < tk <

t, t ∈ [0, τ] and

x(t) =



φ(0) +
1

Γ(γ)
A

(
∑

0<tk<t

∫ tk

tk−1

(tk − s)γ−1x(s)ds +
∫ t

tk

(t− s)γ−1x(s)ds

)

+
1

Γ(γ)

(
∑

0<tk<t

∫ tk

tk−1

(tk − s)γ−1( f (s, x(s), xs) + Bu(s))ds

)
+

1
Γ(γ)

∫ t

tk

(t− s)γ−1( f (s, x(s), xs) + Bu(s))ds + ∑
0<tk<t

Ik(x(tk)), t ∈ [0, τ],

φ(t), t ∈ [−b, 0],

where J = [−b, τ], τ ∈ (0, a].

Based on the exact controllability considered in [13], we give the following definition

Definition 7. System (1) is exact controllability on I = [0, a] if for any initial function φ(t) ∈
C([−b, 0], X) and x1 ∈ X, there has a control u ∈ L2(I, U) and a constant τ ∈ (0, a] such that
the mild solution x of (1) on J = [−b, τ] satisfies x(τ) = x1.

Remark 2. In contrast with the existing definitions in [9–11,15,17], our target point x1 taking
value at τ ∈ (0, a] is likely to be achieved ahead of time a, which means that, from a conceptual
point of view, it can be considered as an generalization of the existing notion of exact controllability.

In order to obtain the main results, we present the hypotheses as follows:

(H1) f ∈ C(I × X× L([−b, 0], X),D) and satisfies
(i) f maps bounded sets in I × X× L([−b, 0], X) into bounded sets in D;

(ii) There exist a constant q ∈ (0, γ) and a function l ∈ L
1
q (I, R+) such that for any bounded

subsets D1 ⊂ X, D2 ⊂ L([−b, 0], X),

β( f (t, D1, D2)) ≤ l(t)(β(D1) + β(D2)), t ∈ I.

(H2) (i) The linear operator B : L2(I, U)→ L1(I,D) is bounded, and there exists a constant
M1 > 0 satisfying ‖B‖L(U,D) ≤ M1;
(ii) Linear operators J(t), t ∈ I, denoted by J(·) from L2(I, U) to X defined as

J(t)u =
1

Γ(γ)

(
∑

0<tk<t

∫ tk

tk−1

(tk − s)γ−1Bu(s)ds +
∫ t

tk

(t− s)γ−1Bu(s)ds

)

+
1

Γ(γ)

∫ t

0
℘̇(t− s)

(
∑

0<tk<s

∫ tk

tk−1

(tk − η)γ−1Bu(η)dη +
∫ s

tk

(s− η)γ−1Bu(η)dη

)
ds, t ∈ I,
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have invertible operators J−1(·) taking values in L2(I, U)/kerJ(·), which satisfy, for some
constant M2 > 0, sup ‖J−1(·)‖L(X,L2(I,U)/kerJ(·)) ≤ M2, and there is a constant p ∈ (0, γ)

and a function k ∈ L
1
p (I, R+) satisfying

β(J−1(·)(D)(s)) ≤ k(s)β(D), s ∈ I,

for any bounded subset D ⊂ X.
(H3) Ii : X → D (i = 1, 2, · · ·, m) is continuous and satisfies
(i) There exists a constant C0 such that

sup{‖Ii(x)‖D , x ∈ X, i = 1, 2, · · ·, m} ≤ C0;

(ii) There exist constants ki ≥ 0 such that

β(Ii(D)) ≤ kiβ(D), i = 1, 2, · · ·, m,

hold for each bounded subset D ⊂ X.
(H4) (

1 + 2‖ϕ‖L1(I)

)
(1 + M)

m

∑
i=1

ki < 1,

where

M =
1 + 2ρM1

(
1 + 2‖ϕ‖L1(I)

)
Γ(γ)

, ρ = (m + 1)aγ

(
1− p
γ− p

)1−p
‖k‖

L
1
p

,

and ϕ is the function mentioned in Definition 4.

In the sequel, suppose R0 to be a fixed constant such that R0 > (‖φ(0)‖D + mC0)(1+
‖ϕ‖L1(I)). By (H1), let

M0 = sup
{
‖ f (t, x, y)‖D : ‖x‖PC(I,X) ≤ R0, ‖y‖L[−b,0] ≤ b(‖φ‖b + R0), t ∈ I

}
.

For simplicity, take

Θ(t; x; u) =
1

Γ(γ)

(
∑

0<tk<t

∫ tk

tk−1

(tk − s)γ−1 f (s, x(s), xs)ds +
∫ t

tk

(t− s)γ−1 f (s, x(s), xs)ds

)

+
1

Γ(γ)

(
∑

0<tk<t

∫ tk

tk−1

(tk − s)γ−1Bu(s)ds +
∫ t

tk

(t− s)γ−1Bu(s)ds

)
,

set
I(t; x) = ∑

0<tk<t
Ik(x(tk)),

and present two notations as follows:

λ = 2(b + 1)
(

1− q
γ− q

)1−q
‖l‖

L
1
q

, µ =
(m + 1)aγ

Γ(γ + 1)
.

In view of condition (H2) and (H4), for any x(·) ∈ PC(I, X) and any x1 ∈ X, t ∈ I,
define a control

ux(t) := J−1(τ)

(
x1 − φ(0)−Θ f (τ; x)− I(τ; x)−

∫ τ

0
℘̇(τ − s)(φ(0) + Θ f (s; x) + I(s; x))ds

)
(t),
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where

τ = min

a,

( (
R0−(‖φ(0)‖D+mC0)

(
1+‖ϕ‖L1(I)

))
Γ(γ+1)

(m+1)(M0+M1 M3)
(

1+‖ϕ‖L1(I)

)
) 1

γ

,


(

1−
(

1+2‖ϕ‖L1(I)

)
(1+M)

m
∑

i=1
ki

)
2
(

1+2‖ϕ‖L1(I)

)
(m+1)λM


1
γ

, (7)

M3 = M2

((
1 + ‖ϕ‖L1(I)

)
(‖φ(0)‖D + µM0 + mC0) + ‖x1‖

)
;

and

Θ f (s; x) =
1

Γ(γ)

(
∑

0<tk<s

∫ tk

tk−1

(tk − η)γ−1 f (η, x(η), xη)dη +
∫ s

tk

(s− η)γ−1 f (η, x(η), xη)dη

)
, s ∈ [0, τ].

Suppose that τ ∈ (ti, ti+1], and then we let J0 = [−b, 0], Jk = (tk−1, tk], k = 1, 2, · · ·, i,
Ji+1 = (ti, τ]. Denote

Ω =

{
x ∈ PC(J, X) : ‖x‖PC([0,τ],X) ≤ R0, sup

t∈[0,τ]
‖xt‖L[−b,0] ≤ b(‖φ‖b + R0); x(t) = φ(t), t ∈ [−b, 0]

}
.

Then Ω is a closed convex set in PC(J, X). By means of Lemma 1, we can define an
operator P : PC(J, X)→ PC(J, X) by

(Px)(t) =


φ(0) + Θ(t; x; ux) + I(t; x)

+
∫ t

0
℘̇(t− s)(φ(0) + Θ(s; x; ux) + I(s; x))ds, t ∈ [0, τ],

φ(t), t ∈ [−b, 0].

(8)

To simplify the proof of our main result, the following lemmas are needed.

Lemma 6. Suppose that f ∈ C(I × X× L([−b, 0], X), X) and u ∈ L2(I, U). Then Θ(·; x; u) ∈
Cγ(Ji, X), i = 1, 2, · · ·, m + 1, and

[|Θ(·; x; u)|]Cγ ≤ 2
γ

(
‖ f ‖C(I,X) + ‖B‖L(U,X) · sup

t∈I
‖u(t)‖U

)
.

Proof. For t ∈ Ji and h > 0 such that t + h ∈ Ji, one has

‖Θ(t + h; x; u)−Θ(t; x; u)‖

≤
∫ t

ti−1

((t− s)γ−1 − (t + h− s)γ−1)(‖ f (s, x(s), xs)‖+ ‖Bu(s)‖)ds

+
∫ t+h

t
(t + h− s)γ−1(‖ f (s, x(s), xs)‖+ ‖Bu(s)‖)ds

≤
(
(t− ti−1)

γ − (t− ti−1 + h)γ + hγ

γ
+

hγ

γ

)(
‖ f ‖C(I,X) + ‖B‖L(U,X) · sup

t∈I
‖u(t)‖U

)

≤ 2hγ

γ

(
‖ f ‖C(I,X) + ‖B‖L(U,X) · sup

t∈I
‖u(t)‖U

)
,

which shows that [|Θ(·; x; u)|]Cγ ≤ 2
γ

(
‖ f ‖C(I,X) + ‖B‖L(U,X) · sup

t∈I
‖u(t)‖U

)
and Θ(·; x; u) ∈

Cγ(Ji, X), i = 1, 2, · · ·, m + 1. This completes the proof.

Lemma 7. Assume that condition (H1) holds. Then the operator T : PC(I, X) → PC(I, X)
defined by

(Tx)(t) =
∫ t

t∗
(t− s)γ−1 f (s, x(s), xs)ds, ∀t∗, t ∈ I,

satisfies β(T(D)(t)) ≤ λaγβ(D) for any countable bounded set D ⊂ PC(I, X).
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Proof. No loss of generality, we may suppose that the bounded countable set D = {xn}∞
n=1.

By using Lemma 5, we have

β({(xn)s}) ≤ bβ({xn}).

From Lemma 2 (II) and the Hölder inequality, it follows that

β(T(D)(t)) = β({T(xn)(t)})

≤ 2
∫ t

t∗
(t− s)γ−1β({ f (s, xn(s), (xn)s)})ds

≤ 2
∫ t

t∗
(t− s)γ−1l(s)(β({xn}) + β({(xn)s}))ds

≤ 2(b + 1)
∫ t

t∗
(t− s)γ−1l(s)ds · β({xn})

≤ 2(b + 1)
(∫ t

t∗
[(t− s)γ−1]

1
1−q ds

)1−q(∫ t

t∗
l(s)

1
q ds
)q
· β({xn})

≤ 2(b + 1)
(

1− q
γ− q

)1−q
(t− t∗)γ−q‖l‖

L
1
q
· β({xn})

≤ λaγβ(D).

This completes the proof.

Lemma 8. Assume that conditions (H1)(i), (H2), (H3)(i) and (H4) hold. Then {Px : x ∈ Ω} is
equicontinuous on each Ji (i = 0, 1, · · ·, m + 1).

Proof. The first step is to demonstrate that P(Ω) ⊆ Ω. From (H2), one has

‖ux(t)‖U

≤ M2

(
‖x1‖+ ‖φ(0)‖D + ∑

0<tk<τ
‖Ik(x(tk))‖D +

∫ τ
0 ϕ(τ − s)(‖φ(0)‖D + ∑

0<tk<s
‖Ik(x(tk))‖D)ds

)

+ M2
Γ(γ)

(
∑

0<tk<τ

∫ tk
tk−1

(tk − s)γ−1‖ f (s, x(s), xs)‖Dds +
∫ τ

tk
(τ − s)γ−1‖ f (s, x(s), xs)‖Dds

)

+ M2
Γ(γ)

∫ τ
0 ϕ(τ − s)

(
∑

0<tk<s

∫ tk
tk−1

(tk − η)γ−1‖ f (η, x(η), xη)‖Ddη +
∫ s

tk
(s− η)γ−1‖ f (η, x(η), xη)‖Ddη

)
ds

≤ M2

(
‖x1‖+ ‖φ(0)‖D + mC0 + ‖ϕ‖L1(I)(‖φ(0)‖D + mC0)

)
+ M2

(m+1)M0aγ

Γ(γ+1) + M2‖ϕ‖L1(I)
(m+1)M0aγ

Γ(γ+1)

≤ M2

(
(‖ϕ‖L1(I) + 1)(‖φ(0)‖D + (m+1)M0aγ

Γ(γ+1) + mC0) + ‖x1‖
)
= M3, t ∈ I.

For any x ∈ Ω and t ∈ [0, τ], we obtain from (H2)

‖Θ(t; x; ux)‖D ≤ 1
Γ(γ)

(
∑

0<tk<t

∫ tk

tk−1

(tk − s)γ−1‖ f (s, x(s), xs)‖Dds +
∫ t

tk

(t− s)γ−1‖ f (s, x(s), xs)‖Dds

)

+
1

Γ(γ)

(
∑

0<tk<t

∫ tk

tk−1

(tk − s)γ−1‖Bux(s)‖Dds +
∫ t

tk

(t− s)γ−1‖Bux(s)‖Dds

)
≤ (m + 1)M0τγ

Γ(γ + 1)
+

(m + 1)M1M3τγ

Γ(γ + 1)
=

(m + 1)(M0 + M1M3)τ
γ

Γ(γ + 1)
.

(9)

Thus, this together with (7) shows
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‖(Px)(t)‖ ≤ ‖φ(0)‖D + ‖Θ(t; x; ux)‖D + ‖I(t; x)‖D
+
∫ t

0
ϕ(t− s)(‖φ(0)‖D + ‖Θ(s; x; ux)‖D + ‖I(s; x)‖D)ds

≤ ‖φ(0)‖D +
(m + 1)(M0 + M1M3)τ

γ

Γ(γ + 1)
+ mC0

+‖ϕ‖L1(I)

(
‖φ(0)‖D +

(m + 1)(M0 + M1M3)τ
γ

Γ(γ + 1)
+ mC0

)
≤ (‖φ(0)‖D + mC0)

(
‖ϕ‖L1(I) + 1

)
+

(m + 1)(M0 + M1M3)
(
‖ϕ‖L1(I) + 1

)
Γ(γ + 1)

τγ

≤ R0.

On the other hand,

‖(Px)t‖L[−b,0] =
∫ 0

−b
‖(Px)t(θ)‖dθ =


∫ 0

t−b
‖φ(s)‖ds +

∫ t

0
‖(Px)(s)‖ds, t ≤ b,∫ t

t−b
‖(Px)(s)‖ds, t ≥ b,

which means
‖(Px)t‖L[−b,0] ≤ b‖φ‖b + b‖Px‖PC([0,t],X).

Then, we have
sup

t∈[0,τ]
‖(Px)t‖L[−b,0] ≤ b(‖φ‖b + R0).

It is obvious that (Px)(t) = φ(t) for any t ∈ [−b, 0]. Then the factP(Ω) ⊆ Ω is thus proved.
Next, we shall prove that {Px : x ∈ Ω} is equicontinuous on each Ji. For any x ∈ Ω

and ξ1, ξ2 ∈ Ji with ξ1 < ξ2, the discussion can be divided into two cases.
Case (i): If ξ1, ξ2 ∈ J0, then from the continuity of φ(·), we have

‖(Px)(ξ2)− (Px)(ξ1)‖ = ‖φ(ξ2)− φ(ξ1)‖ → 0, as |ξ1 − ξ2| → 0.

Case (ii): If ξ1, ξ2 ∈ Ji, i > 0, then

(Px)(ξ2)− (Px)(ξ1)
= Θ(ξ2; x; ux)−Θ(ξ1; x; ux) + I(ξ2; x)− I(ξ1; x)

+
∫ ξ2

0
℘̇(ξ2 − s)φ(0)ds−

∫ ξ1

0
℘̇(ξ1 − s)φ(0)ds

+
∫ ξ2

0
℘̇(ξ2 − s)Θ(s; x; ux)ds−

∫ ξ1

0
℘̇(ξ1 − s)Θ(s; x; ux)ds

+
∫ ξ2

0
℘̇(ξ2 − s)I(s; x)ds−

∫ ξ1

0
℘̇(ξ1 − s)I(s; x)ds.

Denote by
Λ1 = Θ(ξ2; x; ux)−Θ(ξ1; x; ux) + I(ξ2; x)− I(ξ1; x);

Λ2 =
∫ ξ2

0
℘̇(ξ2 − s)φ(0)ds−

∫ ξ1

0
℘̇(ξ1 − s)φ(0)ds;

Λ3 =
∫ ξ2

0
℘̇(ξ2 − s)(Θ(s; x; ux) + I(s; x))ds−

∫ ξ1

0
℘̇(ξ1 − s)(Θ(s; x; ux) + I(s; x))ds.

Then we have
‖(Px)(ξ2)− (Px)(ξ1)‖ ≤ ‖Λ1‖+ ‖Λ2‖+ ‖Λ3‖.

In the following, we prove that ‖Λi‖ → 0 independently of x ∈ Ω as |ξ1 − ξ2| →
0, i = 1, 2, 3. For Λ1, we have



Fractal Fract. 2021, 5, 279 11 of 19

‖Λ1‖ ≤
∥∥∥∥∫ ξ2

ti−1

(ξ2 − s)γ−1 f (s, x(s), xs)ds−
∫ ξ1

ti−1

(ξ1 − s)γ−1 f (s, x(s), xs)ds
∥∥∥∥

+

∥∥∥∥∫ ξ2

ti−1

(ξ2 − s)γ−1Bux(s)ds−
∫ ξ1

ti−1

(ξ1 − s)γ−1Bux(s)ds
∥∥∥∥

≤
∫ ξ1

ti−1

[(ξ1 − s)γ−1 − (ξ2 − s)γ−1]‖ f (s, x(s), xs)‖Dds +
∫ ξ2

ξ1

(ξ2 − s)γ−1‖ f (s, x(s), xs)‖Dds

+
∫ ξ1

ti−1

[(ξ1 − s)γ−1 − (ξ2 − s)γ−1]‖Bux(s)‖Dds +
∫ ξ2

ξ1

(ξ2 − s)γ−1‖Bux(s)‖Dds

≤ M0

γ
[(ξ1 − ti−1)

γ − (ξ2 − ti−1)
γ + (ξ2 − ξ1)

γ] +
M0

γ
(ξ2 − ξ1)

γ

+
M1M3

γ
[(ξ1 − ti−1)

γ − (ξ2 − ti−1)
γ + (ξ2 − ξ1)

γ] +
M1M3

γ
(ξ2 − ξ1)

γ

→ 0, as |ξ1 − ξ2| → 0.

For Λ2, we can rewrite it as

Λ2 =
∫ ξ2

0
℘̇(ξ2 − s)φ(0)ds−

∫ ξ1

0
℘̇(ξ1 − s)φ(0)ds

=
∫ ξ2−ξ1

0
℘̇(ξ2 − s)φ(0)ds +

∫ ξ2

ξ2−ξ1

℘̇(ξ2 − s)φ(0)ds−
∫ ξ1

0
℘̇(ξ1 − s)φ(0)ds

=
∫ ξ2−ξ1

0
℘̇(ξ2 − s)φ(0)ds.

By Definition 4, one gets

‖Λ2‖ ≤ ‖φ(0)‖D
∫ ξ2−ξ1

0
ϕ(ξ2 − s)ds → 0, as |ξ1 − ξ2| → 0.

From the proof process of Lemma 6 and (9), it follows that

‖Λ3‖ =

∥∥∥∥∫ ξ2

0
℘̇(ξ2 − s)(Θ(s; x; ux) + I(s; x))ds−

∫ ξ1

0
℘̇(ξ1 − s)(Θ(s; x; ux) + I(s; x))ds

∥∥∥∥
≤

∥∥∥∥∫ ξ2−ξ1

0
℘̇(ξ2 − s)Θ(s; x; ux)ds +

∫ ξ2

ξ2−ξ1

℘̇(ξ2 − s)Θ(s; x; ux)ds−
∫ ξ1

0
℘̇(ξ1 − s)Θ(s; x; ux)ds

∥∥∥∥
+

∥∥∥∥∫ ξ2

0
℘̇(ξ2 − s)I(s; x)ds−

∫ ξ1

0
℘̇(ξ1 − s)I(s; x)ds

∥∥∥∥
≤

∥∥∥∥∫ ξ2−ξ1

0
℘̇(ξ2 − s)Θ(s; x; ux)ds +

∫ ξ1

0
℘̇(s)Θ(ξ2 − s; x; ux)ds−

∫ ξ1

0
℘̇(s)Θ(ξ1 − s; x; ux)ds

∥∥∥∥
+

∥∥∥∥∫ ξ2−ξ1

0
℘̇(ξ2 − s)I(s; x)ds +

∫ ξ1

0
℘̇(s)[I(ξ2 − s; x)− I(ξ1 − s; x)]ds

∥∥∥∥
≤

∫ ξ2−ξ1

0
ϕ(ξ2 − s)‖Θ(s; x; ux)‖Dds +

∫ ξ1

0
ϕ(s)‖Θ(ξ2 − s; x; ux)−Θ(ξ1 − s; x; ux)‖Dds

+
∫ ξ2−ξ1

0
ϕ(ξ2 − s)‖I(s; x)‖Dds +

∫ ξ1

0
ϕ(s)‖I(ξ2 − s; x)− I(ξ1 − s; x)‖Dds

≤
∫ ξ2−ξ1

0
ϕ(ξ2 − s)ds · (m + 1)(M0 + M1M3)τ

γ

Γ(γ + 1)
+
∫ ξ1

0
ϕ(s)ds · 2(M0 + M1M3)

γ
(ξ2 − ξ1)

γ

+mC0

∫ ξ2−ξ1

0
ϕ(ξ2 − s)ds

→ 0, as |ξ1 − ξ2| → 0.

To sum up, it can be concluded that ‖(Px)(ξ2)− (Px)(ξ1)‖ → 0, as |ξ1 − ξ2| → 0, for all
x ∈ Ω. Consequently, {Px : x ∈ Ω} is equicontinuous on each Ji (i = 0, 1, · · ·, m + 1).

Lemma 9. Assume that conditions (H1)(i), (H2), (H3)(i) and (H4) hold. Then the operator
P : Ω→ Ω is continuous.

Proof. Since P(Ω) ⊆ Ω from Lemma 8, we only need to prove that P is continuous.
Suppose {yn} to be a sequence satisfying yn → y in Ω as n→ ∞.
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From condition (H3), it is easy to see that

∑
0<tk<t

‖Ik(yn(tk))− Ik(y(tk))‖D → 0, t ∈ [0, τ], as n→ +∞.

From condition (H1) and Lebesgue dominated convergence theorem, it follows that∫ t

t∗
(t− s)γ−1‖ f (s, yn(s), (yn)s)− f (s, y(s), ys)‖Dds→ 0, ∀t∗, t ∈ [0, τ], as n→ +∞.

Therefore, one can obtain

‖Buyn(s)− Buy(s)‖D
≤ M1M2

[
‖Θ f (τ; yn)−Θ f (τ; y)‖D + ‖I(τ; yn)− I(τ; y)‖D

+
∫ τ

0
ϕ(τ − s)(‖Θ f (s; yn)−Θ f (s; y)‖D + ‖I(s; yn)− I(s; y)‖D)ds

]
≤ M1M2

[
∑

0<tk<τ

∫ tk

tk−1

(tk − s)γ−1‖ f (s, yn(s), (yn)s)− f (s, y(s), ys)‖Dds

+
∫ τ

tk

(τ − s)γ−1‖ f (s, yn(s), (yn)s)− f (s, y(s), ys)‖Dds + ∑
0<tk<τ

‖Ik(yn(tk))− Ik(y(tk))‖D

+
∫ τ

0
ϕ(τ − s)

(
∑

0<tk<s

∫ tk

tk−1

(tk − η)γ−1‖ f (η, yn(η), (yn)η)− f (η, y(η), yη)‖Ddη

+
∫ s

tk

(s− η)γ−1‖ f (η, yn(η), (yn)η)− f (η, y(η), yη)‖Ddη + ∑
0<tk<s

‖Ik(yn(tk))− Ik(y(tk))‖D

)
ds

]
→ 0, as n→ +∞.

Then, for each t ∈ [0, τ], one has

‖(Pyn)(t)− (Py)(t)‖
≤ ‖Θ(t; yn; uyn)−Θ(t; y; uy)‖D + ‖I(t; yn)− I(t; y)‖D

+
∫ t

0
‖℘̇(t− s)[Θ(s; yn; uyn)−Θ(s; y; uy)]‖ds +

∫ t

0
‖℘̇(t− s)[I(s; yn)− I(s; y)]‖ds

≤ ∑
0<tk<t

∫ tk

tk−1

(tk − s)γ−1‖ f (s, yn(s), (yn)s)− f (s, y(s), ys)‖Dds

+
∫ t

tk

(t− s)γ−1‖ f (s, yn(s), (yn)s)− f (s, y(s), ys)‖Dds + ∑
0<tk<t

‖Ik(yn(tk))− Ik(y(tk))‖D

+ ∑
0<tk<t

∫ tk

tk−1

(tk − s)γ−1‖Buyn(s)− Buy(s)‖Dds +
∫ t

tk

(t− s)γ−1‖Buyn(s)− Buy(s)‖Dds

+
∫ t

0
ϕ(t− s)

(
∑

0<tk<s

∫ tk

tk−1

(tk − η)γ−1‖ f (η, yn(η), (yn)η)− f (η, y(η), yη)‖Ddη

+
∫ s

tk

(s− η)γ−1‖ f (η, yn(η), (yn)η)− f (η, y(η), yη)‖Ddη

)
ds

+
∫ t

0
ϕ(t− s)

(
∑

0<tk<s

∫ tk

tk−1

(tk − η)γ−1‖Buyn(η)− Buy(η)‖Ddη

+
∫ s

tk

(s− η)γ−1‖Buyn(η)− Buy(η)‖Ddη

)
ds +

∫ t

0
ϕ(t− s)

(
∑

0<tk<s
‖Ik(yn(tk))− Ik(y(tk))‖D

)
ds

→ 0, as n→ +∞.

By means of the similar proof of equicontinuous for {Px : x ∈ Ω} in Lemma 8 and the
Ascoli-Arzelà theorem, it is easy to get ‖Pyn − Py‖PC(J,X) → 0, as n → +∞, i.e., P is
continuous on Ω. The conclusion follows.

Now, it is in the position to present our main theorem of this work.



Fractal Fract. 2021, 5, 279 13 of 19

Theorem 1. Assume that hypotheses (H1)–(H4) hold, then the fractional evolution Equations (1)
satisfies exact controllability on I.

Proof. From (8) and Lemma 1, we know that it is suffices to show that under control ux
the operator P has a fixed point x which is a mild solution of (1) on J. Simple verification
implies the fact x(τ) = (Px)(τ) = x1 which can show that system (1) is exactly controllable
on I. For this purpose, we shall take advantage of Mönch fixed point theorem.

The continuity of operator P : Ω → Ω is given by Lemma 9. Take B = coP(Ω).
It is not difficult to check that P(B) ⊆ B. Suppose D0 ⊂ B to be a bounded countable
set satisfying D0 ⊂ co({x0}

⋃P(D0)), we shall prove that β(D0) = 0. From Lemma 8,
it is easy to derive that P(D0) is equicontinuous on Ji, i = 0, 1, · · ·, m + 1. Notice that
D0 ⊂ co({x0}

⋃P(D0)), so D0 is also equicontinuous on each Ji.
For any x ∈ D0, denote

(Px)(t) =

{
(P1x)(t) + (P2x)(t) + (P3x)(t) + (P4x)(t), t ∈ [0, τ],

φ(t), t ∈ [−b, 0],

where
(P1x)(t) = φ(0) + I(t; x);
(P2x)(t) = Θ(t; x; ux);

(P3x)(t) =
∫ t

0
℘̇(t− s)Θ(s; x; ux)ds;

(P4x)(t) =
∫ t

0
℘̇(t− s)(φ(0) + I(s; x))ds.

Without loss of generality, let D0 = {zn}∞
n=1. Then it is not difficult to obtain that

β(P1(D0)(t)) = β

({
φ(0) + ∑

0<tk<t
Ik(zn(tk))

})
≤

m

∑
i=1

kiβ({zn})

=
m

∑
i=1

ki · β(D0), t ∈ [0, τ].

(10)

From hypothesis (H1)(ii) and Lemma 5, for any s ∈ I, we get

β({ f (s, zn(s), (zn)s)}) ≤ l(s)(β({zn(s)}) + β({(zn)s}))
≤ l(s)(β({zn(s)}) + bβ({zn}))
≤ l(s)(β(D0(s)) + bβ(D0))
≤ l(s)(b + 1)β(D0).

Then this implies from Lemma 2 and Lemma 7 that

β
({

Θ f (t; zn)
})

= β

({
1

Γ(γ)

(
∑

0<tk<t

∫ tk

tk−1

(tk − s)γ−1 f (s, zn(s), (zn)s)ds +
∫ t

tk

(t− s)γ−1 f (s, zn(s), (zn)s)ds

)})

≤ 2
Γ(γ)

(
∑

0<tk<t

∫ tk

tk−1

(tk − s)γ−1β({ f (s, zn(s), (zn)s)})ds +
∫ t

tk

(t− s)γ−1β({ f (s, zn(s), (zn)s)})ds

)
≤ 2(m + 1)

Γ(γ)
λτγβ(D0), t ∈ [0, τ],

which together with (H2) (ii) indicates
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β({uzn(s)})

≤ k(s)
(

β({(P1zn)(τ)}) + β
({

Θ f (τ; zn)
})

+ 2
∫ τ

0
β
({

℘̇(τ − s)
(
(P1zn)(s) + Θ f (s; zn)

)})
ds
)

≤ k(s)
(

β(P1(D0)(τ)) + β
({

Θ f (τ; zn)
})

+ 2
∫ τ

0
ϕ(τ − s)

(
β(P1(D0)(s)) + β

({
Θ f (s; zn)

}))
ds
)

≤ k(s)

((
m

∑
i=1

ki +
2(m + 1)

Γ(γ)
λτγ

)
β(D0) + 2‖ϕ‖L1(I)

(
m

∑
i=1

ki +
2(m + 1)

Γ(γ)
λτγ

)
β(D0)

)

≤ k(s)

(
m

∑
i=1

ki +
2(m + 1)

Γ(γ)
λτγ

)(
1 + 2‖ϕ‖L1(I)

)
β(D0), s ∈ [0, τ].

In addition, by using Hölder inequality, we have

∑
0<tk<t

∫ tk

tk−1

(tk − s)γ−1k(s)ds +
∫ t

tk

(t− s)γ−1k(s)ds

≤ m
(

1− p
γ− p

)1−p
‖k‖

L
1
p

aγ +

(
1− p
γ− p

)1−p
‖k‖

L
1
p

aγ

= ρ.

Consequently,

β(P2(D0)(t))

≤ β
({

Θ f (t; zn)
})

+ β

({
1

Γ(γ)

(
∑

0<tk<t

∫ tk

tk−1

(tk − s)γ−1Buzn(s)ds +
∫ t

tk

(t− s)γ−1Buzn(s)ds

)})

≤ β
({

Θ f (t; zn)
})

+
2M1

Γ(γ)

(
∑

0<tk<t

∫ tk

tk−1

(tk − s)γ−1β({uzn(s)})ds +
∫ t

tk

(t− s)γ−1β({uzn(s)})ds

)
≤ β

({
Θ f (t; zn)

})
+

2M1

Γ(γ)

(
m

∑
i=1

ki +
2(m + 1)

Γ(γ)
λτγ

)(
1 + 2‖ϕ‖L1(I)

)(
∑

0<tk<t

∫ tk

tk−1

(tk − s)γ−1k(s)ds +
∫ t

tk

(t− s)γ−1k(s)ds

)
β(D0)

≤ 2(m + 1)
Γ(γ)

λτγβ(D0) +
2ρM1

Γ(γ)

(
m

∑
i=1

ki +
2(m + 1)

Γ(γ)
λτγ

)(
1 + 2‖ϕ‖L1(I)

)
β(D0)

≤
1 + 2ρM1

(
1 + 2‖ϕ‖L1(I)

)
Γ(γ)

(
2(m + 1)λτγ +

m

∑
i=1

ki

)
β(D0)

=

(
2(m + 1)Mλτγ + M

m

∑
i=1

ki

)
β(D0).

(11)

From Lemma 2, for t ∈ [0, τ], we have

β(P3(D0)(t)) = β

({∫ t

0
℘̇(t− s)Θ(s; zn; uznx )ds

})
≤ 2

∫ t

0
β
({

℘̇(t− s)Θ(s; zn; uznx )
})

ds

≤ 2
∫ t

0
ϕ(t− s)β(P2(D0)(s))ds

≤ 2‖ϕ‖L1(I)

(
2(m + 1)Mλτγ + M

m

∑
i=1

ki

)
β(D0).

(12)
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In view of (10), for each t ∈ [0, τ], we obtain

β(P4(D0)(t)) = β

({∫ t

0
℘̇(t− s)(φ(0) + I(s; zn))ds

})
≤ 2

∫ t

0
β({℘̇(t− s)(φ(0) + I(s; zn))})ds

≤ 2
∫ t

0
ϕ(t− s)β(P1(D0)(s))ds

≤
(

2‖ϕ‖L1(I)

m

∑
i=1

ki

)
β(D0).

(13)

Therefore, by (10), (11), (12) and (13), we can get

β(P(D0)(t)) ≤ β(P1(D0)(t)) + β(P2(D0)(t)) + β(P3(D0)(t)) + β(P4(D0)(t))

≤
m

∑
i=1

ki · β(D0) +

(
2(m + 1)Mλτγ + M

m

∑
i=1

ki

)
β(D0)

+2‖ϕ‖L1(I)

(
2(m + 1)Mλτγ + M

m

∑
i=1

ki

)
β(D0) +

(
2‖ϕ‖L1(I)

m

∑
i=1

ki

)
β(D0)

≤
(

1 + 2‖ϕ‖L1(I)

)(
2(m + 1)Mλτγ + (1 + M)

m

∑
i=1

ki

)
β(D0)

≤
(

2
(

1 + 2‖ϕ‖L1(I)

)
(m + 1)λMτγ +

(
1 + 2‖ϕ‖L1(I)

)
(1 + M)

m

∑
i=1

ki

)
β(D0).

(14)

Besides, from the equicontinuity of P(D0) on each Ji and Proposition 7.3 of [31] about
the measures of noncompactness, it follows that

β(P(D0)) = max
0≤i≤m+1

max
t∈Ji

β((PD0)(t)). (15)

Consequently, by (7), (14) and (15), we can obtain

β(D0) ≤ β(co({x0}
⋃P(D0))) ≤ β(P(D0)) < β(D0),

which indicates β(D0) = 0. By lemma 2 (I)(i), we know that D0 is relatively compact. Then
from Lemma 3, P has at least one fixed point x ∈ B, which means that system (1) is exactly
controllable on I. The conclusion follows.

Remark 3. Resolvent operator is a generalization of C0 semigroup and then has more extensive
applications [28]. For instance, for the special case that scalar kernel is taken as 1, the resolvent
operator ℘(t) becomes the C0 semigroup eAt generated by A. We refer the readers to [28,32], in
which examples are presented to show that they can not generate a C0 semigroup but admit a
resolvent operator. Then we improve and generalize some analogous results of fractional evolution
systems.

4. Examples

Example 1. Consider the following fractional partial differential evolution system of the form

∂
3
5

∂t
3
5

x(t, ξ) =
∂

∂ξ
x(t, ξ) +

µ(t)xt(ξ)

1 + |xt(ξ)|
+
∫ t

−b
σ(t− s)x(s, ξ)ds + δ(ξ)ω(t, ξ), (t, ξ) ∈ [0, a]× (0, 1),

x(t, 0) = x(t, 1) = 0, t ∈ [0, a],

∆x(ti, ξ) =
sin(x(ti, ξ))

2 + ζi(1 + |x(ti, ξ)|) , i = 1, 2, · · ·, m,

x(t, ξ) = φ(t, ξ), (t, ξ) ∈ [−b, 0]× [0, 1],

(16)
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where µ ∈ C([0, a], R), σ ∈ L([−b, a + b], R), δ is a characteristic function of certain subinterval
D ⊂ [0, 1], ω ∈ C([0, a] × [0, 1], R), ζi ∈ C(R, R+), i = 1, 2, · · ·, m, and φ ∈ C([−b, 0] ×
[0, 1], R) which satisfies φ(t, 0) = φ(t, 1) = 0 for t ∈ [−b, 0].

Define X = C([0, 1], R), D = {x ∈ X : x′ ∈ X, x(0) = x(1) = 0}, Ax = x′ for
x ∈ D. Thus, A is an infinitesimal generator of a noncompact semigroup {T(t) : t ≥
0} which is given by T(t)x(s) = x(t + s) for x ∈ X. From the subordinate principle
(see Chapter 3, [33]), it follows that A is the infinitesimal generator of a strongly continuous
differentiable bounded linear operators family {℘(t)}t≥0 (0 < γ < 1) such that ℘(0) = I,
and

℘(t) =
∫ ∞

0
ϕt,γ(s)T(s)ds, t > 0,

where ϕt,γ(s) = t−γΦγ(st−γ), and

Φγ(z) =
∞

∑
n=0

(−z)n

n!Γ(−γn + 1− γ)
=

1
2πi

∫
Γ0

$γ−1exp($− z$γ)d$, 0 < γ < 1,

where Γ0 is a contour which starts and ends at −∞ and encircles the origin once counter-
clockwise.

Let

D
3
5 x(t)(ξ) =

∂
3
5

∂t
3
5

x(t, ξ),

x(t)(ξ) = x(t, ξ),
Bu(t)(ξ) = δ(ξ)ω(t, ξ),
φ(t)(ξ) = φ(t, ξ),

f (t, x(t), xt)(ξ) =
µ(t)xt(ξ)

1 + |xt(ξ)|
+
∫ t

−b
σ(t− s)x(s, ξ)ds,

Ii(x(ti))(ξ) =
sin(x(ti, ξ))

2 + ζi(1 + |x(ti, ξ)|) , i = 1, 2, · · ·, m.

Then problem (16) can be regarded as
Dγx(t) = Ax(t) + f (t, x(t), xt) + Bu(t), a.e. t ∈ I := [0, a],
∆x(ti) = x(t+i )− x(t−i ) = Ii(x(ti)), i = 1, 2, · · ·, m,
x(t) = φ(t), t ∈ [−b, 0],

and it is not difficult to check that all the hypotheses of Theorem 1 are satisfied. Then
system (16) satisfies exact controllability on [0, a].

Example 2. consider the following fractional partial differential evolution system of the form

∂
1
3

∂t
1
3

x(t, y) = ∆x(t, y) +
e−2t

3 + et x(t + θ, y) + δ(y)u(t, y), (t, y) ∈ [0, a]×Ω,

x(t, y) = 0, (t, y) ∈ [0, a]× ∂Ω,

∆x(ti, y) =
sin(x(ti, y))

e + vi(1 + |x(ti, y)|) , i = 1, 2, · · ·, m,

x(t, y) = φ(t, y), (t, y) ∈ [−b, 0]×Ω,

(17)

where Ω ⊂ RN represents a bounded domain with smooth boundary ∂Ω, ∆ denotes the Laplace
operator, δ stands for the characteristic function of certain subdomain D ⊂ Ω, u ∈ L2([0, a]×Ω),
vi ∈ C(R, R+), i = 1, 2, · · ·, m, φ ∈ C2,1([−b, 0]×Ω

)
which satisfies φ(t, y) ≡ 0 for (t, y) ∈

[−b, 0]× ∂Ω, and θ ∈ [−b, 0].

Let X = LP(Ω) and the operator A : D ⊂ X → X defined as Ax = ∆x with domain
D =

{
W2,N(Ω)

⋂
W1,N

0 (Ω)
}

. Then, A generates a uniformly bounded analytic semigroup.
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Define γ = 1
3 , x(t)(y) = x(t, y), u(t)(y) = u(t, y), Bu(t)(y) = δ(y)u(t, y), φ(t)(y) = φ(t, y),

and

Ii(x(ti))(y) =
sin(x(ti, y))

e + vi(1 + |x(ti, y)|) , i = 1, 2, · · ·, m.

Let

f (t, x(t), xt)(y) =
e−2t

3 + et x(t + θ, y).

Then problem (17) can be regarded as
Dγx(t) = Ax(t) + f (t, x(t), xt) + Bu(t), a.e. t ∈ I := [0, a],
∆x(ti) = x(t+i )− x(t−i ) = Ii(x(ti)), i = 1, 2, · · ·, m,
x(t) = φ(t), t ∈ [−b, 0],

It is not difficult to check that all the hypotheses of Theorem 1 are satisfied. Then system
(17) satisfies exact controllability on [0, a].

5. Conclusions

This paper derives some new controllability results for a class of fractional impulsive
evolution equations with time delay in Banach spaces by using resolvent operator theory
and the theory of nonlinear functional analysis. In detail, from the point of view of
the restrictions imposed on nonlinearity and impulse terms, exact controllability of the
addressed system can be guaranteed even if the nonlinearity and impulse items are only
continuous rather than Lipschitz continuous and other restrictive conditions. In order to
avoid the limitation that the exact controllability only apply to the finite dimensional space
due to the compact semigroup, we substitute the differentiability of resolvent operator for
the compactness of semigroup in the present work. With the properly defined delay item
in a corresponding complete space, we have solved the disturbances of time delay to the
investigation of exact controllability for the considered system.

Further investigation about the nonlocal controllability for a class of fractional impul-
sive integrodifferential evolution inclusions with time delay and nonlocal conditions will
be carried on:

Dγx(t) ∈ Ax(t) + f (t, xt,
∫ t

0
k(t, s, xs)ds) + Bu(t), a.e. t ∈ I := [0, a],

∆x(ti) = x(t+i )− x(t−i ) = Ii(x(ti)), i = 1, 2, · · ·, m,
x(t) + gt(x) = φ(t), t ∈ [−b, 0],

(18)

where gt : C([−b, a], E)→ E is given function. Compared with the classical initial condition
x(0) = x0 and other nonlocal items [25,34,35], this nonlocal condition has better application
effect in physics. In practical applications, it may be given by gt(x) = ∑k

i=1 cix(τi + t), t ∈
[−b, 0], where ci (i = 1, 2, · · ·, k) are given constants and 0 < τ1 < τ2 < · · · < τn ≤ a. At
time t = 0, we have g0(x) = ∑k

i=1 cix(τi), which is exactly the cases in [25,34,35].
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