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Abstract: In this article, we utilize recent generalized fractional operators to establish some fractional
inequalities in Hermite–Hadamard and Minkowski settings. It is obvious that many previously
published inequalities can be derived as particular cases from our outcomes. Moreover, we articulate
some flaws in the proofs of recently affiliated formulas by revealing the weak points and introducing
more rigorous proofs amending and expanding the results.
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1. Introduction

Fractional calculus is a branch of mathematics that extends the principles of the classi-
cal derivative and integral to non-integer orders. It has attracted the interest of physicists,
mathematicians, and engineers in recent decades [1–3]. Fractional derivatives can be
used to describe the nonlinear oscillation of earthquakes, and to alleviate the inadequacy
caused by the assumption of continuous traffic flow in a fluid-dynamic traffic model.
Fractional derivatives are also used to simulate a variety of chemical processes, as well
as mathematical biology and a variety of other physics and engineering problems [4–7].
Fractional integral operators were suggested to discuss multiple generalized integral in-
equalities [8–11]. In [12,13], it is shown that many fractional models provide more suitable
results than similar analogous models with integer derivatives. This motivates the de-
mand of more precise inequalities in dealing with such mathematical models employing
fractional calculus. In the present work, we focus on the most notable inequality, namely
the Hermite–Hadamard-type inequality for convex functions. Many scholars are interested
in constructing general fractional types of Hermite–Hadamard inequalities. Guessab and
Schmeisser [14] investigated the integral sharp inequalities of the Hermite–Hadamard
type. Srivastava et al. [15] gave several improvements and extensions of several variables
Hermite–Hadamard and Jensen inequalities.

The topic of fractional integral inequalities is extremely important in the subject of
mathematics. Hermite–Hadamard inequality is one of the most well-known inequalities
for convex functions and can be given as the form:

f
(

p + q
2

)
≤ 1

q− p

∫ q

p
f (t)dt ≤ f (p) + f (q)

2
, (1)
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where f : A ⊆ R → R is a convex function and p, q ∈ A with p < q. Additional
studies about Hermite–Hadamard inequality can be found, for example, in [16,17]. Using
fractional integrals, several scholars explored this inequality and published a number of
generalizations and extensions [15,18,19]. We may start with recalling some well-known
fractional concepts.

Definition 1 ([20,21]). The left and right fractional Riemann–Liouville integrals of a function X,
of order ω, are recognized, respectively, by:

Υω
ξ+X(θ) =

1
Γ(ω)

∫ θ

ξ
(θ − ρ)ω−1X(ρ)dρ (θ > ξ, Re(ω) > 0), (2)

and

Υω
ζ−X(θ) =

1
Γ(ω)

∫ ζ

x
(ρ− θ)ω−1X(ρ)dρ (x < ζ, Re(ω) > 0), (3)

where Γ is the traditional gamma function.

Jarad et al. [22] generalized the fractional integrals of Riemann–Liouville through the
following definition:

Definition 2 ([22]). The generalized left and right fractional integral operators of a function X,
of order ω, are given, respectively, by:

εΥω
ξ+X(θ) =

1
Γ(ε)

∫ θ

ξ

(
(θ − ξ)ω − (ρ− ξ)ω

ω

)ε−1 X(ρ)

(ρ− ξ)1−ω
dρ, θ > ξ, (4)

εΥω
ζ−X(θ) =

1
Γ(ε)

∫ ζ

θ

(
(ζ − θ)ω − (ζ − ρ)ω

ω

)ε−1 X(ρ)

(ζ − ρ)1−ω
dρ, θ < ζ, (5)

where ε ∈ C with Re(ε) > 0.

In 2021, Hyder and Barakat [23] improved the fractional integral operators given in [22]
and introduced more general definitions for the fractional integral operators as follows:

Definition 3 ([23]). The general improved left and right fractional integral operators of a function
X, of order ω, are given, respectively, by:

εΥω
ξ+X(θ) =

1
Γ(ε)

∫ θ

ξ
Wε−1(θ − ξ, ρ− ξ, ω)

X(ρ)

ϕ(ρ− ξ, ω)
dρ, θ > ξ, (6)

εΥω
ζ−X(θ) =

1
Γ(ε)

∫ ζ

θ
Wε−1(ζ − θ, ζ − ρ, ω)

X(ρ)

ϕ(ζ − ρ, ω)
dρ, θ < ζ, (7)

where

W(θ, ρ, ω) =
∫ θ

ρ

dν

ϕ(ν, ω)
, (8)

and ϕ is either a continuous function from R+ × (0, 1] into R, satisfying the conditions ϕ(θ, 1) =
1 for all θ ∈ R+, ϕ(θ, ω) > 0 for all (θ, ω) ∈ R+× (0, 1], and ϕ(·, ω1) 6= ϕ(·, ω2) for all ω1, ω2
∈ (0, 1] such that ω1 6= ω2, or the constant functionϕ(θ, ω) = 1. Additionally, the one-sided
improved fractional operator can be set as the form

εΥωX(θ) =
1

Γ(ε)

∫ θ

0
Wε−1(θ, ρ, ω)

X(ρ)

ϕ(ρ, ω)
dρ. (9)

Remark 1. If ϕ(θ, ω) = θ1−ω , then W(θ, ρ, ω) = θω−ρω

ω and the fractional operators in (6) and
(7) reduce to those defined in (4) and (5), respectively. Moreover, if ϕ(θ, ω) = θ1−ω, ξ = ζ = 0,
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and ω = 1, then W(θ, ρ, ω) = θ − ρ, and the fractional operators in (6) and (7) reduce to those
defined in (2) and (3), respectively. Furthermore, as special cases of fractional operators (6) and
(7), many fractional operators in the literature [24–26] can be obtained. Therefore, the fractional
operators (6) and (7) can be used to obtain new general results related to Hermite–Hadamard and
Minkowski inequalities.

Recently, Tariq et al [27] explored a new kind of Hermite–Hadamard inequality by Raina
type function and some generalized convex functions. Their contribution lies in choosing
different convex-type functions to build a new version of Hermite–Hadamard inequality,
while the contribution of the present work lies in employing recent and general fractional
integrals to construct a novel fractional Hermite–Hadamard and Minkowski inequalities.

In this paper, we employ recently developed generalized fractional operators to
construct novel fractional inequalities for integrable and non-negative functions. These
inequalities concern the Hermite–Hadamard and Minkowski inequalities. Our outcomes
can be compared by the previous results established in [28,29]. The inequalities obtained in
these references can be derived as particular cases. Additionally, in this work we show that
the inequality of [29] (Theorem 2.5) is incorrect as we explain in the following. Finally, this
paper is organized as follows: Section 2 contains the main results and Section 3 provides
concluding remarks.

2. Main Results

In this section, we use new developed fractional integral operators to construct gener-
alized fractional inequalities in Hermite–Hadamard and Minkowski settings. The following
theorems are presented to achieve this claim.

Theorem 1. Let ε, ω > 0, s ≥ 1, and let X and Y be two functions on [0, ∞) such that, for all
θ > 0, X(θ), Y(θ) > 0, εΥωXs(θ) < ∞, and εΥωYs(θ) < ∞. If 0 < j ≤ X(ρ)

Y(ρ) ≤ J, ρ ∈ [0, θ],
then the next inequality holds:

(εΥωXs(θ))1/s + (εΥωYs(θ))1/s ≤ 1 + (j + 2)J
(j + 1)(J + 1)

(
εΥω(X + Y)s(θ)

)1/s. (10)

Proof. According to the condition X(ρ)
Y(ρ) ≤ J, ρ ∈ [0, θ], θ > 0, we get

(J + 1)sXs(ρ) ≤ Js(X + Y)s(ρ). (11)

Therefore, we have

(J + 1)s

Γ(ε)
Wε−1(θ, ρ, ω)

Xs(ρ)

ϕ(ρ, ω)
≤ Js

Γ(ε)
Wε−1(θ, ρ, ω)

(X + Y)s(ρ)

ϕ(ρ, ω)
. (12)

Integrating the inequality (12) from 0 to θ with respect to ρ and using (9), we get

εΥωXs(θ) ≤ Js

(J + 1)s
εΥω(X + Y)s(θ). (13)

Hence,

(εΥωXs(θ))1/s ≤ J
J + 1

(εΥω(X + Y)s(θ))1/s. (14)

Now, according to the condition X(ρ)
Y(ρ) ≥ j, we have(

1 +
1
j

)s
Ys(ρ) ≤

(
1
j

)s
(X + Y)s(ρ), (15)
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and

1
Γ(ε)

(
1 +

1
j

)s
Wε−1(θ, ρ, ω)

Ys(ρ)

ϕ(ρ, ω)
≤ 1

Γ(ε)

(
1
j

)s
Wε−1(θ, ρ, ω)

(X + Y)s(ρ)

ϕ(ρ, ω)
. (16)

Integrating the inequality (16) from 0 to θ with respect to ρ and using (9), we get

(εΥωYs(θ))1/s ≤ 1
j + 1

(εΥω(X + Y)s(θ))1/s. (17)

Thus, the desired inequality (10) can be acquired by adding the inequalities (14)
and (17).

Theorem 2. Let ω > 0, s ≥ 1, ε ∈ C, Re(ε) > 0, and let X and Y be two functions on [0, ∞) such
that, for all θ > 0, X(θ), Y(θ) > 0, εΥωXs(θ) < ∞, and εΥωYs(θ) < ∞. If 0 < j ≤ X(ρ)

Y(ρ) ≤ J,
ρ ∈ [0, θ], then the next inequality holds:

(εΥωXs(θ))2/s + (εΥωYs(θ))2/s ≥
(
(J + 1)(j + 1)

J
− 2
)(

εΥω(X + Y)s(θ)
)1/s. (18)

Proof. Multiplying the inequalities (14) and (17), we have(
(J + 1)(j + 1)

J

)
(εΥωXs(θ))1/s(εΥωYs(θ))1/s ≤ (εΥω(X + Y)s(θ))2/s. (19)

According to Minkowski inequality, we get

(εΥω(X + Y)s(θ))2/s ≤
(
(εΥωXs(θ))1/s + (εΥωYs(θ))1/s

)2

= (εΥωXs(θ))2/s + (εΥωYs(θ))2/s

+ 2(εΥωXs(θ))1/s(εΥωYs(θ))1/s. (20)

Therefore, by the inequalities (19) and (20), the wanted inequality (18) can be obtained.

Lemma 1 ([30]). Assume X(θ) is a concave function for θ ∈ [p, q], then the next inequalities hold:

X(p) + X(q) ≤ X(p + q− θ) + X(θ) ≤ 2X
(

p + q
2

)
. (21)

Theorem 3. Let ε, ω > 0, ε ∈ C, k, l > 1, and let X and Y be two functions on [0, ∞) such
that X(θ), Y(θ) > 0 for θ > 0. If Xk and Yl are concave functions on [0, ∞), then the next
inequality holds:

1
2k+l (X(0) + X(ωW(θ, 0, ω)))k(Y(0) + Y(ωW(θ, 0, ω)))l

(
εΥω

(
ωε−1Wε−1(θ, 0, ω)

))2

≤ εΥω
(

ωε−1Wε−1(θ, 0, ω)Xk(ωW(θ, 0, ω))
)ε

Υω
(

ωε−1Wε−1(θ, 0, ω)Yl(ωW(θ, 0, ω))
)

. (22)

Proof. From the concavity of the functions Xk, Yl , and Lemma 1, for θ > 0, ω > 0, ρ ∈ [0, θ]
we have

Xk(0) + Xk(ωW(θ, 0, ω)) ≤ Xk(ωW(θ, ρ, ω)) + Xk(ωW(ρ, 0, ω)) ≤ 2Xk(
ω

2
W(θ, 0, ω)), (23)

Yl(0) + Yl(ωW(θ, 0, ω)) ≤ Yl(ωW(θ, ρ, ω)) + Yl(ωW(ρ, 0, ω)) ≤ 2Yl(
ω

2
W(θ, 0, ω)). (24)
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Multiplying the inequalities (23) and (24) by 1
Γ(ε)ϕ(ρ,ω) (ωW(θ, ρ, ω)W(ρ, 0, ω))ε−1 and

integrating the outcoming inequalities from 0 to θ, we get

Xk(0) + Xk(ωW(θ, 0, ω))

Γ(ε)

∫ θ

0
(ωW(θ, ρ, ω)W(ρ, 0, ω))ε−1 dρ

ϕ(ρ, ω)

≤ 1
Γ(ε)

∫ θ

0
(ωW(θ, ρ, ω)W(ρ, 0, ω))ε−1 Xk(ωW(θ, ρ, ω)

ϕ(ρ, ω)
dρ

+
1

Γ(ε)

∫ θ

0
(ωW(θ, ρ, ω)W(ρ, 0, ω))ε−1 Xk(ωW(ρ, 0, ω)

ϕ(ρ, ω)
dρ

≤
2Xk(ω

2 W(θ, 0, ω)
)

Γ(ε)

∫ θ

0
(ωW(θ, ρ, ω)W(ρ, 0, ω))ε−1 dρ

ϕ(ρ, ω)
, (25)

and

Yl(0) + Yl(ωW(θ, 0, ω))

Γ(ε)

∫ θ

0
(ωW(θ, ρ, ω)W(ρ, 0, ω))ε−1 dρ

ϕ(ρ, ω)

≤ 1
Γ(ε)

∫ θ

0
(ωW(θ, ρ, ω)W(ρ, 0, ω))ε−1 Yl(ωW(θ, ρ, ω)

ϕ(ρ, ω)
dρ

+
1

Γ(ε)

∫ θ

0
(ωW(θ, ρ, ω)W(ρ, 0, ω))ε−1 Yl(ωW(ρ, 0, ω)

ϕ(ρ, ω)
dρ

≤
2Yl(ω

2 W(θ, 0, ω)
)

Γ(ε)

∫ θ

0
(ωW(θ, ρ, ω)W(ρ, 0, ω))ε−1 dρ

ϕ(ρ, ω)
. (26)

If we set W(θ, ρ, ω) = W(η, 0, ω), then we have

1
Γ(ε)

∫ θ

0
(ωW(θ, ρ, ω)W(ρ, 0, ω))ε−1 dρ

ϕ(ρ, ω)
=ε Υω

(
(ωW(θ, 0, ω))ε−1

)
, (27)

1
Γ(ε)

∫ θ

0
(ωW(θ, ρ, ω)W(ρ, 0, ω))ε−1 Xk(ωW(θ, ρ, ω)

ϕ(ρ, ω)
dρ

= εΥω
(
(ωW(θ, 0, ω))ε−1Xk(ωW(θ, 0, ω)

)
, (28)

and

1
Γ(ε)

∫ θ

0
(ωW(θ, ρ, ω)W(ρ, 0, ω))ε−1 Yl(ωW(θ, ρ, ω)

ϕ(ρ, ω)
dρ

= εΥω
(
(ωW(θ, 0, ω))ε−1Yl(ωW(θ, 0, ω)

)
. (29)

Therefore, by (25), (27), and (28), we get(
Xk(0) + Xk(ωW(θ, 0, ω)

)(
εΥω

(
(ωW(θ, 0, ω))ε−1

))
≤ 2εΥω

(
(ωW(θ, 0, ω))ε−1Xk(ωW(θ, 0, ω)

)
≤ 2Xk

(ω

2
W(θ, 0, ω)

)(
εΥω

(
(ωW(θ, 0, ω))ε−1

))
. (30)
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Additionally, by (26), (27), and (29), we have(
Yl(0) + Yl(ωW(θ, 0, ω)

)(
εΥω

(
(ωW(θ, 0, ω))ε−1

))
≤ 2εΥω

(
(ωW(θ, 0, ω))ε−1Yl(ωW(θ, 0, ω)

)
≤ 2Yl

(ω

2
W(θ, 0, ω)

)(
εΥω

(
(ωW(θ, 0, ω))ε−1

))
. (31)

Hence, by (30) and (31), it follows that

(
Xk(0) + Xk(ωW(θ, 0, ω)

)(
Yl(0) + Yl(ωW(θ, 0, ω)

)(
εΥω

(
(ωW(θ, 0, ω))ε−1

))2

≤ 4
(

εΥω
(
(ωW(θ, 0, ω))ε−1Xk(ωW(θ, 0, ω)

))
×

(
εΥω

(
(ωW(θ, 0, ω))ε−1Yl(ωW(θ, 0, ω)

))
. (32)

As X(θ)Y(θ) > 0 for θ > 0., then for ω > 0, k ≥ 0, and l ≥ 0, we have(
Xk(0) + Xk(ωW(θ, 0, ω)

2

)1/k

≥ X(0) + X(ωW(θ, 0, ω)

2
, (33)

and (
Yl(0) + Yl(ωW(θ, 0, ω)

2

)1/l

≥ Y(0) + Y(ωW(θ, 0, ω)

2
. (34)

Therefore,(
Xk(0) + Xk(ωW(θ, 0, ω)

2

)(
εΥω

(
(ωW(θ, 0, ω))ε−1

))
≥

(
X(0) + X(ωW(θ, 0, ω)

2

)k(
εΥω

(
(ωW(θ, 0, ω))ε−1

))
, (35)

and (
Yl(0) + Yl(ωW(θ, 0, ω)

2

)(
εΥω

(
(ωW(θ, 0, ω))ε−1

))
≥

(
X(0) + X(ωW(θ, 0, ω)

2

)l(
εΥω

(
(ωW(θ, 0, ω))ε−1

))
. (36)

According to inequalities (35) and (36), we acquire(
Xk(0) + Xk(ωW(θ, 0, ω)

)(
Yl(0) + Yl(ωW(θ, 0, ω)

)(
εΥω

(
(ωW(θ, 0, ω))ε−1

))2

≥ 22−k−l(X(0) + X(ωW(θ, 0, ω))k(Y(0) + Y(ωW(θ, 0, ω))l

×
(

εΥω
(
(ωW(θ, 0, ω))ε−1

))2
. (37)

Hence, by merging inequalities (32) and (37), we obtain the required inequality (22).
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Theorem 4. Let ε, ω, ν > 0, ε, ν ∈ C, k, l > 1, and let X and Y be two functions on [0, ∞)
such that X(θ), Y(θ) > 0 for θ > 0. If Xk, Yl are concave functions on [0, ∞). Then, the next
inequality holds:

1
2k+l−2 (X(0) + X(θ))k(Y(0) + Y(θ))l

(
εΥω

(
ων−1Wν−1(θ, 0, ω)

))2

≤
[

ων−εΓ(ν)
Γ(ε)

νΥω
(

ωε−1Wε−1(θ, 0, ω)Xk(ωW(θ, 0, ω))
)

+ εΥω
(

ων−1Wν−1(θ, 0, ω)Xk(ωW(θ, 0, ω))
)]

×
[

ων−εΓ(ν)
Γ(ε)

νΥω
(

ωε−1Wε−1(θ, 0, ω)Yl(ωW(θ, 0, ω))
)

+ εΥω
(

ων−1Wν−1(θ, 0, ω)Yl(ωW(θ, 0, ω))
)]

. (38)

Proof. By multiplying inequalities (23) and (24) with 1
Γ(ε)ϕ(ρ,ω)

Wε−1(θ, ρ, ω)
(

ωW(ρ, 0,

ω)
)ν−1

, then integrating the resultant inequalities with respect to ρ from 0 to θ, we obtain

Xk(0) + Xk(ωW(θ, 0, ω))

Γ(ε)

∫ θ

0
Wε−1(θ, ρ, ω)(ωW(ρ, 0, ω))ν−1 dρ

ϕ(ρ, ω)

≤ 1
Γ(ε)

∫ θ

0
Wε−1(θ, ρ, ω)(ωW(ρ, 0, ω))ν−1 Xk(ωW(θ, ρ, ω)

ϕ(ρ, ω)
dρ

+
1

Γ(ε)

∫ θ

0
Wε−1(θ, ρ, ω)(ωW(ρ, 0, ω))ν−1 Xk(ωW(ρ, 0, ω)

ϕ(ρ, ω)
dρ

≤
2Xk(ω

2 W(θ, 0, ω)
)

Γ(ε)

∫ θ

0
Wε−1(θ, ρ, ω)(ωW(ρ, 0, ω))ν−1 dρ

ϕ(ρ, ω)
, (39)

and

Yl(0) + Yl(ωW(θ, 0, ω))

Γ(ε)

∫ θ

0
Wε−1(θ, ρ, ω)(ωW(ρ, 0, ω))ν−1 dρ

ϕ(ρ, ω)

≤ 1
Γ(ε)

∫ θ

0
Wε−1(θ, ρ, ω)(ωW(ρ, 0, ω))ν−1 Yl(ωW(θ, ρ, ω)

ϕ(ρ, ω)
dρ

+
1

Γ(ε)

∫ θ

0
Wε−1(θ, ρ, ω)(ωW(ρ, 0, ω))ν−1 Yl(ωW(ρ, 0, ω)

ϕ(ρ, ω)
dρ

≤
2Yl(ω

2 W(θ, 0, ω)
)

Γ(ε)

∫ θ

0
Wε−1(θ, ρ, ω)(ωW(ρ, 0, ω))ν−1 dρ

ϕ(ρ, ω)
. (40)

If we set W(θ, ρ, ω) = W(η, 0, ω), then we have

1
Γ(ε)

∫ θ

0
Wε−1(θ, ρ, ω)(ωW(ρ, 0, ω))ν−1 dρ

ϕ(ρ, ω)
=ε Υω

(
(ωW(θ, 0, ω))ν−1

)
, (41)

1
Γ(ε)

∫ θ

0
Wε−1(θ, ρ, ω)(ωW(ρ, 0, ω))ν−1 Xk(ωW(θ, ρ, ω)

ϕ(ρ, ω)
dρ

=
ων−εΓ(ν)

Γ(ε)
νΥω

(
(ωW(θ, 0, ω))ε−1Xk(ωW(θ, 0, ω)

)
, (42)
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and

1
Γ(ε)

∫ θ

0
Wε−1(θ, ρ, ω)(ωW(ρ, 0, ω))ν−1 Yl(ωW(θ, ρ, ω)

ϕ(ρ, ω)
dρ

=
ων−εΓ(ν)

Γ(ε)
νΥω

(
(ωW(θ, 0, ω))ε−1Yl(ωW(θ, 0, ω)

)
, (43)

Therefore, by (38), (41), and (42), we get(
Xk(0) + Xk(ωW(θ, 0, ω)

)(
εΥω

(
(ωW(θ, 0, ω))ν−1

))
≤ ων−εΓ(ν)

Γ(ε)
νΥω

(
(ωW(θ, 0, ω))ε−1Xk(ωW(θ, 0, ω)

)
+ εΥω

(
(ωW(θ, 0, ω))ν−1Xk(ωW(θ, 0, ω)

)
. (44)

Additionally, by (40), (41), and (43), we get(
Yl(0) + Yl(ωW(θ, 0, ω)

)(
εΥω

(
(ωW(θ, 0, ω))ν−1

))
≤ ων−εΓ(ν)

Γ(ε)
νΥω

(
(ωW(θ, 0, ω))ε−1Yl(ωW(θ, 0, ω)

)
+ εΥω

(
(ωW(θ, 0, ω))ν−1Yl(ωW(θ, 0, ω)

)
. (45)

By multiplying the inequalities (44) and (45) we get

(
Xk(0) + Xk(ωW(θ, 0, ω))

)(
Yl(0) + Yl(ωW(θ, 0, ω))

)(
εΥω

(
(ωW(θ, 0, ω))ν−1

))2

≤
[

ων−εΓ(ν)
Γ(ε)

νΥω
(
(ωW(θ, 0, ω))ε−1Xk(ωW(θ, 0, ω)

)

+ εΥω
(
(ωW(θ, 0, ω))ν−1Xk(ωW(θ, 0, ω)

)]
(46)

≤
[

ων−εΓ(ν)
Γ(ε)

νΥω
(
(ωW(θ, 0, ω))ε−1Yl(ωW(θ, 0, ω)

)

+ εΥω
(
(ωW(θ, 0, ω))ν−1Yl(ωW(θ, 0, ω)

)]
. (47)

According to inequalities (35) and (36), we acquire

(
Xk(0) + Xk(ωW(θ, 0, ω))

)(
Yl(0) + Yl(ωW(θ, 0, ω))

)(
εΥω

(
(ωW(θ, 0, ω)))ε−1

))2

≥ 22−k−l(X(0) + X(ωW(θ, 0, ω)))k(Y(0) + Y(ωW(θ, 0, ω)))l

×
(

εΥω
(
(ωW(θ, 0, ω))ε−1

))2
. (48)

Hence, by merging inequalities (46) and (48), we obtain the desired inequality (38).

3. Corrigendum to a Recently Published Result

We highlighted that the proof of Theorem 2.5 in [29] is questionable. Indeed, those
authors mainly built their proof on the following allegations:

1
Γ(ε)

∫ θ

0

( θω − ρω

ω

)ε−1
ρων−1Xk(θω − ρω)dρ =

Γ(ν)
Γ(ε)

νΥω
(

θω(ε−1)Xk(θω)
)

,
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and

1
Γ(ε)

∫ θ

0

( θω − ρω

ω

)ε−1
ρων−1Yl(θω − ρω)dρ =

Γ(ν)
Γ(ε)

νΥω
(

θω(ε−1)Yl(θω)
)

.

Obviously, the authors used one-sided generalized fractional integral operator; they
replaced ωε−1 by ων−1 to deduce the above essential equations and consequently com-
pleted their proof. In our opinion, this is dubious. In fact, their claimed theorem is just a
particular case of Theorem 2.4 here, and a more precise version of Theorem 2.5 in [29] is
reachable through the following Corollary.

Corollary 1. Let ε, ω, ν > 0, ε, ν ∈ C, k, l > 1, and let X and Y be two functions on [0, ∞)
such that X(θ), Y(θ) > 0 for θ > 0. IfXk and Yl are concave functions on [0, ∞), then the next
inequality holds:

1
2k+l−2 (X(0) + X(θ))k(Y(0) + Y(θ))l

(
εΥω(θω(ν−1))

)2

≤
[

ων−εΓ(ν)
Γ(ε)

νΥω
(

θω(ε−1)Xk(θω)
)
+ε Υω(θ(ν−1)ωXk(θω))

]

×
[

ων−εΓ(ν)
Γ(ε)

νΥω
(

θω(ε−1)Yl(θω)
)
+ε Υω(θ(ν−1)ωYl(θω))

]
. (49)

Proof. Using the evidence of Theorem 2.4 as a guide, if we put ϕ(θ, ω) = θ1−ω, then
ωW(θ, ρ, ω) = θω − ρω. Consequently, we get the proof.

4. Concluding Remarks

In this study, Hermite–Hadamard and Minkowski inequalities have been established
in the context of newly generalized fractional integral operators. Throughout the paper,
if we set ϕ(θ, ω) = θ1−ω , then W(θ, ρ, ω) = θω−ρω

ω , and the acquired outcomes will reduced
to the integral inequalities gained by Nisar et al. [29]. Furthermore, if ω = 1, then all the
outcomes will be approached to the fractional inequalities introduced by Dahmani [30].
Moreover, if we put ω = ε = 1, then all the outcomes will be reduced to the traditional
inequalities introduced in [28]. In addition, numerous research directions related to the
integral inequalities can be considered in the frame of the general improved fractional
integral (6) and (7). Under these operators, it is expected there will be more investiga-
tions into the Hermite–Hadamard inequality with differentiable h-convex functions [31],
Hermite–Hadamard inequality for s-Convex functions [32], the binary Brunn–Minkowski
inequality [33], and others.
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