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Abstract: In this paper, we study some important basic properties of Dunkl-bounded variation
functions. In particular, we derive a way of approximating Dunkl-bounded variation functions by
smooth functions and establish a version of the Gauss–Green Theorem. We also establish the Dunkl
BV capacity and investigate some measure theoretic properties, moreover, we show that the Dunkl
BV capacity and the Hausdorff measure of codimension one have the same null sets. Finally, we
develop the characterization of a heat semigroup of the Dunkl-bounded variation space, thereby
giving its relation to the functions of Dunkl-bounded variation.

Keywords: functions of bounded variation; Dunkl operator; Dunkl capacity; Dunkl kernel; heat kernel

1. Introduction

Throughout this paper, Ω stands for an open subset of RN with N ≥ 2. We recall func-
tions of bounded variation, which is to say functions whose weak first partial derivatives
are Radon measures. Precisely, see the following definition of BV functions (cf. [1,2]).

Definition 1. A function f ∈ L1(Ω) is called a function of bounded variation if its total variation

‖D f ‖(Ω) := sup
{ ∫

Ω
f divϕ dx : ϕ = (ϕ1, . . . , ϕN) ∈ C∞

c (Ω;RN), |ϕ(x)| ≤ 1, x ∈ Ω
}

is finite. The class of all such functions will be denoted by BV(Ω), where the space BV(Ω) is
endowed with the norm

‖ f ‖BV(Ω) := ‖ f ‖L1(Ω) + ‖D f ‖(Ω).

Since Sobolev functions are contained within the class of BV functions of several
variables, so the BV functions play an important role in some problems of variational
science. For example, these function spaces have good completeness and compactness
properties, consequently they are often proper settings for the applications of functional
analysis, linear and nonlinear PDE theory, mathematical physics equations and fractional
differential Equations (cf. [3–6]). The BV function is classically applied to the minimum
area problem and the free discontinuity problem (cf. [7]). Please see [1,8–11] for more
details. Another interesting and important aspect of the results is the analysis of sets of
so-called finite perimeters. These sets have applications in a variety of settings due to
their generality and utility. In [12], Ambrosio investigated fine properties of sets of finite
perimeters in doubling metric measure spaces.

It is well known that the notion of capacity is critical in describing the null sets used
to handle the pointwise behavior of Sobolev functions. The functional capacities play a
significant role in every branch of mathematics, such as analysis, geometry, mathematical
physics, and PDEs. Refer to [13–15] for more details. In recent years, the BV capacity
has attracted the attention of many scholars. In 1989, Ziemer introduced the classical BV
capacity and the related capacity inequality in [2]. In 2010, Hakkarainen and Kinnunen [16]
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studied basic properties of the BV capacity and Sobolev capacity of order one in a complete
metric space equipped with a doubling measure and supporting a weak Poincaré inequality.
Hakkarainen and Shanmugalingam [17] further studied the relationship between the
variational Sobolev 1-capacity and the BV capacity. In 2016, Xiao [18] introduced the
BV-type capacity in the Gaussian space GN and applied the Gaussian BV capacity to
trace theory of the Gaussian BV space. In 2017, Liu [19] obtained some sharp traces
and isocapacity inequalities using the BV capacity on the generalized Grushin plane G2

α.
Recently, inspired by the classical case α = 1, Huang, Li and Liu studied the BV capacity
and perimeter from the α-Hermite bounded variation (cf. [10]). See [17,18,20,21] and the
references therein for more on this topic.

Dunkl operator is found to play an increasingly important role in the study of many
special functional problems with reflective symmetry. In a certain sense, the study of har-
monic analysis related to the Dunkl operator is a further development of classical harmonic
analysis theory and a popular research direction in the field of modern mathematics. Dunkl
operator is a parameterized differential difference operator related to the finite reflection
group, which operates in the Euclidean space. In recent years, these operators and their
generalizations have gained considerable interest in various fields of mathematics and
physics. They provide a useful tool for studying specific functions related to root systems.

Combined with the existing research results mentioned above, we know that there
have been many studies of bounded variation functions in different settings due to their
important roles in some problems of variational science. As we know, there are no theoretic
research results in the Dunkl setting. In this paper, we will focus on the BV space, the
related BV capacity and an interesting heat semigroup characterization in the context of
Dunkl theory. These results may have potential applications in the theory of function
spaces and PDEs in the Dunkl setting.

At first, we will present a very short introduction to Dunkl operator which is used in
the following sections. The Dunkl operators were first introduced and studied by Dunkl
in [22]. See [23,24] for the general theory of root systems, and see [25–28] for an overview
of the rational Dunkl theory.

We shall always assume that the N-dimensional Euclidean space RN is equipped with
the standard Euclidean scalar product 〈x, y〉 = ∑N

j=1 xjyj. A root system R ⊂ RN \ {0} is a
finite set if R ∩ αR = {±α} and σα(R) = R for every α ∈ R. The symbol σα is the reflection
in the hyperplane 〈α〉⊥ orthogonal to α, that is,

σα(x) = x− 2
〈α, x〉
|α|2 α,

where |α| =
√
〈α, α〉 and x ∈ RN (cf. [24,28]).

Note that the reflection group G = G(R) generated by every reflection σα for α ∈ R is
finite, which is called the Weyl group, and is contained in the orthogonal group O(N,R).
Write a root system R as the disjoint union R = R+ ∪ (−R+), where R+ and −R+ are
separated by a hyperplane through the origin. Let us call R+ a positive subsystem. Any
root system can not be uniquely written as an disjoint union, but our decomposition does
not affect the following definition due to the G-invariance of the coefficients k. RN is
divided into connected open components by the set of hyperplanes {〈α〉⊥, α ∈ R} which
is named the Weyl chambers RN

ε . For convenience, we allow that R is normalized in the
sense that 〈α, α〉 = 2 for every α ∈ R.

A function k : R→ [0, ∞) is called a multiplicity function on R, if it is invariant under
the natural action of G on R, that is, k(α) = k(gα) for all g ∈ G and α ∈ R. The weight
function wk associated with Dunkl operators on RN is defined in [22,24,28] as follows:

wk(x) = ∏
α∈R+

|〈α, x〉|2k(α). (1)
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The function wk is G-invariant, that is, wk(x) = wk(gx) for all g ∈ G. Furthermore, it is also
a homogeneous function of degree 2γ, where

γ := ∑
α∈R+

k(α).

We have k(−α) = k(α) for all α ∈ R due to the G-invariance of k. Hence, this definition
does not depend on the special choice of R+.

The following definitions and facts for Dunkl operator and Dunkl gradient can be
seen from [28].

For i = 1, 2, . . . , N, the Dunkl operator associated with G on C1(RN) is defined by

Ti f (x) := ∂i f (x) + ∑
α∈R+

k(α)αi
f (x)− f (σαx)
〈α, x〉 ,

where Ti denotes the directional derivative corresponding to the i-th standard basis vector
ei ∈ RN . The Dunkl gradient is denoted by ∇k = (T1, . . . , TN) and the Dunkl Laplacian is
naturally denoted by ∆k = ∑N

i=1 T2
i , more specifically,

∆k f (x) = ∆ f (x) + 2 ∑
α∈R+

k(α)
[
〈∇ f (x), α〉
〈α, x〉 − f (x)− f (σαx)

〈α, x〉2

]
.

Notice when k = 0, the Ti is reduced to the usual partial derivatives. At this time, ∇0 and
∆0 indicate the usual gradient and Laplacian, respectively. Denote by Lp(µk) the weighted
space, where dµk(x) = wk(x) dx is the Dunkl measure. The following anti-symmetry of
the Dunkl operator ∫

RN
Ti f (x)g(x) dµk(x) = −

∫
RN

f (x)Tig(x) dµk(x) (2)

holds for all f , g ∈ C1
c (RN). Moreover, we need to know an important product rule: If

f (x), g(x) ∈ C1
c (RN), and at least one of them is G-invariant, then

Ti( f (x)g(x)) = Ti f (x) · g(x) + f (x) · Tig(x). (3)

The structure of the paper is given as follows. In Section 2, we investigate the Dunkl-
bounded variation space BVk(Ω) and obtain some basic results of BV functions belonging
to BVk(Ω), such as the structure theorem, the lower semicontinuity, approximation with
smooth functions, the compactness result, and the Gauss–Green Theorem. In Section 3, we
introduce the Dunkl BV capacity cap

(
E, BVk(RN)

)
for a set E ⊆ RN and investigate the

measure theoretic properties of cap
(
·, BVk(RN)

)
, we discuss the capacity of a Borel set by

approximating with compact sets from inside and open sets from outside, furthermore, we
study its connection to the Hausdorff measure of codimension one, which shows that the
Dunkl BV capacity and the Hausdorff measure of codimension one have the same null
sets. Section 4 is devoted to some results concerning the behavior of the heat semigroup for
Dunkl BV functions and obtaining a heat semigroup characterization of bounded variation
in the Dunkl setting. Finally, Section 5 gives a conclusion in this article.

It should be noted that, compared with the classical cases from previous works, we
need to overcome some key difficulties by seeking some new methods and techniques
in the proofs of our main theorems, such as, approximation with smooth functions, the
Gauss–Green Theorem and the heat semigroup characterization from Dunkl-bounded
variation, etc. Some key difficulties come from the difference term of the Dunkl operator.
See the results in the following sections for the details.
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2. Dunkl BV Space

Firstly, we introduce a suitable notion of functions of Dunkl bounded variation. The
Dunkl divergence of a vector valued function

ϕ = (ϕ1, . . . , ϕN) ∈ C∞(Ω,RN)

is given as follows:

divk ϕ(x) =
N

∑
i=1

Ti ϕi(x) =
N

∑
i=1

(
∂i ϕi(x) + ∑

α∈R+

k(α)αi
ϕi(x)− ϕi(σαx)

〈α, x〉

)
.

The Dunkl variation of f ∈ L1(Ω, µk) is defined by

‖∇k f ‖(Ω) = sup
ϕ∈F (Ω,RN)

{∫
Ω

f (x)divk ϕ(x) dµk(x)
}

,

where
F (Ω,RN) :=

{
ϕ = (ϕ1, . . . , ϕN ) ∈ C∞

c (Ω,RN), ‖ϕ‖L∞ ≤ 1
}

,

and
‖ϕ‖L∞ = sup

x∈Ω
(|ϕ1(x)|2 + · · ·+ |ϕN(x)|2)

1
2 .

A L1(µk) function is said to have the Dunkl-bounded variation on Ω if

‖∇k f ‖(Ω) < ∞,

and the set of all of these functions is denoted as BVk(Ω), which is a Banach space. We will
prove it in detail later in Lemma 5. If we choose k = 0, then it is the classical BV space.

A function f ∈ L1
loc(Ω, µk) has locally Dunkl-bounded variation in Ω if for each open

set U ⊂⊂ Ω,

‖∇k f ‖(U) := sup
{∫

U
f (x)divk ϕ(x) dµk(x)|ϕ ∈ C∞

c (U,RN), ‖ϕ‖L∞ ≤ 1
}

< ∞.

We use BVk,loc(Ω) to denote the space of such functions.
Let Ω ⊂ RN be a bounded open set and E ⊂ Ω be a Borel set. We can define

‖∇k f ‖(E) = inf{‖∇k f ‖(U) : E ⊂ U, U ⊂ Ω open}.

In fact, ‖∇k f ‖(·) is a Radon measure in Ω. Let us prove the general structure theorem.

Lemma 1. (Structure Theorem for BVk functions). Let f ∈ BVk(Ω). Then there exists a Radon
measure µ on Ω such that∫

Ω
f (x)divk ϕ(x) dµk(x) = −

∫
Ω

ϕ(x) · dµ(x)

for every ϕ ∈ C∞
c (Ω,RN) and

‖∇k f ‖(Ω) = |µ|(Ω),

where |µ| is the total variation of the measure µ.

Proof. It is easy to see that∣∣∣∣∫Ω
f (x)divk ϕ(x) dµk(x)

∣∣∣∣ ≤ ‖∇k f ‖(Ω)‖ϕ‖L∞(Ω) ∀ϕ ∈ C∞
c (Ω,RN).
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Denote by the functional Φ with

Φ : C∞
c (Ω,RN)→ R,

where
〈Φ, ϕ〉 :=

∫
Ω

f (x)divk ϕ(x) dµk(x).

Then using the Hahn-Banach theorem, we know that there exists a linear and continuous
extension L of Φ to the normed space (Cc(Ω,RN), ‖ · ‖L∞(Ω)) such that

‖L‖ = ‖Φ‖ = ‖∇k f ‖(Ω).

By the Riesz representation theorem (cf. Corollary 1.55 in [7]), there exists a unique RN-
valued finite Radon measure µ such that

L(ϕ) =
∫

Ω ϕ(x) · dµ(x) ∀ϕ ∈ Cc(Ω,RN),

and |µ|(Ω) = ‖L‖. Thus, we have |µ|(Ω) = ‖∇k f ‖(Ω). This completes the proof.

As we know, W1,1
loc (Ω) ⊂ BVloc(Ω) implies that each Sobolev function has bounded

variation. We similarly obtain the relation in the Dunkl setting. The Dunkl Sobolev space
W1,p

k (Ω) is the space consisting of all functions f ∈ Lp(µk), 1 ≤ p ≤ ∞ and ∇k f ∈ Lp(µk)

in a weak sense. The norm of f ∈W1,p
k (Ω) is defined as

‖ f ‖
W1,p

k (Ω)
:=
(∫

Ω

(
| f (x)|p + |∇k f (x)|p

)
dµk(x)

) 1
p
.

Lemma 2. (Local inclusion of Sobolev functions). If Ω ⊂ RN is an open set, then

W1,1
k,loc(Ω) ⊂ BVk,loc(Ω).

Proof. Suppose f ∈W1,1
k,loc(Ω), U ⊂⊂ Ω open and let ϕ ∈ C∞

c (U,RN) with ‖ϕ‖L∞(U) ≤ 1.
Then using (2), we have∫

U
f (x)divk ϕ(x) dµk(x) = −

∫
U
∇k f (x) · ϕ(x) dµk(x) ≤

∫
U
|∇k f | dµk(x) < ∞.

Taking the supremum over ϕ, we can derive the proof of the lemma.

Next we show that for every W1,1
k (Ω) function, the Dunkl-bounded variation ‖∇k f ‖(Ω)

boils down to the usual local Dunkl norm.

Lemma 3. (BVk norm on W1,1
k ). If f ∈W1,1

k (Ω), then

‖∇k f ‖(Ω) =
∫

Ω
|∇k f (x)| dµk(x).

Furthermore, if f ∈ BVk(Ω) ∩ C∞(Ω), then f ∈W1,1
k (Ω).

Proof. If f ∈ W1,1
k (Ω), we know that ∇k f (x) ∈ L1(Ω, µk). For each ϕ ∈ C∞

c (Ω,RN) with
‖ϕ‖L∞(Ω) ≤ 1, we get∣∣∣∣∫Ω

f (x)divk ϕ(x) dµk(x)
∣∣∣∣ = ∣∣∣∣∫Ω

∇k f (x) · ϕ(x) dµk(x)
∣∣∣∣ ≤ ∫Ω

|∇k f (x)| dµk(x).
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By taking the supremum over ϕ, we prove f ∈ BVk(Ω,RN
) and

‖∇k f ‖(Ω) ≤
∫

Ω
|∇k f (x)| dµk(x).

Then we prove the reverse one is valid. Now define g ∈ L∞(Ω,RN) by setting

g(x) :=

{ ∇k f (x)
|∇k f (x)| , if x ∈ Ω and |∇k f (x)| 6= 0,

0, otherwise.

It is easy to see that ‖g‖L∞ ≤ 1. By a standard approximation result, there exists a sequence
{ϕn}n∈N ⊂ C∞

c (Ω,RN) such that ϕn → g pointwise as n→ ∞, with ‖ϕn‖L∞(Ω) ≤ 1 for all
n ∈ N. Considering the definition of ‖∇k f ‖(Ω), after integration by parts, and then for
each n ≥ 1, we have

‖∇k f ‖(Ω) ≥ −
N

∑
i=1

∫
Ω

Ti f (x) · ϕ(i)
n (x) dµk(x) = −

∫
Ω
∇k f (x) · ϕn(x) dµk(x),

where ϕn(x) = (ϕ
(1)
n (x), . . . , ϕ

(N)
n (x)). By the dominated convergence theorem and the

definition of g, when n→ ∞ we obtain

‖∇k f ‖(Ω) ≥
∫

Ω
|∇k f (x)| dµk(x),

so we complete the proof of the first statement.
If f ∈ BVk(Ω) ∩ C∞(Ω), fix a compact set O ⊂ Ω with nonempty interior and define

gO := gχint(O). Similarly to the previous arguments, we can find a sequence {ϕn}n∈N ⊂
C∞

c (int(O),RN) so that ϕn → gO pointwise with ‖ϕn‖L∞(int(O)) ≤ 1 for all n ∈ N. Thus,
we get

‖∇k f ‖(Ω) ≥
∫

Ω
f (x)divk ϕn(x) dµk(x)

=
∫

O
f (x)divk ϕn(x) dµk(x)

= −
N

∑
i=1

∫
O

Ti f (x) · ϕ
(i)
n (x) dµk(x).

Since f ∈ C∞(Ω), then ∇k f ∈ L1(O, µk). Consequently,

‖∇k f ‖(Ω) ≥
∫

O
|∇k f | dµk(x),

where we have used the dominated convergence theorem. Finally, the proof is completed
using an exhaustive sequence of compacts via monotone convergence.

Lemma 4. (Lower semicontinuity of Dunkl variation). Suppose fn ∈ BVk(Ω), n = 1, 2, . . . , and
fn → f in L1

loc(Ω, µk). Then

lim inf
n→∞

‖∇k fn‖(Ω) ≥ ‖∇k f ‖(Ω).

Proof. Fix ϕ ∈ C∞
c (Ω,RN) with ‖ϕ‖L∞(Ω) ≤ 1. Firstly, we use the definition of ‖∇k fn‖(Ω)

to get

‖∇k fn‖(Ω) ≥
∫

Ω
fn(x)divk ϕ(x) dµk(x).
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Since { fn}n∈N converges to f in L1
loc(Ω, µk), then via the dominated convergence theorem,

we can obtain
lim inf

n→∞
‖∇k fn‖(Ω) ≥

∫
Ω

f (x)divk ϕ(x) dµk(x).

Then, according the arbitrariness of such functions ϕ and the definition of ‖∇k f ‖(Ω), we
can get the conclusion.

Lemma 5. The space
(

BVk(Ω), ‖ · ‖BVk(Ω)

)
is a Banach space.

Proof. It is easy to check that ‖ · ‖BVk(Ω) is a norm and we omit the details. In what follows,
we prove the completeness of BVk(Ω). Let { fn}n∈N ⊂ BVk(Ω) be a Cauchy sequence,
namely, for every ε > 0 there exists n0 ∈ N such that ∀n, m ≥ n0, we have

‖∇k( fm − fn)‖(Ω) < ε.

Especially, { fn}n∈N is a Cauchy sequence in the Banach space (L1(Ω, µk), ‖ · ‖L1(Ω,µk)
),

which implies that there exists f ∈ L1(Ω, µk) with ‖ fn − f ‖L1(Ω,µk)
→ 0 as n→ ∞. Hence,

via Lemma 4, we have

‖∇k( f − fm)‖(Ω) ≤ lim inf
n
‖∇k( fm − fn)‖(Ω) ≤ ε ∀m ≥ n0,

which implies that ‖∇k( fm − f )‖(Ω)→ 0 as m→ ∞. This completes the proof.

Next we will consider the approximation by smooth functions for functions of Dunkl-
bounded variation.

Lemma 6. (Approximation with smooth functions). Assume f ∈ BVk(Ω), there exists a sequence
of functions { fn}∞

n=1 ⊂ BVk(Ω) ∩ C∞
c (Ω) such that

(i) fn → f in L1(Ω, µk);
(ii)

∫
Ω|∇k fn(x)| dµk(x)→ ‖∇k f ‖(Ω) as n→ ∞.

Proof. We adapt the method of the proof in Theorem 5.3 in [1] to prove this theorem. Firstly,
via the lower semicontinuity property of BVk functions established in Lemma 4, we only need
to prove that, for f ∈ BVk(Ω) and every ε > 0, there exists a function fε ∈ C∞(Ω) such that∫

Ω
| f (x)− fε(x)| dµk(x) < ε, and ‖∇k fε‖(Ω) < ‖∇k f ‖(Ω) + ε.

Define a sequence of open sets, for m ∈ N,

Ωj := {x ∈ Ω | dist(x, ∂Ω) >
1

m + j
} ∩ B(0, t + m),

where j ∈ N and B(0, t+m) is an open ball of center 0 and radius t+m, dist(x, ∂Ω) denotes
the Euclidean distance from x to ∂Ω. Since ‖∇k f ‖(·) is a Radon measure, for ε > 0, we can
choose m ∈ N so large that

‖∇k f ‖(Ω \Ω0) < ε. (4)

Note that the sequence of open domains {Ωj} satisfies the following ways:

Ωj ⊂ Ωj+1 ⊂ Ω for any j ∈ N, and
∞⋃

j=0

Ωj = Ω.

We consider another sequence of open sets

U0 := Ω0, Uj := Ωj+1 \Ωj−1 for j ≥ 1.
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By standard results, there exists a partition of unity related to the covering {Uj}j∈N, which
shows that there exists {ζ j}j∈N ∈ C∞

c (Uj) such that 0 ≤ ζ j ≤ 1 for every j ≥ 0 and
∞
∑

j=0
ζ j = 1 on Ω. Namely, we have the following fact:

∞

∑
j=0
∇kζ j(x) =

∞

∑
j=0
∇ζ j(x) +

N

∑
i=1

∑
α∈R+

k(α)αi
∑∞

j=0 ζ j(x)−∑∞
j=0 ζ j(σαx)

〈α, x〉 = 0 on Ω. (5)

Let η ∈ C∞
c (RN) be a radial nonnegative function with

∫
RN η(x) dµk(x) = 1 and supp(η) ⊂

B(0, 1). Given ε > 0 and f ∈ L1(Ω, µk), extended to zero out of Ω, we define the
following regularization:

fε(x) =
1

εN+2γ

∫
B(x,ε)

η(
x− y

ε
) f (y) dµk(y).

We can easily conclude that for each j ≥ 0 there exists 0 < ε j < ε such that
supp

(
(ζ j f )ε j(x)

)
⊆ Uj;∫

Ω | (ζ j f )ε j(x)− ζ j(x) f (x) | dµk(x) < ε 2−(j+1);∫
Ω | ( f∇kζ j)ε j(x)− f (x)∇kζ j(x) | dµk(x) < ε 2−(j+1).

(6)

Now define fε :=
∞
∑

j=0
( f ζ j)ε j . In some neighborhood of each point x ∈ Ω and the sum is

locally finite, then we get that fε ∈ C∞(Ω) and f = ∑∞
j=0 f ζ j. (6) implies

‖ fε − f ‖L1(Ω,µk)
≤

∞

∑
j=0

∫
Ω
|ηε j ∗ ( f ζ j)(x)− f (x)ζ j(x)| dµk(x) < ε.

Consequently,
fε → f in L1(Ω, µk) as ε→ 0.

Moreover, the lower semicontinuity of Dunkl variation in Lemma 4 implies that

‖∇k f ‖(Ω) ≤ lim inf
ε→0

‖∇k fε‖(Ω). (7)

Suppose ϕ ∈ C∞
c (Ω,RN), ‖ϕ‖L∞ ≤ 1. We start a direct computation and get

∫
Ω

fε(x)divk ϕ(x) dµk(x) =
∞

∑
j=0

∫
Ω

(
( f ζ j) ∗ ηε j

)
(x)divk ϕ(x) dµk(x)

=
∞

∑
j=0

∫
Ω

∫
Ω

1

ε
N+2γ
j

η(
x− y

ε j
) f (y) ζ j(y)divk ϕ(x) dµk(y)dµk(x)

=
∞

∑
j=0

∫
Ω

f (x)divk(ζ j(ηε j ∗ ϕ))(x) dµk(x)

−
∞

∑
j=0

∫
Ω

f (x)∇kζ j · (ηε j ∗ ϕ)(x) dµk(x)

=
∞

∑
j=0

∫
Ω

f (x)divk(ζ j(ηε j ∗ ϕ))(x) dµk(x)

−
∞

∑
j=0

∫
Ω

ϕ(x) · (ηε j ∗ ( f ∇kζ j)− f ∇kζ j)(x) dµk(x)

:= I + I I,
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where we have used (5) in the fourth step and the third equal sign above holds due to the
fact that if f ∈ C∞

c (Ω), g = (g1, . . . , gN) ∈ C∞
c (Ω,RN), then∫

Ω
divk( f (x)g(x)) dµk(x) =

∫
Ω

f (x)divkg(x) dµk(x) +
∫

Ω
∇k f (x) · g(x) dµk(x).

In fact, for i = 1, . . . , N,∫
Ω

f (x) Tigi(x) + gi(x) Ti f (x)− Ti( f (x)gi(x)) dµk(x)

=
∫

Ω
∑

α∈R+

k(α)αi
f (x)gi(x) + f (σαx)gi(σαx)− f (x)gi(σαx)− gi(x) f (σαx)

〈α, x〉 dµk(x)

=
∫

Ω
∑

α∈R+

k(α)αi
f (x)gi(x)
〈α, x〉 dµk(x)−

∫
Ω

∑
α∈R+

k(α)αi
f (σαx)gi(σαx)
〈α, σαx〉 dµk(x)

−
∫

Ω
∑

α∈R+

k(α)αi
f (x)gi(σαx)
〈α, x〉 dµk(x) +

∫
Ω

∑
α∈R+

k(α)αi
f (σαx)gi(x)
〈α, σαx〉 dµk(x)

= 0,

where we have used the fact 〈α, x〉 = −〈α, σαx〉 and the G-invariance: wk(x) = wk(σαx).
We note that ‖ζ j(ηε j ∗ ϕ)‖L∞ ≤ 1 (j = 1, . . . ). Recalling that by construction every point
x ∈ Ω belongs to at most three of the sets

{
Uj
}∞

j=1, then we have

|I| =
∣∣∣∣∣
∫

Ω
f (x)divk

(
ζ1(ηε1 ∗ ϕ)

)
(x) dµk(x) +

∞

∑
j=2

∫
Ω

f (x)divk
(
ζ jηε j ∗ ϕ

)
(x) dµk(x)

∣∣∣∣∣
≤ ‖∇k f ‖(Ω) +

∞

∑
j=2
‖∇k f ‖(Uj)

≤ ‖∇k f ‖(Ω) + 3‖∇k f ‖(Ω \Ω0)

≤ ‖∇k f ‖(Ω) + 3ε,

where the last inequality is given by using (4). On the other hand, we use (6) to obtain

|I I| < ε.

Then ∫
Ω

fε(x)divk ϕ(x) dµk(x) ≤ ‖∇k f ‖(Ω) + 4ε,

which implies that

‖∇k fε‖(Ω) ≤ ‖∇k f ‖(Ω) + 4ε.

Now we use the above estimate and (7) to complete the proof.

Lemma 7. (max–min property of the Dunkl variation). If f , g ∈ L1(Ω, µk). Then

‖∇k max{ f , g}‖(Ω) + ‖∇k min{ f , g}‖(Ω) ≤ ‖∇k f ‖(Ω) + ‖∇kg‖(Ω).

Proof. Firstly, we can suppose that

‖∇k f ‖(Ω) + ‖∇kg‖(Ω) < ∞,
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otherwise, the conclusion is clearly true when ‖∇k f ‖(Ω) + ‖∇kg‖(Ω) = ∞.
Choose functions

fm, gm ∈ C∞
c (Ω) ∩ BVk(Ω), m = 1, 2, . . . ,

such that 
fm → f , gm → g in L1(Ω, µk);∫

Ω |∇k fm(x)| dµk(x)→ ‖∇k f ‖(Ω);∫
Ω |∇kgm(x)| dµk(x)→ ‖∇kg‖(Ω).

As

max{ fm, gm} → max{ f , g} and min{ fm, gm} → min{ f , g} in L1(Ω, µk),

it follows that

‖∇k max{ f , g}‖(Ω) + ‖∇k min{ f , g}‖(Ω)

≤ lim inf
m→∞

∫
Ω
|∇k max{ fm, gm}| dµk(x)

+ lim inf
m→∞

∫
Ω
|∇k min{ fm, gm}| dµk(x)

≤ lim inf
m→∞

( ∫
Ω
|∇k max{ fm, gm}| dµk(x)

+
∫

Ω
|∇k min{ fm, gm}| dµk(x)

)
≤ lim

m→∞

∫
Ω
|∇k fm(x)| dµk(x) + lim

m→∞

∫
Ω
|∇kgm(x)| dµk(x)

= ‖∇k f ‖(Ω) + ‖∇kg‖(Ω).

Lemma 8. (Compactness for BVk(Ω)). Suppose Ω ⊂ RN is an open and bounded domain with
Lipschitz boundary. Let

{
f j
}∞

j=1 be a sequence in BVk(Ω) satisfying

sup
j

(∥∥ f j
∥∥

L1(Ω,µk)
+
∥∥∇k f j

∥∥(Ω)
)
< ∞.

Then there exists a subsequence
{

f jm
}∞

m=1 and a function f ∈ BVk(Ω) such that f jm → f in
L1(Ω, µk) when m→ ∞.

Proof. According to approximation with smooth functions, for j = 1, 2, . . . , there is a
sequence gj ∈ BVk(Ω) ∩ C∞(Ω) such that{∫

Ω

∣∣ f j(x)− gj(x)
∣∣ dµk(x) < 1

j ,

supj
∫

Ω

∣∣∇kgj(x)
∣∣ dµk(x) < ∞.

(8)

In particular,∫
Ω

∣∣gj(x)
∣∣ dµk(x) ≤

∫
Ω

∣∣ f j(x)− gj(x)
∣∣ dµk(x) +

∫
Ω

∣∣ f j(x)
∣∣ dµk(x) ≤ sup

j

∥∥ f j
∥∥

L1(Ω,µk)
+ 1.

Now, we get that gj ∈W1,1
k (Ω) and∫

Ω

∣∣∇kgj(x)
∣∣ dµk(x) =

∥∥∇kgj
∥∥(Ω).
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Therefore,
{

gj
}∞

j=1 is a bounded sequence in W1,1
k (Ω). Since Ω has smooth boundary, it

follows from Rellich’s compact embedding theorem that there exists f ∈ L1(Ω, µk) and a
subsequence

{
gjm
}∞

m=1 such that gjm → f in L1(Ω, µk). Then from (8), we know f jm → f in
L1(Ω, µk). By lower semicontinuity of Dunkl variation, we obtain

‖∇k f ‖(Ω) ≤ lim inf
jm

∥∥∇k f jm
∥∥(Ω) ≤ sup

j

∥∥∇k f j
∥∥(Ω) < ∞,

which shows that f ∈ BVk(Ω) and this completes the proof.

Naturally, we can give the perimeter of a set in the Dunkl setting.

Definition 2. The Dunkl perimeter of E ⊆ Ω is defined as:

Pk(E, Ω) = ‖∇kχE‖(Ω) = sup
ϕ∈F (Ω,RN)

{∫
E

divk ϕ(x) dµk(x)
}

.

Remark 1. It is easy to see that when k = 0, the Dunkl perimeter is reduced to the classical
perimeter of E ⊆ Ω, that is

Pk(E, Ω) = P(E, Ω).

The following corollary can be easily obtained by replacing f in Lemma 4 with χE.

Corollary 1. (Lower semicontinuity of Dunkl perimeter). Suppose E, Em ⊂ Ω, m = 1, 2, . . . , then

lim inf
m→∞

Pk(Em, Ω) ≥ Pk(E, Ω).

From the definition of the Dunkl perimeter and plus the above max–min inequality,
we have the following lemma.

Lemma 9. If E, F ⊆ Ω, then

Pk(E ∩ F, Ω) + Pk(E ∪ F, Ω) ≤ Pk(E, Ω) + Pk(F, Ω).

We give the following notation. For f : Ω→ R and t ∈ R, define

Et := {x ∈ Ω | f (x) > t}.

Lemma 10. If f ∈ BVk(Ω), the mapping

t 7→ ‖∇kχEt‖(Ω) = Pk(Et, Ω)

is Lebesgue measurable for t ∈ R.

Theorem 1. Let f ∈ BVk(Ω), then

‖∇k f ‖(Ω) ≤
∫ +∞

−∞
Pk(Et, Ω) dt. (9)

Proof. Let ϕ ∈ C∞
c (Ω,RN) and ‖ϕ‖L∞ ≤ 1. Firstly, we prove the claim:∫
Ω

f (x)divk ϕ(x) dµk(x) =
∫ +∞

−∞

(∫
Et

divk ϕ(x) dµk(x)
)

dt.

Suppose f ≥ 0, we have

f (x) =
∫ ∞

0
χEt(x) dt
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for a.e. x ∈ Ω, and we obtain∫
Ω

f (x)divk ϕ(x) dµk(x) =
∫

Ω

(∫ ∞

0
χEt(x) dt

)
divk ϕ(x) dµk(x)

=
∫ ∞

0

(∫
Ω

χEt(x)divk ϕ(x) dµk(x)
)

dt

=
∫ ∞

0

(∫
χEt

divk ϕ(x) dµk(x)

)
dt.

Similarly, if f ≤ 0,

f (x) =
∫ 0

−∞
(χEt(x)− 1) dt,

and we get ∫
Ω

f (x)divk ϕ(x) dµk(x) =
∫ 0

−∞

(∫
χEt

divk ϕ(x) dµk(x)

)
dt.

For the general case, write f = f+ + f−, therefore, we conclude that for all ϕ,∫
Ω

f (x)divk ϕ(x) dµk(x) ≤
∫ ∞

−∞
Pk(Et, Ω) dt.

Thus,

‖∇k f ‖(Ω) ≤
∫ ∞

−∞
Pk(Et, Ω) dt.

The isoperimetric inequality for the BVk function is valid and it is proved in [28].

Proposition 1. Let E be a bounded Lipschitz set of finite Dunkl perimeter on RN . Then

µk(E)1− 1
N+2γ ≤ CPk(E),

with the sharp constant C =
µk(Bε

1)
1− 1

N+2γ

P(Bε
1)

, where ε is any element of E such that RN
ε is a Weyl

chamber, B1 = {|x| < 1} and Bε
1 = B1 ∩RN

ε .

Next we show that the Gauss–Green formula is valid on sets of locally finite
Dunkl perimeter.

Theorem 2. (Gauss–Green formula). Let E have locally finite perimeter. Assume E is G-invariant,
that is E = {σαx : x ∈ E, α ∈ R+}. Then∫

E
divk ϕ(x) dµk(x) =

∫
∂∗E

ϕ(x) · νEwk(x) dHN−1(x), (10)

for ϕ ∈ C∞
c (RN ,RN), where ∂∗E = {x : νE exists} and the unit vector νE is the outward normal

to E.
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Proof. Through calculation, we obtain∫
E

divk ϕ(x) dµk(x) =
∫

E
divk ϕ(x)wk(x) dx

=
∫

E

(
divϕ(x) +

N

∑
i=1

∑
α∈R+

k(α)αi
ϕi(x)− ϕi(σαx)

〈α, x〉

)
wk(x) dx

=
∫

E
divϕ(x)wk(x) dx +

∫
E

N

∑
i=1

∑
α∈R+

k(α)αi
ϕi(x)− ϕi(σαx)

〈α, x〉 wk(x) dx

=
∫

∂∗E
ϕ(x) · νEwk(x) dHN−1(x)−

∫
E

ϕ(x) · ∇wk(x) dx

+
∫

E

N

∑
i=1

∑
α∈R+

k(α)αi
ϕi(x)− ϕi(σαx)

〈α, x〉 wk(x) dx

=
∫

∂∗E
ϕ(x) · νEwk(x) dHN−1(x)−

∫
E

N

∑
i=1

∑
α∈R+

2k(α)αi
ϕi(x)
〈α, x〉wk(x) dx

+
∫

E

N

∑
i=1

∑
α∈R+

k(α)αi
ϕi(x)− ϕi(σαx)

〈α, x〉 wk(x) dx

=
∫

∂∗E
ϕ(x) · νEwk(x) dHN−1(x)−

∫
E

N

∑
i=1

∑
α∈R+

k(α)αi
ϕi(x)
〈α, x〉wk(x) dx

−
∫

E

N

∑
i=1

∑
α∈R+

k(α)αi
ϕi(σαx)
〈α, σαx〉wk(σαx) dx

+
∫

E

N

∑
i=1

∑
α∈R+

k(α)αi
ϕi(x)− ϕi(σαx)

〈α, x〉 wk(x) dx

=
∫

∂∗E
ϕ(x) · νEwk(x) dHN−1(x),

where we have used the facts: 〈α, x〉 = −〈α, σαx〉, wk(x) = wk(σαx), and the following
facts for the derivatives of wk:

∂i|〈α, x〉|2k(α) =

2k(α)αi〈α, x〉2k(α)−1 = 2k(α)αi
|〈α,x〉|2k(α)

〈α,x〉 , if 〈α, x〉 > 0,

−2k(α)αi〈α, x〉2k(α)−1 = 2k(α)αi
|〈α,x〉|2k(α)

〈α,x〉 , if 〈α, x〉 < 0.

3. Basic Facts of Dunkl BV Capacity

Definition 3. For a set E ⊆ RN , let A
(
E, BVk(RN)

)
be the class of admissible functions on RN ,

that is, functions f ∈ BVk(RN) satisfying 0 ≤ f ≤ 1 and f = 1 in a neighborhood of E (an open
set containing E). The BVk capacity of E is defined by

cap
(
E, BVk(RN)

)
:= inf

{
‖∇k f ‖(RN) : f ∈ A

(
E, BVk(RN)

)}
. (11)

Now we will see that capacity is partly suited for characterizing the partial properties
of BVk functions.

Theorem 3. If E is an arbitrary subset of RN , then

cap
(
E, BVk(RN)

)
≤ inf

F
Pk(F),

where the infimum is taken over all sets F ⊆ RN such that E ⊆ int(F).
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Proof. If E ⊆ int(F) ⊆ RN and Pk(F) < ∞, then

χF ∈ A
(
E, BVk(RN)

)
.

So
cap
(
E, BVk(RN)

)
≤ Pk(F).

By taking the infimum over all such sets F, we obtain

cap
(
E, BVk(RN)

)
≤ inf

F
Pk(F).

Theorem 4. (Measure theoretic properties of BVk capacity). The cap
(
·, BVk(RN)

)
enjoys the

following properties.

(i)
cap
(
∅, BVk(RN)

)
= 0.

(ii) Assume E1, E2 are subsets of RN . If E1 ⊆ E2, then

cap
(
E1, BVk(RN)

)
≤ cap

(
E2, BVk(RN)

)
.

(iii) If E1, E2 ⊆ RN , then

cap
(
E1 ∪ E2, BVk(RN)

)
+ cap

(
E1 ∩ E2, BVk(RN)

)
≤ cap

(
E1, BVk(RN)

)
+ cap

(
E2, BVk(RN)

)
.

Especially, if E1 ⊆ E2 or E2 ⊆ E1, the equality holds.

(iv) If En, n = 1, 2, . . . , are subsets of RN , then

cap
(
∪∞

n=1 En, BVk(RN)
)
≤

∞

∑
n=1

cap
(
En, BVk(RN)

)
.

(v)
lim

n→∞
cap
(
En, BVk(RN)

)
= cap

(
∪∞

n=1 En, BVk(RN)
)

for any sequence {En}∞
n=1 of subsets of RN with E1 ⊆ E2 ⊆ E3 ⊆ . . . .

(vi) If En, n = 1, 2, . . . , are compact sets of RN and E1 ⊇ E2 ⊇ E3 ⊇ . . . , then

lim
n→∞

cap
(
En, BVk(RN)

)
= cap

(
∩∞

n=1 En, BVk(RN)
)
.

(vii) For every E ⊆ RN , there has

cap
(
E, BVk(RN)

)
= inf

{
cap
(
O, BVk(RN)

)
: open O ⊇ E

}
.

(viii) For any Borel set E ⊆ RN we have

cap
(
E, BVk(RN)

)
= sup

{
cap
(
K, BVk(RN)

)
: compact K ⊆ E

}
.

Proof.
(i), (ii). Assertions (i) and (ii) follow from (11).
(iii) Without losing generality, we can suppose

cap
(
E1, BVk(RN)

)
+ cap

(
E2, BVk(RN)

)
< ∞.
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For ε > 0, there exist two functions f ∈ A
(
E1, BVk(RN)

)
and g ∈ A

(
E2, BVk(RN)

)
such that {

‖∇k f ‖(RN) < cap
(
E1, BVk(RN)

)
+ ε

2 ,
‖∇kg‖(RN) < cap

(
E2, BVk(RN)

)
+ ε

2 .

Then, we get

max{ f , g} ∈ A
(
E1 ∪ E2, BVk(RN)

)
and min{ f , g} ∈ A

(
E1 ∩ E2, BVk(RN)

)
,

and

cap
(
E1 ∪ E2, BVk(RN)

)
+ cap

(
E1 ∩ E2, BVk(RN)

)
≤ ‖∇k f ‖(RN) + ‖∇kg‖(RN)

≤ cap
(
E1, BVk(RN)

)
+ cap

(
E2, BVk(RN)

)
+ ε.

Letting ε → 0, the first statement is proved. Especially, when E1 ⊆ E2 or E2 ⊆ E1, we
can get

cap
(
E1 ∪ E2, BVk(RN)

)
+ cap

(
E1 ∩ E2, BVk(RN)

)
= cap

(
E1, BVk(RN)

)
+ cap

(
E2, BVk(RN)

)
.

(iv) Assume
∞

∑
n=1

cap
(
En, BVk(RN)

)
< ∞.

For any ε > 0 and n = 1, 2, . . . , there is

fn ∈ A
(
En, BVk(RN)

)
so that

‖∇k fn‖(RN) < cap
(
En, BVk(RN)

)
+

ε

2n .

Upon setting f = supn fn, we have

‖∇k f ‖(RN) ≤
∞

∑
n=1
‖∇k fn‖(RN) <

∞

∑
n=1

cap
(
En, BVk(RN)

)
+ ε < ∞,

which implies f ∈ A
(
∪∞

n=1 En, BVk(RN)
)
. Thus, we get

‖∇k f ‖(RN) ≤ lim inf
n→∞

‖∇k max{ f1, . . . , fn}‖(RN)

≤
∞

∑
n=1
‖∇k fn‖(RN)

≤
∞

∑
n=1

cap
(
En, BVk(RN)

)
+ ε.

Letting ε→ 0, we complete the countable subadditivity of (iv).
(v) Suppose {En}∞

n=1 is an increasing sequence. It is easy to observe that

lim
n→∞

cap
(
En, BVk(RN)

)
≤ cap

(
∪∞

n=1 En, BVk(RN)
)
.

Next we just consider when

lim
n→∞

cap
(
En, BVk(RN)

)
< ∞,

the equality holds. Let ε > 0 and assume

lim
n→∞

cap
(
En, BVk(RN)

)
< ∞.
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For n = 1, 2, . . . , there is
fn ∈ A

(
En, BVk(RN)

)
satisfying

‖∇k fn‖(RN) < cap
(
En, BVk(RN)

)
+

ε

2n .

We consider 
gi = max1≤i≤n fi = max{gi−1, fi};
g0 = 0;
E0 = ∅;
hi = min{gi−1, fi}.

Then we can get gi, hi ∈ BVk(RN) and En ⊆ int{x ∈ RN : hn+1(x) = 1}.
Since gi = max{gi−1, gi} and Lemma 7, we derive that

‖∇k max{gi−1, gi}‖(RN) + ‖∇k min{gi−1, gi}‖(RN) ≤ ‖∇kgi−1‖(RN) + ‖∇kgi‖(RN),

and thereby using En ⊆ En+1 to achieve

‖∇kgi‖(RN) + cap
(
Ei−1, BVk(RN)

)
≤ ‖∇kgi‖(RN) + ‖∇khi‖(RN)

≤ ‖∇kgi‖(RN) + ‖∇kgi−1‖(RN)

≤ ‖∇kgi−1‖(RN) + cap
(
Ei, BVk(RN)

)
+

ε

2i ,

therefore,

‖∇kgi‖(RN)− ‖∇kgi−1‖(RN)

≤ cap
(
Ei, BVk(RN)

)
− cap

(
Ei−1, BVk(RN)

)
+

ε

2i .

By adding the above inequalities, we get

‖∇kgn‖(RN) ≤ cap
(
En, BVk(RN)

)
+ ε.

So, let f = limn→∞ gn. Using the monotone convergence theorem, we own

‖∇k f ‖(RN) ≤ lim
n→∞

‖∇kgn‖(RN) ≤ lim
n→∞

cap
(
En, BVk(RN)

)
+ ε.

Then via the lower semicontinuity of the Dunkl variation, we have

f ∈ A
(
∪∞

n=1 En, BVk(RN)
)
,

and so

cap
(
∪∞

n=1 En, BVk(RN)
)
≤ ‖∇k f ‖(RN)

≤ lim inf
n→∞

‖∇kgn‖(RN)

≤ lim
n→∞

cap
(
En, BVk(RN)

)
+ ε.

(vi) If En, n = 1, 2, . . . , are compact sets of RN and E1 ⊇ E2 ⊇ E3 ⊇ . . . . Let E =
∩∞

n=1En and notice that it is also a compact set. For any 0 < ε < 1
2 , there has

f ∈ A
(
E, BVk(RN)

)
so that

‖∇k f ‖(RN) < cap
(
E, BVk(RN)

)
+ ε.
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If n is large enough, then En is contained in

{x ∈ RN : f (x) ≥ 1− ε

2
} ⊆ int{x ∈ RN : f (x) ≥ 1− ε},

thus
min{1,

1
1− ε

f } ∈ A
(
{x ∈ RN : f (x) ≥ 1− ε

2
}, BVk(RN)

)
.

Applying (ii) we immediately get

lim
n→∞

cap
(
En, BVk(RN)

)
≤ cap

(
{x ∈ RN : f (x) ≥ 1− ε}, BVk(RN)

)
≤ 1

1− ε
‖∇k f ‖(RN)

≤ 1
1− ε

(
cap
(
E, BVk(RN)

)
+ ε
)

.

Letting ε→ 0, we can get

cap
(
E, BVk(RN)

)
≤ lim

n→∞
cap
(
En, BVk(RN)

)
≤ cap

(
E, BVk(RN)

)
.

(vii) From (ii), we know that

cap
(
E, BVk(RN)

)
≤ inf{cap

(
O, BVk(RN)

)
: open O ⊇ E}.

To show the opposite inequality, we can suppose

cap
(
E, BVk(RN)

)
< ∞.

From (13), and for any ε > 0, there has f ∈ A
(
E, BVk(RN)

)
such that

‖∇k f ‖(RN) < cap
(
E, BVk(RN)

)
+ ε.

Thus, there exists an open set O ⊇ E such that f = 1 on O and

cap
(
O, BVk(RN)

)
≤ ‖∇k f ‖(RN) < cap

(
E, BVk(RN)

)
+ ε.

Consequently,

inf{cap
(
O, BVk(RN)

)
: open O ⊇ E} ≤ cap

(
E, BVk(RN)

)
.

(viii) This claim can be obtained from (v) and (vi).

We learn from [29] and introduce the following notion and some results which are
similar to various spaces, such as [18,19].

Definition 4. Suppose E ⊂ RN and ε > 0, let

Hε,k(E) := inf

{
∞

∑
i=1

r−1
i µk

(
B(xi, ri)

)
: E ⊆ ∪∞

i=1B(xi, ri) with 0 < ri ≤ ε

}
,

and we call
Hk(E) := lim

ε→0
Hε,k(E)

is the Dunkl Hausdorff measure of codimension one of E.

Of course, when k = 0, it becomes the classical Hausdorff measure of codimension one.
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Theorem 5. If E is a Borel subset of RN , then

Hk(E) = 0⇒ cap
(
E, BVk(RN)

)
= 0.

Proof. IfHk(E) = 0 and 0 < ε < 1, we consider a ball-cover
{

B(xi, ri)
}

i∈N that
xi ∈ E;
ri ∈ (0, 1);

∑∞
i=1 r−1

i µk
(

B(xi, ri)
)
< ε.

Let fi(x) = max{0, 1− r−1
i |x− xi|}, we have

cap
(

B(xi, ri), BVk(RN)
)
≤
∫
RN
|∇k fi(x)| dµk(x)

≤
∫

B(xi ,ri)
|∇ fi(x)| dµk(x)

+
∫

B(xi ,ri)

∣∣ ∑
α∈R+

k(α)|αi|
|x− xi| − |σα(x)− xi|

ri · |〈α, x〉|
∣∣ dµk(x)

≤
(

1 + ∑
α∈R+

k(α)|αi|α
)

r−1
i µk

(
B(xi, ri)

)
,

then

cap(E, BVk
(
RN)

)
≤

∞

∑
i=1

cap
(

B(xi, ri), BVk(RN)
)
≤
(

1 + ∑
α∈R+

k(α)|αi|α
)

ε.

By taking ε→ 0, it follows that

cap
(
E, BVk(RN)

)
= 0.

4. Heat Semigroups Characterization of Dunkl Bounded Variation Functions

At first, we recall the Dunkl heat kernel and collect its properties established by Rösler
(cf. [24,26]). One important function is the Dunkl kernel E(x, y) associated with Dunkl
operators. For generic multiplicities k and each y ∈ RN , the system{

TiE(x, y) = yiE(x, y) i = 1, 2, . . . , N
E(0, y) = 1

(12)

has a unique solution on RN , which generalizes the exponential functions e〈x,y〉. For
functions of non-negative multiplicity, the commutative algebra of Dunkl operators and
the algebra of general partial differential operators are intertwined by a unique linear
homogeneous isomorphism over polynomials. In other words, there exists a unique
intertwining operator Vk such that

TiVk = Vk∂i,

which also justifies the next formula

E(x, y) = Vk(e〈·,y〉)(x), x ∈ RN .
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Note that the Dunkl kernel E(x, y) is an explicit “closed” form, where it is known so far
only in some particular cases. In dimension 1, the Dunkl kernel can be written as a sum of
two Bessel functions (cf. [24])

E(x, y) = jk−1/2(xy) +
xy

2k + 1
jk+1/2(xy).

The generalized Bessel function is written as

J(x, y) :=
1
|G| ∑

g∈G
E(gx, y).

Here |G| is the order of the group G. In dimension 1,

J(x, y) = jk−1/2(xy).

Let us collect the main properties of Dunkl kernel in the following proposition
(cf. [24,26]).

Proposition 2. (Properties of the Dunkl kernel).

• E(x, y) = E(y, x);
• E(gx, gy) = E(x, y) ∀g ∈ G;
• E(λx, y) = E(x, λy) ∀λ ∈ R;
• E(x, y) = E(x̄, ȳ);
• 0 < E(x, y) ≤ e〈x,y〉;

• |∂β
y E(x, y)| ≤ |x||β|maxg∈G e〈gx,y〉. Specially, |E(−ix, y)| ≤ 1.

In [26], a Dunkl transform is given by

H f (x) =
∫
RN

f (y)E(−ix, y) dµk(y). (13)

The Dunkl heat equation {
∂tHt f (x) = ∆x Ht f (x)
H0 f (x) = f (x)

can be obtained via the Dunkl transform (13) (see Theorem 3.12 in [26] for more details)
under suitable cases, where

Ht f (x) :=
∫
RN

f (y)ht(x, y) dµk(y),

and the Dunkl heat kernel is defined by

ht(x, y) = M−1
k (2t)−(γ+N/2)e−(

|x|2+|y|2
4t )E(

x√
2t

,
y√
2t
) ∀ t > 0, ∀ x, y ∈ RN .

Here Mk is Macdonald-Mehta integral associated with the root system R and it is represented as

Mk =
∫
RN

e−
|x|2

2 dµk(x).

Next, we collect a series of basic properties of the Dunkl heat kernel (cf. [24,26]).

Proposition 3. (Basic properties of the Dunkl heat kernel).

• ht(x, y) is an analytic function in (t, x, y) ∈ (0,+∞)×RN ×RN ;
• ht(x, y) = ht(y, x);
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• ht(x, y) > 0 and
∫
RN ht(x, y) dµk(y) = 1;

• hs+t(x, y) =
∫
RN hs(x, z)ht(y, z) dµk(z);

• ht(x, y) ≤ M−1
k (2t)−(γ+N/2) maxg∈G e−

|gx−y|2
4t .

Lemma 11. The Dunkl semigroup {Ht}t≥0 is symmetric in L2(µk).

Proof. We obtain∫
RN

Ht f (x)g(x) duk(x) =
∫
RN

∫
RN

ht(x, y) f (y) duk(y)g(x) duk(x)

=
∫
RN

∫
RN

ht(x, y) f (y)g(x) duk(y) duk(x)

=
∫
RN

∫
RN

ht(y, x)g(x) duk(x) f (y) duk(y)

=
∫
RN

Htg(x) f (x) duk(x),

which completes the proof.

Lemma 12. For every f (x) ∈ L1(µk), we have

lim
t→0

Ht f (x) = f (x) in L1(µk).

Proof. Firstly, define

ρ(x) := M−1
k

∫
RN

e−
|x|2+|y|2

2 E(x, y) dµk(y).

It’s clear from the calculation that ρ(0) = 1. When x 6= 0, according to the fact: the function

e−
|x|2+|y|2

2 is G−invariant, the Formulas (3) and (12), we have

0 = Ty
i ρ(x) = Ty

i M−1
k

∫
RN

e−
|x|2+|y|2

2 E(x, y) dµk(y)

= M−1
k

∫
RN

Ty
i e−

|x|2+|y|2
2 · E(x, y) + e−

|x|2+|y|2
2 · Ty

i E(x, y) dµk(y)

= M−1
k

∫
RN
−yie−

|x|2+|y|2
2 · E(x, y) + e−

|x|2+|y|2
2 · xiE(x, y) dµk(y),

where Ty
i denotes the Dunkl directional derivative of the variable y. Similarly,

Tiρ(x) = Ti M−1
k

∫
RN

e−
|x|2+|y|2

2 E(x, y) dµk(y)

= M−1
k

∫
RN
−xie−

|x|2+|y|2
2 · E(x, y) + e−

|x|2+|y|2
2 · yiE(x, y) dµk(y)

= −Ty
i ρ(x)

= 0.

Thus, we get

ρ(x) = ρ(0) ≡ 1. (14)
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Following the definition of Ht f (x) and (14), we obtain∫
RN
|Ht f (x)− f (x)| dµk(x)

=
∫
RN

∣∣∣ ∫
RN

f (y)ht(x, y) dµk(y)− f (x)
∫
RN

ht(x, y) dµk(y)
∣∣∣ dµk(x)

=
∫
RN

∣∣∣ ∫
RN

ht(x, y)[ f (x)− f (y)] dµk(y)
∣∣∣ dµk(x)

=
∫
RN

∣∣∣ ∫
RN

M−1
k (2t)−(γ+N/2)e−

|x|2+|y|2
4t E(

x√
2t

,
y√
2t
)[ f (x)− f (y)] dµk(y)

∣∣∣ dµk(x)

=
∫
RN

∣∣∣ ∫
RN

M−1
k e−

|x|2+|y|2
2 E(x, y)

[
f (
√

2tx)− f (
√

2ty)
]

dµk(y)
∣∣∣ dµk(x).

Letting t→ 0, via the dominated convergence theorem we prove that

lim
t→0
‖Ht f (x)− f (x)‖L1(µk)

= 0.

Lemma 13. The Dunkl semigroup {Ht}t∈[0,+∞) satisfies the following properties:

(i) t 7→ Ht f is continuous from [0, ∞) to L2(µk).

(ii) |∇k Ht f (x)| =
∣∣∣∫RN ht(x, y)∇y

k f (y) dµk(y)
∣∣∣, where ∇y

k denotes the Dunkl gradient of the
variable y, i = 1, . . . , N.

(iii) ‖Ht f ‖L∞ ≤ ‖ f ‖L∞ ∀ f ∈ C∞
c (RN).

Proof. The property (i) is obviously available. Next we prove (ii). Firstly, since the function

e
−(|x|2+|y|2)

4t is G-invariant, we get

Tiht(x, y) = Ti M−1
k (2t)−(γ+N/2)e−(

|x|2+|y|2
4t )E(

x√
2t

,
y√
2t
)

= M−1
k (2t)−(γ+N/2)e−(

|x|2+|y|2
4t )(− xi

2t
)E(

x√
2t

,
y√
2t
)

+ M−1
k (2t)−(γ+N/2)e−(

|x|2+|y|2
4t )(

yi√
2t
)

1√
2t

E(
x√
2t

,
y√
2t
)

= (
yi − xi

2t
)M−1

k (2t)−(γ+N/2)e−(
|x|2+|y|2

4t )E(
x√
2t

,
y√
2t
).

By the same calculation, we have

Ty
i ht(x, y) = (

xi − yi
2t

)M−1
k (2t)−(γ+N/2)e−(

|x|2+|y|2
4t )E(

x√
2t

,
y√
2t
).

So we obtain

∇kht(x, y) = −∇y
k ht(x, y).
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Next via the definition of Ht f (x) and the property of the Dunkl gradient we have

∇k Ht f (x) = ∇k

∫
RN

ht(x, y) f (y) dµk(y)

=
∫
RN
∇kht(x, y) f (y) dµk(y)

= −
∫
RN
∇y

k ht(x, y) f (y) dµk(y)

=
∫
RN

ht(x, y)∇y
k f (y) dµk(y).

For (iii), it is easy to see that

|Ht f (x)| =
∣∣∣∣∫RN

ht(x, y) f (y) dµk(y)
∣∣∣∣ ≤ ∫RN

ht(x, y) dµk(y) · ‖ f ‖L∞ ,

and then we take the infinite norm on both sides to get

‖Ht f (x)‖L∞ ≤
∥∥∥∥∫RN

ht(x, y) dµk(y)
∥∥∥∥

L∞
· ‖ f ‖L∞ ≤ ‖ f ‖L∞ .

Theorem 6. Denote by C∞
bd(R

N ,RN) the space of vector-valued functions with continuous partial
derivatives and bounded Dunkl divergence. For each f ∈ L1(µk), we have

‖∇k f ‖ = sup
{∫

RN
f (x)divk ϕ(x) dµk(x) : ϕ ∈ C∞

bd(R
N ,RN), ‖ϕ‖L∞ ≤ 1

}
.

Proof. Firstly, we can easily get

‖∇k f ‖ ≤ sup
{∫

RN
f (x)divk ϕ(x) dµk(x) : ϕ ∈ C∞

bd(R
N ,RN), ‖ϕ‖L∞ ≤ 1

}
.

Next we mainly prove the opposite inequality, let φn be a sequence of functions such that

(i) φn is G-invariant and 0 ≤ φn ≤ 1 for all x ∈ RN and k ∈ N;
(ii) there exists nK such that φn = 1 on RN for every compact set K ⊂ RN , n ≥ nK;
(iii) ‖∇kφn‖L∞ → 0 as n→ ∞.

If ϕ ∈ C∞
bd(R

N ,RN), we have ‖φn ϕ‖L∞ ≤ ‖ϕ‖L∞ , and

divk(ϕφn) =
N

∑
i=1

Ti(ϕφn)

=
N

∑
i=1

[Ti(ϕ)φn + ϕTi(φn)]

=
N

∑
i=1

[(
∂i(ϕ) + ∑

α∈R+

k(α)αi
ϕ− ϕ(σαx)
〈α, x〉

)
φn + ϕ∂i(φn)

]
= div(ϕφn) +

N

∑
i=1

∑
α∈R+

k(α)αi
ϕ− ϕ(σαx)
〈α, x〉 φn

= φndivϕ +
N

∑
i=1

∑
α∈R+

k(α)αi
ϕ− ϕ(σαx)
〈α, x〉 φn + ϕ · ∇φn

= φndivk ϕ + ϕ · ∇φn.
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Therefore, if ϕ ∈ C∞
bd(R

N ,RN) and ‖ϕ‖L∞ ≤ 1, then we get the following inequality by the
dominated convergence theorem,∫

RN
f (x)divk ϕ(x) dµk(x) = lim

n→∞

∫
RN

f (x)divk(φn(x)ϕ(x)) dµk(x) ≤ ‖∇k f ‖.

Thus, the proof of Theorem 6 is completed.

Example 1. We give an example for φn in the proof of Theorem 6 as follows:

φn(x) =


1, if |x| < n,

e
1

(|x|−n)2−1
+1

, if n ≤ |x| ≤ n + 1,
0, if |x| > n + 1.

Note that the example we constructed implies that φn(x) exists for n = 1, 2, . . . , and it
satisfies the above conditions (i)–(iii) in Theorem 6. It is easy to see that (i) and (ii) hold true. Since
φn(x) is G-invariant, we have

∂iφn(x) =

 2(|x|−n)xi
[(|x|−n)2−1]2|x| · e

1
(|x|−n)2−1 , if n ≤ |x| ≤ n + 1,

0, otherwise.

Thus, ‖∇kφn‖L∞ → 0 as n→ ∞, which satisfies (iii).

Theorem 7. For any f (x) ∈ L1(µk), we have

‖∇k f ‖ = lim
t→0
‖∇k Ht f (x)‖L1(uk)

.

Proof. At first, for every functions f (x) ∈ BVk(RN) and ϕ ∈ C∞
c (RN ,RN), we note that∫

RN
∇k f (x) · ϕ(x) dµk(x) = −

∫
RN

f (x)divk ϕ(x) dµk(x).

Via the definition of ‖∇k f ‖, Lemmas 12 and 13, we have∫
RN

f (x)divk ϕ(x) dµk(x) = lim
t→0

∫
RN

Ht f (x)divk ϕ(x) dµk(x)

= − lim
t→0

∫
RN
∇k Ht f (x) · ϕ(x) dµk(x)

≤ lim
t→0
‖∇k Ht f (x)‖L1(µk)

.

Then taking the supremum over ϕ, we get that

‖∇k f ‖ ≤ lim
t→0
‖∇k Ht f (x)‖L1(µk)

.

Next, we prove the opposite inequality

‖∇k f ‖ ≥ lim
t→0
‖∇k Ht f (x)‖L1(µk)

.
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Let ϕ be a vector function in C∞
c (RN ,RN) such that ‖ϕ‖L∞ ≤ 1. Denote by Ht ϕ(x) :=∫

RN ht(x, y)ϕ(y) dµk(y). We next explain that Ht ϕ(x) ∈ C∞
bd(R

N ,RN).

‖divk Ht ϕ(x)‖L∞ =

∥∥∥∥divk

∫
RN

ht(x, y)ϕ(y) dµk(y)
∥∥∥∥

L∞

=

∥∥∥∥∫RN
ht(x, y)divk ϕ(y) dµk(y)

∥∥∥∥
L∞

≤ ‖divk ϕ‖L∞ < ∞,

where we have used the fact that ‖Ht ϕ(x)‖L∞ ≤ 1 and Lemma 13 (ii). Therefore, we get∣∣∣∣∫RN
∇k Ht f (x) · ϕ(x) dµk(x)

∣∣∣∣ = ∣∣∣∣∫RN
∇k

∫
RN

ht(x, y) f (y) dµk(y) · ϕ(x) dµk(x)
∣∣∣∣

=

∣∣∣∣∫RN

∫
RN
∇kht(x, y) f (y) dµk(y) · ϕ(x) dµk(x)

∣∣∣∣
=

∣∣∣∣∫RN

∫
RN
−∇y

k ht(x, y) f (y) dµk(y) · ϕ(x) dµk(x)
∣∣∣∣

=

∣∣∣∣∫RN

∫
RN

ht(x, y)∇y
k f (y) dµk(y) · ϕ(x) dµk(x)

∣∣∣∣
=

∣∣∣∣∫RN

∫
RN
∇k f (x)ht(y, x) · ϕ(y) dµk(x) dµk(y)

∣∣∣∣
=

∣∣∣∣∫RN
∇k f (x) ·

∫
RN

ht(x, y)ϕ(y) dµk(y) dµk(x)
∣∣∣∣

=

∣∣∣∣∫RN
f (x) · divk Ht ϕ(x) dµk(x)

∣∣∣∣
≤ ‖∇k f ‖,

where we have used the property that Dunkl semigroup {Ht}t≥0 is symmetric in L2(µk)

and Theorem 6. Taking the supremum over all ϕ ∈ C∞
c (RN ,RN) and ‖ϕ‖L∞ ≤ 1 yield the

desired inequality. Finally, letting t→ 0, we complete the proof.

5. Conclusions

In conclusion, this paper introduced and studied functions of Dunkl-bounded varia-
tion on RN . It was not obvious that results of the classical BV functions can be generalized
to functions with Dunkl-bounded variation. However, we proved the completeness and
compactness properties of BVk(Ω), the lower semicontinuity, approximation with smooth
functions and so on. These results may lay the foundation for the variational theory in the
Dunkl setting. We established a version of the Gauss–Green Theorem in the Dunkl case,
and we obtained some excellent properties of Dunkl-bounded variation functions from
the perspective of capacity. Finally, we developed a heat semigroup characterization of
BVk functions, and consequently obtained an important limit representation relation. We
believe that the investigation of these problems will provide a useful tool for the study of
potential theory and function spaces.
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